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Abstract 

This study aims to compare the statistical powers of the Kolmogorov-Smirnov 
two-sample test and the Mann-Whitney test using the Monte Carlo simulation 
method, for specific sample sizes. The simulation results showed that the 
Mann-Whitney Test was more powerful for (5, 10) and (10, 5) sample sizes 
when the standard deviation rates were 2 and 1/2; for the (5, 20) sample size 
when the standard deviation rates were 2, 3, and 1/2; and for the (20, 5) sample 
size when the standard deviation rates were 1/2, 1/3, and 1/4. The 
Kolmogorov-Smirnov two-sample test was more powerful for (5, 10) and (10, 
5) sample sizes when standard deviation rates were 3, 4, and 1/4; for the (10, 20) 
sample size for all standard deviation rates; for the (20, 10) sample size 
excepting the standard deviation of 1/2; and for the (20, 5) sample size when 
standard deviations were 2, 3, and 4.  
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1  Introduction  

Two-sample statistical comparison is one of the most important hypothesis 
tests used in the social sciences. Researchers are presented with a wide range of 
different parametric and non-parametric statistical procedures, varying according 
to the population distributions they take into account and the assumptions upon 
which they are based. After gathering data pertaining to his or her study, the 
researcher decides which hypothesis test he or she will use based on such criteria 
as the characteristics of the data, the population distributions, and normality. In 
circumstances where normality and variance homogeneity assumptions are 
infringed, it is wise to use non-parametric statistical tests. It is known that in the 
case of a non-normal distribution of data, non-parametric statistical procedures are 
more powerful than parametric ones. Among the non-parametric procedures used 
for testing data gathered from two independent samples, the most commonly used 
ones are the Kolmogorov-Smirnov two-sample test and the Mann-Whitney test. 

When deciding on an analytical technique, researchers generally use one of 
these tests. Both the Kolmogorov-Smirnov two-sample test and the 
Mann-Whitney test are non-parametric procedures used for testing sequential data. 
Again, both these tests are applied in determining whether two independent 
samples are covered by the same population, and whether two populations are 
identical. 

The aim of this study is to use Monte Carlo simulation to compare the 
statistical powers of the Kolmogorov-Smirnov two-sample test and the 
Mann-Whitney test for different skewness and kurtosis coefficients. We 
investigated the kurtosis coefficients when the skewness coefficients of both tests 
are equal, and the skewness coefficients when the kurtosis coefficients are equal. 
Our study is principally based on twelve populations with different skewness and 
kurtosis coefficients, derived from the normal distribution using Fleishman’s 
power function. 

 
 

2  The Kolmogorov-Smirnov Two-sample Test 
The Kolmogorov-Smirnov two-sample test is a general and comprehensive test 

for whether the populations of two independent samples are equivalent [1]. 
Conover (1999) [2] proposes that certain assumptions must be met for the 
Kolmogorov-Smirnov two-sample test to be applicable to a set of data. These 
assumptions are as follows: 
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• Every sample is chosen randomly from the population it represents; 

• The measurement scale is sequential at least; 

• The basic observed variable is a continuous variable;  

• The two samples are independent from each other.  
Conover (1999) [2] and Sheskin (2000) [3] define the data as follows: 

Let S1(x) be the sample distribution function x1, x2, … , xn1 

Let S2(x) be the sample distribution function y1, y2, … , yn2 

Cumulative probabilities for x1, x2, … , xn1 and y1, y2, … , yn2 value are then 
identified. 

Marascuilo and McSweeney (1977) [4] introduce a non-directional 
hypothesis for defining general disparities between the two populations. 
According to them, the zero and alternative hypotheses are as follows: 

H0:  There is no difference between the two populations; or, for all values 
of x, H0: F(x) = G(x); from -∞ to + ∞.  

Ha:  There are some differences between two populations; or, for at least 
one x, F(x) ≠ G(x). 

According to Daniel (1990) [5], the test statistic for small and large samples in 
Kolmogorov-Smirnov two-sample test is as follows:  

                         ( ) ( )1 2maxD S x S x= −         (1) 

and the decision rule of the hypothesis is:  
The zero hypothesis is rejected if the observed D value, for a specific 

significance level (α), is equal or greater than the D critical value (D ≥ D critical). 
In this case, one may say that there is a significant difference between the two 
populations.  

 
 
3  The Mann-Whitney test 

The Mann-Whitney test is one of the most powerful non-parametric tests and is 
used as an alternative to the parametric t-test [6]. Various assumptions were made 
in applying the Mann-Whitney test. For much of this study Sheskin’s (2000) [3] 
data-regulating method, which computes rank sum, was used. Here are the 
assumptions that are in effect: 
• Every single sample is chosen randomly from population it represents;  
• The basic observed sample point is a continuous variable; 
• Two sample points are randomly chosen and the point sequences are 
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independent from each other; 
• The measure scale is sequential at least. 
Let x1, x2, … , xn1 and y1, y2, … ,yn2 be observation values chosen randomly from 
the first and second populations in turn; here the number of the xs is greater than 
the number of ys. Rank 1 is allocated according to n1 + n2, from minimum to 
maximum; let N= n1 + n2 be as follows: 

∑R1 is the sum of the ranks of first sample group 

∑R2 is the sum of the ranks of second sample group 

Since our study is designed to test the alternative hypothesis (Ha), which suggests 
that there are differences between the two sample population distributions, we use 
the non-directional (double-ended test) hypothesis test developed by Conover 
(1999) [2] and Gibbons and Chakraborti (2003) [7]. 
For all values of x, the non-directional hypotheses are:  

Zero hypothesis H0: F(x) = G(x); or, there is no difference between the two 
populations. 

Alternative hypothesis Ha: For some values of x, F(x) ≠ G(x); or, there are 
some differences between the two populations. 

For a sample size which is equal to or smaller than 10 (m ≤ 10 and n ≤ 10), we use 
the W test statistics proposed for smaller samples. According to the W test 
statistics:  

∑= 1RWx  (i.e. the sum of ranks of multi-variables of x chosen from the 
1st population) 

∑= 2RWy  (i.e. the sum of ranks of multi-variables of y chosen from the 
2nd population) 

( )1
2x y

N N
W W

+
+ =                              (2) 

In this formula, nmN +=  may be used in lieu of N . 
The smaller value of xW  and yW  is used as W  test statistics. The decision rule 
for this test statistic is as follows:  

If the probability of the observed W value in the table is smaller than the 
specific significance level (α), the zero hypothesis (H0: Mx = My) is rejected 
and one may conclude that there is a significant difference between the two 
populations. 

If the sample size is larger than 10 (m > 10 or n > 10) the normal approach 
formula is used. This formula which is proposed for use with larger samples sizes 
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can also be used in the case that one of the sample sizes is larger than 3 or 4 and 
another is larger than 12. The formula is as follows: 

                         

( )

( )

1
0,5

2
1

12

x

m N
W

z
mn N

+
± −

=
+

        (3) 

In this formula, ∑= 1RWx  may be used in lieu of the xW  value.  
The decision rule for the W test statistics which is used for larger sample sizes 

is as follows: 

If the calculated absolute value of z is larger than the z value of the α/2th 
level, the zero hypothesis (H0: Mx = My) is rejected and one may conclude 
that there is a significant difference between the two population medians. 

In this study, the linked values are ignored for both the Mann-Whitney and the 
Kolmogorov-Smirnov two-sample tests. 

 
 

4  Statistical Power, Variance Heterogenity, Skewness, and 
Kurtosis  

The power of a hypothesis test relates to the rejection of a null hypothesis H0. 
The power of the test is denoted by 1 – β. In a hypothesis test, the lower the 
probability of a Type II error (β) the greater the power of the test. Another factor 
increasing the power of a test is growth in the sample size (n). As the sample size 
(n) increases, the probability of a Type II error (β) decreases, and the power of the 
test advances accordingly [8]. 

According to Vogt, variance homogeneity refers to the case in which the 
populations from which the samples are chosen have identical or equivalent 
variances [9]. Where the Monte Carlo simulation is applied, one could denote 
variance homogeneity in a number of ways. For Penfield, the ratio of variances of 

two populations, in other words the value 
2
1
2
2

σ
σ

, can be used in lieu of the variance 

homogeneity index [10]. The symbol 2
1σ  refers to the population variance of the 

first sample group, while the symbol 2
2σ  refers to the second group’s population 

variance. In addition, Zimmerman (2004) [11] uses the ratio of the standard 
deviations of the two populations as an indicator of variance homogeneity. When 
applied to the Monte Carlo simulation, both the ratio of variances and the ratio of 
standard deviations give same results. For this reason, in this study the ratio of 
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standard deviations ( 1

2

σ
σ

) was used as an index to determine infringements of the 

variance homogeneity assumption. Furthermore, by using the standard deviation 
rates of Zimmerman, i.e. 2, 3, 4 [12], and Gibbons and Chakraborti, i.e. 1/2, 1/3, 
and 1/4 [13], we make a comparison of test powers. 
Skewness and kurtosis are used as distribution patterns by Balakrishnan and 
Nevzorov (2003) [14] and Joanest and Gill (1998) [15]. Skewness and kurtosis 
measures were first developed by Pearson in 1895 (quoted in [14]). Pearson 
formulates skewness as  

3
1 3

2

βγ
β

=       (4) 

and kurtosis as 

4
2 2

2

βγ
β

=       (5) 

In these formulas, 
2β  refers to 2nd central moment of the distribution function of the population,  

3β  refers to 3rd central moment of the distribution function of the population, and 

4β  refers to 4th central moment of the distribution function of the population. 
In addition, Algina, Olejnik, and Ocanto (1989) [16] suggested the following 
formulas for computing skewness and kurtosis: 

3
1 3

µγ
σ

=        (6) 

4
2 4

µγ
σ

=        (7) 

According to Algina, Olejnik, and Ocanto (1989) [16], if 1 0γ =  and 2 3γ = , 
the distribution is normal. Furthermore, Balakrishnan and Nevzorov (2003) [14] 
identify 1 0γ >  as a positive skewness distribution, 1 0γ <  as a negative skewness 
distribution, 2 3γ =  as a normal distribution, 2 3γ <  as a platykurtosis 
distribution, and 2 3γ >  as a leptokurtosis distribution.  
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5  Monte Carlo Simulation 
Monte Carlo simulation is an alternative to analytical mathematics and 

investigates the distribution of a population via random samples. By using random 
samples gathered from simulated data regarding a known population, Monte Carlo 
simulation computes statistics experimentally [17], and thus obtains approximate 
solutions to mathematical or physical problems, providing a range of values, each 
of which has a calculated probability of being the solution. 
In this study, we used the SAS 9.00 program to apply the Monte Carlo Simulation. 
To help researchers produce comprehensive and different distributions and 
simulate experimental distributions, Fleishman developed a power function which 
produces distributions. The RANNOR procedure in SAS is used for producing 
random numbers from the normal distribution, which has a mean of zero and a 
standard deviation of 1. In addition, this is a requirement for the power 
transformation that Fleishman used for producing normal distributions [18]. 
Fleishman’s formula for the power function is as follows:  

y = a + [(d × x + c) × x + b] × x     (8) 

In this formula, y is a distribution that depends on constants, and x is a 
random variable which has a mean of zero and standard deviation of 1. 
Coefficients a, b, c, and d are defined using standard deviations, skewness, and 
kurtosis. The values were first proposed by Fleishman, where a is constant and c 
takes the reverse sign to the constant a (i.e. c = –a). After establishing sample 
mechanisms, the PROC NPAR1WAY procedure is used for showing power 
simulations.  

For the twelve population distributions we referred to the study by Algina, 
Olejnik, and Ocanto (1989) [16]. We investigated different kurtosis values with 
equal skewness, and different skewness values with equal kurtosis. There are eight 
distributions which have the same skewness and different kurtosis values. Six of 
these eight distributions have a skewness value of (0.00) and the remainder have a 
skewness value of (0.75). The distributions having a skewness value of (0.00) are: 
Normal, Platykurtic, Normal Platykurtic, Leptokurtic1, Leptokurtic2, and 
Leptokurtic3. The kurtosis values of these distributions are (0.00), (-0.50), (-1.00), 
(1.00), (2.00), and (3.75) respectively. Distributions having a skewness value of 
(0.75) are the Skewed, Skewed, and Leptokurtic1. The kurtosis values of these 
distributions are (0.00) and (3.75). For a double comparison we combined these 
distributions into two. Finally, we arrived at sixteen distributions having equal 
skewness and different kurtosis values. 

There are ten distributions which have equal kurtosis values and different 
skewness values. Four of these distributions have a kurtosis of (3.75), two of them 
(-1.00), two of them (-0.50), and two of them (0.00). The distributions having 
kurtosis value of (3.75) are the Leptokurtic3, Skewed and Leptokurtic1, Skewed 
and Leptokurtic2, and Skewed-Leptokurtic distributions. The skewness values of 
these distributions are (0.00), (0.75), (1.25), and (1.75) respectively. Distributions 
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having a kurtosis of (-1.00) are the Normal Platykurtic and the Skewed and 
Platykurtic2. Skewness values of these distributions are (0.00) and (0.25). 
Distributions having a kurtosis value of (-0.50) are the Platykurtic and Skewed 
and Platykurtic1 distributions. The skewness values of these are (0.00) and (0.50) 
respectively. The distributions having a kurtosis value of (0.00) are also the 
Normal and Skewed distributions, which have a skewness value of (0.00) and 
(0.75) respectively. Finally, we arrived at nine distributions that have equal 
kurtosis and different skewness values.  

 
 

Table 1: Fleishman’s Power function for µ=0 and σ=1 

Distribution 
Skewness 
( 1γ ) 

Kurtosis 
( 2γ ) a B C d 

Normal 0,00 0,00 0,00 1,0000000 0,00 0,00 

Platykurtic 0,00 -0,50 0,00 1,0767327 0,00 -0,0262683 

Normal Platykurtic 0,00 -1,00 0,00 1,2210010 0,00 -0,0801584 

Leptokurtic1 0,00 1,00 0,00 0,9029766 0,00 0,0313565 

Leptokurtic2 0,00 2,00 0,00 0,8356646 0,00 0,0520574 

Leptokurtic3 0,00 3,75 0,00 0,7480208 0,00 0,0778727 

Skewed 0,75 0,00 -0,1736300 1,1125146 0,1736300 -0,0503344 

Skewed and 
Platykurtic1 0,50 -0,50 -0,1201561 1,1478491 0,1201561 -0,0575035 

Skewed and 
Platykurtic2 0,25 -1,00 -0,0774624 1,2634128 0,0774624 -0,1000360 

Skewed and 
Leptokurtic1 0,75 3,75 -0,0856306 0,7699520 0,0856306 0,0693486 

Skewed and 
Leptokurtic2 1,25 3,75 -0,1606426 0,8188816 0,1606426 0,0491652 

Skewed-Leptokurtic 1,75 3,75 -0,3994967 0,9296605 0,3994967 -0,0364670 

 Source: Lee (2007) [19], page 88. 
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In this study, we found a total of twenty-five distributions, sixteen of which 
have equal skewness and different kurtosis values and nine of which have equal 
kurtosis and different skewness values. Again, there are six distributions for 
standard deviation values of (2, 3, 4, 1/2, 1/3, and 1/4) and six distributions for 
sample sizes of (5, 10), (5, 20), (10, 5), (10, 20), (20, 5), and (20, 10). Therefore, 
in our study 25 × 6 × 6 = 900 syntaxes are drawn and investigated. 

 
 

6  Simulation Results 
6. 1  Results for Equal Skewness and Different Kurtosis Values 

We undertook power comparisons for sixteen different populations. Very 
similar power characteristics are seen for the Normal and Platykurtic sample pairs 
(in which the first sample is taken from the Normal distribution while the other is 
taken from the Platykurtic distribution), the Normal and Normal Platykurtic 
sample pairs (first sample taken from the Normal distribution, the other from the 
Normal Platykurtic distribution), and the Platykurtic and Normal Platykurtic 
sample pairs (first sample taken from the Platykurtic distribution, the other from 
the Normal Platykurtic distribution). According to the sample pairs gathered from 
these distributions, the Mann-Whitney test is more powerful in the (5, 10) and (10, 
5) sample sizes with standard deviations of 2 and 1/2; in the (5, 20) sample size 
with standard deviations of 2, 3, and 4; in the (10, 20) sample size with standard 
deviation of 2; and in the (20, 5) sample size with standard deviations of 2, 1/2, 
1/3, and 1/4. For other sample sizes and standard deviations the 
Kolmogorov-Smirnov two-sample test is more powerful. 

 

 
Figure 1: Powers of Mann-Whitney and Kolmogorov-Smirnov two-sample tests 
for Normal and Platykurtic, Normal and Normal Platykurtic, and Platykurtic and 
Normal Platykurtic distributions when standard deviation ratios are 2, 3, 4, 1/2, 
1/3, and 1/4. 



90    Comparison of the Powers of the Kolmogorov-Smirnov Two-Sample Test 

Very similar characteristics are seen for the Normal and Leptokurtic1 sample 
pairs, the Normal and Leptokurtic2 sample pairs, the Normal and Leptokurtic3 

sample pairs, the Normal Platykurtic and Leptokurtic1 sample pairs, and the 
Leptokurtic1 and Leptokurtic2 sample pairs. According to the sample pairs 
gathered from these distributions, the Mann-Whitney test is more powerful in the 
(5, 10) sample size with standard deviations of 2, 1/2, and 1/3; in the (5, 20) 
sample size with standard deviations of 2, 3, and 1/2; in the (10, 5) sample size 
with standard deviations of 2 and 1/2; in the (20, 5) sample size with standard 
deviations of 1/2, 1/3, and 1/4; and in the (20,10) sample size with standard 
deviation of 1/2. For other sample sizes and standard deviations the 
Kolmogorov-Smirnov two-sample test is more powerful. 

 
 

 

Figure 2: Powers of Mann-Whitney and Kolmogorov-Smirnov two-sample tests 
for Normal and Normal Leptokurtic2, Normal and Leptokurtic3, Normal 
Platykurtic and Leptkurtic1 and Leptkurtic1 and Leptkurtic2 distributions when 
standard deviation ratios are 2, 3, 4, 1/2, 1/3, and 1/4. 
 

 
Very similar power characteristics are shown by the Platykurtic and 

Leptokurtic1 sample pairs, Platykurtic and Leptokurtic2 sample pairs, and 
Leptokurtic1 and Leptokurtic3 sample pairs. According to the sample pairs 
gathered from these distributions, the Mann-Whitney test is more powerful in the 
(5, 10) and (10,5) sample sizes with standard deviations of 2, 1/2, and 1/3; in the 
(5, 20) sample size with standard deviations of 2, 3, 4, and 1/2; in the (20, 5) 
sample size with standard deviations of 1/2, 1/3, and 1/4; and in the (20,10) 
sample size with standard deviation of 1/2. For the other sample sizes and standard 
deviations the Kolmogorov-Smirnov two-sample test is more powerful. 
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Figure 3: Powers of Mann-Whitney and Kolmogorov-Smirnov tests for 
Platykurtic and Leptkurtic1, Platykurtic and Leptkurtic2 and Leptkurtic1 and 
Leptkurtic3 distributions when standard deviations are 2, 3, 4, 1/2, 1/3, and 1/4. 
 
 
 

Very similar power characteristics are shown by the Platykurtic and 
Leptokurtic3 sample pairs, and the Normal Platykurtic and Leptokurtic2 sample 
pairs. According to the sample pairs gathered from these distributions, the 
Mann-Whitney test is more powerful in the (5, 10) sample size with standard 
deviations of 2, 1/2, 1/3, and 1/4; in the (5, 20) sample size with standard 
deviations of 2 and 1/2; in the (10, 5) sample size with standard deviations of 2, 
1/2, and 1/3; in the (10,20) sample size with standard deviation of 1/2; in the 
(20,5) sample size with standard deviations of 1/2, 1/3, and 1/4; and in the (20,10) 
sample size with standard deviation of 1/2. For other sample sizes and standard 
deviations the Kolmogorov-Smirnov two sample test is more powerful. 

 

Figure 4: Powers of Mann-Whitney and Kolmogorov-Smirnov two-sample tests 
for Platykurtic and Leptkurtic3 and Normal Platykurtic and Leptkurtic2 

distributions when standard ratios are 2, 3, 4, 1/2, 1/3, and 1/4. 
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Very similar power characteristics are shown by the Normal Platykurtic and 
Leptokurtic3 sample pairs, the Skewed and Skewed and Leptokurtic1 sample pairs. 
According to the sample pairs gathered from these distributions, the 
Mann-Whitney test is more powerful in the (5, 10) sample size with standard 
deviations of 1/2, 1/3, and 1/4; in the (5, 20) sample size with standard deviations 
of 2 and 1/2; in the (10, 5) sample size with standard deviations of 2, 1/2, and 1/3; 
in the (10,20) sample size with standard deviation of 1/2; in the (20,5) sample size 
with standard deviations of 1/2, 1/3, and 1/4; and in the (20,10) sample size with 
standard deviation of 1/2. For other sample sizes and standard deviations the 
Kolmogorov-Smirnov two-sample test is more powerful. 

 
 

Figure 5: Powers of Mann-Whitney and Kolmogorov-Smirnov two-sample tests 
for Normal Platykurtic and Leptkurtic3 and Skewed and Skewed and Leptokurtic1 
Distributions when standard deviation ratios are 2, 3, 4, 1/2, 1/3, and 1/4. 
 
 

According to sample pairs in which first sample is taken from the 
Leptokurtic2 and the other from the Leptokurtic3 distribution, the Mann-Whitney 
test is more powerful in the (5, 10) sample size with standard deviations of 2, 1/2, 
and 1/3; in the (5, 20) sample size with standard deviations of 2, 3, and 1/2; in the 
(10, 5) sample size with standard deviations of 2, 3, 1/2, and 1/3; in the (10,20) 
sample size with standard deviation of 1/2; in the (20,5) sample size with standard 
deviations of 2, 1/2, 1/3, and 1/4; and in the (20,10) sample size with standard 
deviation of 1/2; for other sample sizes and standard deviations the 
Kolmogorov-Smirnov two-sample test is more powerful. 
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Figure 6: Powers of Mann-Whitney and Kolmogorov-Smirnov two-sample tests 
for Leptokurtic2 and Leptokurtic3 distributions when standard deviation ratios are 2, 
3, 4, 1/2, 1/3, and 1/4. 
 
 

6. 2  Results for Different Skewness and Equal Kurtosis Values 
We made power comparisons for nine different populations. According to 

sample pairs in which first sample is taken from the Normal distribution and other 
from the Skewed distribution, the Mann-Whitney test is more powerful in the (5, 
10) sample size with standard deviations of 2 and 1/2; in the (5, 20) sample size 
with standard deviations of 2, 3, and 4; in the (10, 5) sample size with standard 
deviations of 2, 3, and 1/2; and in the (20,5) sample size with standard deviations 
of 1/2 and 1/3; for other sample sizes and standard deviations the 
Kolmogorov-Smirnov two-sample test is more powerful. 

Very similar power characteristics are shown by the Platykurtic and Skewed 
and Platykurtic1 sample pairs, and the Normal Platykurtic and Skewed and 
Platykurtic2 sample pairs. According to the sample pairs, the Mann-Whitney test is 
more powerful in the (5, 10) sample size with standard deviations of 1/2, 1/3, and 
1/4; in the (5, 20) sample size with standard deviations of 2 and 1/2; in the (10, 5) 
sample size with standard deviations of 2, 1/3, and 1/2; in the (10, 20) sample size 
with standard deviation of 1/2; in the (20, 5) sample size with standard deviations 
of 1/2, 1/3, and 1/4; and in the (20, 10) sample size with standard deviation of 1/2; 
for other sample sizes and standard deviations the Kolmogorov-Smirnov 
two-sample test is more powerful. 

Very similar power characteristics are shown by the Leptokurtic3 and Skewed 
and Leptokurtic1 sample pairs, the Leptokurtic3 and Skewed and Leptokurtic2 
sample pairs, the Skewed and Leptokurtic1 and Skewed and Leptokurtic2 sample 
pairs. According to the sample pairs, the Mann-Whitney test is more powerful in 
the (5, 10) sample size with standard deviations of 2, 3, and 1/2; in the (5, 20) 
sample size with standard deviations of 2, 3, 4, and 1/2; in the (10, 5) sample size 
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with standard deviations of 2, 3, and 1/2; in the (10, 20) sample size with standard 
deviation of 2; and in the (20, 5) sample size with standard deviations of 2, 1/2, 
and 1/3; for other sample sizes and standard deviations the Kolmogorov-Smirnov 
two-sample test is more powerful. 

 

Figure 7: Powers of Mann-Whitney and Kolmogorov-Smirnov two-sample tests 
for Normal and Skewed distributions when standard deviation ratios are 2, 3, 4, 1/2, 
1/3, and 1/4. 
 
 

 

Figure 8: Powers of Mann-Whitney and Kolmogorov-Smirnov two-sample tests 
for Platykurtic and Skewed and Platykurtic1 and Normal Platykurtic and Skewed 
and Platykurtic2 distributions when standard deviation ratios are 2, 3, 4, 1/2, 1/3, 
and 1/4. 

 
Very similar power characteristics are shown by the Leptokurtic3 and 

Skewed-Leptokurtic sample pairs, and the Skewed and Leptokurtic1 and 
Skewed-Leptokurtic sample pairs. According to sample pairs, the Mann-Whitney 
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test is more powerful in the (5, 10) sample size with standard deviations of 2 and 
1/2; in the (5, 20) sample size with standard deviations of 2, 3, and 4; in the (10, 5) 
sample size with standard deviations of 2, 3, and 1/2; and in the (20,5) sample size 
with standard deviation of 1/2; for other sample sizes and standard deviations 
Kolmogorov-Smirnov two-sample test is more powerful. 

 
 

Figure 9: Powers of Mann-Whitney and Kolmogorov-Smirnov two-sample tests 
for Leptokurtic3 and Skewed and Leptokurtic1, Leptokurtic3 and Skewed and 
Leptokurtic2 and Skewed and Leptokurtic1 and Skewed and Leptokurtic2 

distributions when standard deviation ratios are 2, 3, 4, 1/2, 1/3, and 1/4. 
 
 
 

Figure 10: Powers of Mann-Whitney and Kolmogorov-Smirnov two-sample tests 
for Leptokurtic3 and Skewed-Leptokurtic and Skewed and Leptokurtic1 and 
Skewed-Leptokurtic distributions when standard deviation ratios are 2, 3, 4, 1/2, 
1/3, and 1/4. 
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According to the Skewed and Leptokurtic2 and Skewed-Leptokurtic sample 
pairs, the Mann-Whitney test is more powerful in the (5, 10) sample size with 
standard deviations of 2 and 1/2; in the (5, 20) sample size with standard 
deviations of 2, 3, and 4; in the (10, 5) sample size with standard deviations of 2 
and 1/2; and in the (20,5) sample size with standard deviations of 2, 1/2, and 1/3. 
For other sample sizes and standard deviations the Kolmogorov-Smirnov 
two-sample test is more powerful. 

 

 
Figure 11:. Powers of Mann-Whitney and Kolmogorov-Smirnov two-sample tests 
for Skewed and Leptokurtic2 and Skewed-Leptokurtic Distributions when standard 
deviation ratios are 2, 3, 4, 1/2, 1/3, and 1/4. 

 
 
7  Results 

According to sample pairs gathered from twenty-five different population 
distributions, the Mann-Whitney test is observed to be more powerful in the (5, 
10) and (10, 5) sample sizes with standard deviations of 2 and 1/2; in the (5, 20) 
sample size with standard deviations of 2, 3, and 4; and in the (20, 5) sample size 
with standard deviations of 1/2, 1/3, and 1/4. However, the Kolmogorov-Smirnov 
two-sample test is more powerful in the (5, 10) and (10, 5) sample sizes with 
standard deviations of 3, 4, 1/3, and 1/4; in the (5, 20) sample size with standard 
deviations of 1/2, 1/3, and 1/4; in all (10, 20) and (20, 10) sizes; and in the (20, 5) 
sample sizes with standard deviations of 2, 3, and 4. 

In all distributions, the largest power values are observed in standard 
deviation values of 4 or 1/4. For most distributions, when the standard deviations 
increase from 2 to 4 or decrease from 1/2 to 1/4 it is observed that both tests 
increased their powers. The Mann-Whitney test is more powerful in the case 
where the first sample’s size is larger than the second’s but the larger sample’s 
standard deviation is smaller than the other’s (e.g. in the (20, 5) sample size with 
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standard deviation rates of 1/2, 1/3, and 1/4). Where the standard deviation of the 
larger sample is bigger than the others, the Kolmogorov-Smirnov two-sample test 
is more powerful. Similarly, the Mann-Whitney test is more powerful if the first 
sample’s size is smaller but the standard deviation is larger (e.g. in the (5, 20) 
sample size with standard deviation rates of 2, 3, and 4); whereas if the standard 
deviation of the smaller sample is smaller than the others, the 
Kolmogorov-Smirnov two-sample test is more powerful. 

In terms of power comparisons of equal kurtosis and different skewness and 
different skewness and equal kurtosis, the largest power is observed for the 
(20,10) sample size with standard deviation of 1/4 in the Kolmogorov-Smirnov 
two-sample test (0.502). The smallest power value in this study is observed for 
same pairs gathered from the Normal Platykurtic and Leptokurtic1 distributions 
where the standard deviation of the Mann-Whitney test is 4 (0.007). 

 
 
References 
[1] J.J. Higgins, Introduction to Modern Statistics, Pacific Grove, Thomson 

Learning, Inc., 2004. 
[2] W.J. Conover, Parametric Nonparametric Statistics, Pacific Grove, John 

Wiley & Sons, Inc., New York, 1999. 
[3] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical 

Procedures, Chapman & Hall/CRC, Baca Raton, 2000. 
[4] L. A. Marascuilo and M. McSweeney, Nonparametric and Distribution-free 

Methods for Social Science, Brooks/Cole Publishing Company, Monterey, 
1977. 

[5] W.W. Daniel, Applied Nonparametric Statistics, PWS-Kent Publishing 
Company, Boston, 1990. 

[6] S. Siegel and J. N. J. Castellan, Nonparametric Statistics for the Behavioral 
Sciences, McGraw-Hill, Massachusetts, 1988.  

[7] J.D. Gibbons and S. Chakraborti, Nonparametric Statistical Inference, NY: 
Marcel Dekker, Inc., New York, 2003. 

[8] M. Kartal, Hypothesis Tests for Scientific Researches, Nobel Press, Ankara, 
2006. 

[9] W.P. Vogt, Dictionary of Statistics and Methodology: A Nontechnical Guide 
for the Social Sciences, SAGE Publications, Thousand Oaks, 2005. 

[10] D.A. Penfield, Choosing a Two-sample Location Test, Journal of 
Experimental Education, 62(4), (1994), 343-350. 

[11] D.W. Zimmerman, Inflation of Type I Error Rates by Unequal Variance 
Associated with Parametric, Nonparametric, and Rank-transformation Tests, 
Psicologica, 25, (2004), 103-133.  

[12] D.W. Zimmerman, Invalidation of Parametric and Nonparametric Statistical 
Tests by Concurrent Violation of Two Assumptions, Journal of Experimental 
Education, 67(1), (1998), 55-68. 



98    Comparison of the Powers of the Kolmogorov-Smirnov Two-Sample Test 

[13] J.D. Gibbons and S. Chakraborti, Comparisons of Mann-Whitney, Student’s t, 
and Alternative t Test for Means of Normal Distributions, Journal of 
Experimental Education, 59(3), (1991), 258-267. 

[14] N. Balakrishnan and V.B. Nevzerov, A Primer on Statistical Distributions, 
John & Wiley Sons Inc., New York, 2003.  

[15] D.N. Joanest and G. A. Gill, Comparing Measures of Sample skewness and 
Kurtosis, The Statistician, 47(1), (1998), 183-189.  

[16] J. Algina, S. Olejnik and R. Ocanto, Type I Error Rates and Power Estimates 
for Selected Two-sample Tests of Scale, Journal of Educational Statistics, 
14(4), (1989), 373-384. 

[17] C.Z. Mooney, Monte Carlo Simulation, SAGE Publication Inc., Thousand 
Oaks, 1997. 

[18] X. Fan, A. Felsovalyi, S.A. Sivo and S.C. Keenan, SAS for Monte Carlo 
Studies: A Guide for Quantitative Researchers, SAS Publishing, Ary, NC, 
2003.  

[19] C.H. Lee, A Monte Carlo Study of Two Nonparametric Statistics with 
Comparisons of Type I Error Rates and Power, Unpublished PhD 
Dissertation, Graduate College of the Oklahoma State University, Stillwater. 

 
 


	2  The Kolmogorov-Smirnov Two-sample Test
	3  The Mann-Whitney test
	4  Statistical Power, Variance Heterogenity, Skewness, and Kurtosis
	5  Monte Carlo Simulation
	6  Simulation Results
	6. 1  Results for Equal Skewness and Different Kurtosis Values
	6. 2  Results for Different Skewness and Equal Kurtosis Values

	7  Results

