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Asymptotic behaviour of
boundary condition functions
for a fourth-order boundary value problem
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Abstract

In this paper, we prove that the Boundary Condition Constants for the Boundary

Value Problem

7:Lp=¢ () + P ()P (%) + P (%) () + P, (X)$(X) = A¢(X)
U= m.g 2 @+n g 0 0)=0  (1<r,s<4)

can be replaced by Boundary Condition Functions and that the Boundary

Condition Functions are asymptotically equivalent for large values of |ﬂ| to the
Boundary Condition Functions for the corresponding Fourier problem m, given
by

7et 9 (%) = 29(X)

U,é= i{mmw*ﬂ @+n. g0 (b)}=0  (1<rs<4).
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1 Introduction

Over the years quite a good number of mathematicians have studied
boundary condition functions. The use of boundary condition functions for
boundary value problems was first considered by Kodaira in [1].

In this paper Kodaira considered the replacement of boundary condition
constants of separated boundary conditions , associated with real differential
equations of arbitrary even order , by solutions of the differential equation. In [2]

E. C. Titchmarsh proved that, the self-adjoint boundary value problem:

— D (x) + q(X)d(x) = 16(X) (-o<a<x<b<wi=0c+ir)
p(a)cosa + P (a)sina =0

@(b)cos 5+ (b)sin B = 0}

is equivalent asymptotically, for suitably large values of |4|, to the corresponding

Fourier problem:
~ ¢ (x) = A4(x)
p(a)cosa + o (a)sina =0
p(b)cos S+ (b)sin f=0

The coefficient q and the constantse, 3 are real valued and q  C[a,b]. W.
N. Everitt in [3] also worked on self-adjoint boundary value problems. D. N. Offei
in [4] extended the use of boundary condition functions to non-self adjoint

boundary value problems with complex-valued coefficients and constants and

with boundary conditions separated or otherwise.
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In [5], D. N. Offei proved that the boundary condition functions, for the

boundary value problem:

Lg =% (x) + P, ()¢ (X) + Py (x)g(x) = A4(X)

#(a) = ¢(b) = ¢ (b) =0

are asymptotically equivalent, for suitably large values of |/t| to the corresponding
functions, for the corresponding Fourier problem. In [9], M. B. Osei showed that
the boundary condition functions of the second order boundary value problem are

asymptotically equivalent to the boundary condition functions of the

corresponding Fourier problem of the boundary value problem.

2 Notation

In this section we give some properties of the linear differential expression L
and some notations used in subsequent sections of this paper.

1. For a suitable set of functions ¢, (x), (1<r<4), the symbol®(x) denotes

the 4 x 4 matrix [ (01 A<r,s<4)
Thus,

H) BN B 4
60 60 420 Y
4200 620 620 4200
4900 6,°0) 4200 6,2

Also  §(x) represents the column vector with components

9(x), g9 (%), gV (%),

2. The symbol B'(x) denotes the conjugate transpose of the matrix B(X)

(I)(X) =

whilst b”(x) denote the row vector with components b (x),b® (x)..0 " (x).

3. Given the linear expression L defined by
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L =Py ()¢ (x) + P.(x)¢™ (x) + P, ()¢ (x) + P ()¢ P (X) + P, (x)$(x)
(a<x<b). The Lagrange adjoint of L is denoted by L™ and defined as
L'y = (1) (Po)” + (-)*(P)® + (-1)* (Py)® + (-)(Py) ¥ + P, () .

4. (a) For suitable pairs of functions f and g
b —
J {our -9 | o = [r010) o))

Here [fg](x) is a bilinear formin (f,f® @ §®) and

(@.3“,3?,g?) given by

[19]00 =33 B, (059200 2 (x) = §" (0B f ()

j=1 k=1
where,
Pg“’(x)—Pz(”(x)wl“’() P, (x) PRI P0-PY 0+ RM-RY) Py(x)
P, +2P" ()~ 2R (x) -R(x)-2R"(x) —P() 0
B(x)= 0
P00 -3, () P, (x) 0 0
-P,(x) 0 0 0

(b) If P(x), P,(x) and P,(x) are identically zero in some neighbourhood of

aandb and P, is a constant independent of x then

0 0 0 P

0 -P, 0
B(a) =B(b) = 0 P 00 ol
0

(c) The Lagrange adjoint of L™ is L and for suitable pair of functions g and f

{fl" g — g LF Jox ={gf }(b) —{of }(a)

D ey T

where

{of 300 =22 A0 FI0g" Y (x) = 7 (0A§(0).

j=1 k=1
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The A, are dependent on the coefficients of the differential expression L

and A(x) =[Ai].

If o(x,A) is asolution of Ly =A¢ and y(x,A) is asolution of L'y = Ay
then

ov10e) ~Towl(x) = [(Plo—oLyldx  (asx<x <b)

X

= [{7Ap - pA7)dx
=0
and hence,
[p]1(x,) =[P](x,)
Thus, [¢(x, A)w(x,A)](x) is independent of x €[a,b].
Similarly {w(x, 1)¢(x, 1)}(x) is independent of x €[a,b]. This implies that

[o(x, Dw(x,1)](x) and{w(x,1)o(x,A)}(X) may be denoted by [¢w] and
{w¢}, respectively.

(a) If there is a constant K such that | f (x)| < Kg(x) for x > x, we write
f =0(g).

(b) If %—H,x—m) where | =0 we write f ~ ¢ .

3 Preliminaries

The boundary value problem to be considered is of the form

7:Lg =9 (x)+ P, ()¢ (X) + P ()™ (X) + P, (x)$(x) = 26(x) 1)

Ug=3 Mm@+ g 0)}=0  (1<rs<4) )
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where the functions P,(x),P;(x), P,(x), the constants m, and n, and the
parameter A are complex- valued. The functions P,(x) (r =2, 3, 4) are of the

class C“™" on the closed bounded interval [a, b] and P,(x), P,(x) are identically

zero in a neighbourhood of bothaand b .

The corresponding Fourier boundary value problem for = is given by

e 19 (x) = 26(x) (3)
Ur¢Ei{mrs¢(s‘”(a)+nrs¢(s‘l’ (b)}=0  (1<r,5<4). 4)

s=1
Let {yv,(a/x,A);x,(b/x,A)} (@A<r<4) be the boundary condition
functions for 7 and {y ., (a/x,1); y (b/x,A1)} (L < r < 4) the boundary condition

functions for z.. Then w, (a/x,A) and g, (b/x,A) are solutions of L'y = Ay

such that
Y(@)=B(a)M* and X(b)=B(b)N*,
where
0 0 0 1 my, My My My
0 0 -1 0 m m m m
B(a):B(b): ’ M: 21 22 23 24 '
0 1 0 O my, m;, My my,
-10 00 My My My My,
N N Nz Ny
and N= |2 Ny Nyz Ny

Likewise w. (a/x,A) and y (b/x,A) are solutions of ™ (x)=Aw(x) such
that
¥(a)=B(a)M* and X(b)=B(b)N*.
Let {f (a/x,4),9,(b/x,A)} (@<r<4) be the boundary condition

functions for the boundary value problem
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0
PO ()= Ag(x), and  Ug = 1,4(a) + 1,9(b) = 8 |
0

where |, is the 4 x 4 unit matrix. Then f_(a/x,4),9,(b/x,A) are solutions of
v (x) = Ay(x) such that
F(@) = B(a)l, = B(a) and G(b) = B(b)I, = B(b).

4 Proof of Theorems

We now prove five Theorems that will enable us to prove our main results in
Theorem 6.

Theorem 1

i  Ye@/x4) :imrs f.(alx ).

() 2 (/%2 =3 m.0,00/%4).

(i)  Let f.(x)="f.(a/x,A), g,(x)="f(alx,A1).
Then

fo(x) =DV £V (x)  2<s<4
9.() =(-D*7g,* V() 2<s<4

Proof. (i) and (ii) f (a/x,4) and g,(b/x, 1) are solutions of
v @ (x) =2 (x) (5)

such that
F(a) = B(a)l, = B(a) (6)
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f,a) f,(a f,@ f,(a) 00 0 1
. @ %@ f%a f%@]| [0 0 -10
1€, ) 2) 2 @) =

%@ %@ %@ f,%@) 01 0 0

9@ f,%@ f,%@a) f,a) -1 0 0 0

Similarly  G(b) = B(b)I, = B(b).

4
Let h, (x,4) :Zmrs f.(alx, 1), then h (x,4),h,(x,4),h,(x,4) and h,(x,1) are

s=1

solutions of (5) such that

h(@ h() h(a h(a)
h“@ h"@ h@ h"@)
h?@ h%@ h?@ h?(@)
h?@ h@ h9@ h@)

f,(d f,a f,(a f( |[m
%@ %@ %@ 1,7 ||my,
%@ 1,2 .2 ,%@)]||ms

9@ %) 7@ @] m

H(a) =

':3
3 3 3
233
ﬁgl 1%3 | .‘33'

3
~
3
~
=
~
3
S

This implies that
H(@) = F@M* .
But from (6) F(a) = B(a), therefore
H() = B(a)M*.
Now .. (a/Xx,4) (1<r <4) are solutions of the same (5) such that

Y(a)=B(@M™*
4
Hence we have v (a/x,4) = h (x,A)= Y m f (a/x 1) A<r<4).
s=1

Similarly if

6, (x,2) =30, (/% 4). @)

s=1
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then q,(x,4) (1<r <4) aresolutions of (5) such that Q(b) = B(b)N* and so

4
e (01X 4) = q,(xA) = X A.g,(b/xA2).
s=1

This proves (i) and (ii).
(iii) f (a/x,A) (L<r <4) are solutions of w“ (x) = 2w (x) such that
F(a) = B(a)l, = B(a)

fl(a) fz(a) fg(a) f4(a) 0O 0 0 1
£%a £, @) %@ |0 0 -1 0
2@ f,%a) %@ f%@]| |0 1 0 o0 ®)
9@ %@ %) f,%@) 10 0 0

The general solution of the equation y (x) = 2 w/(x) can be obtained as follows:

Let p* =2 =r(cos@+ising) for -z <0<z, p=o+ir

}{ (0+27zk
Py =r4|cos

Hence, for kK = 0 we have

Po = r‘l{cos(%j +1 sin(%ﬂ €)]

Since the fourth roots of unity are 1, -1, i and —i we see that the four roots of the

Then,

j+isin(9+42ﬂkﬂ k = 0,1,2 3).

equation p* = 1 are p, - p,, -i p, and i p,. Put P = p, then the four roots are P,
-P, iP and —iP. The general solution of the equation
v ) -pw()=0 (p," =1) (10)
is thus given by w(x) = AeP® + Aje PO 4 AP 4 A g TP(2),
Now f, (a/x,4) isa solution of (10) such that F(a) = B(a), and so
f(alx,A) = A" + Ae P 4 AP L A g PO (12)
Since from (8) f,(a)=0; f,"(@)=0; f?(a)=0; f,”) (a) = —1 we see that the

constants A, (k=1, 2, 3, 4) in (11) are given by
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A+A +A+A, =0
Ap-A,p+ipA;, —ipA, =0
Ap?+A,p?-Ap°—Ap*=0

Apd—Ap°—ip®A +ip®A, = -1

Solving gives
1 -3 1 -3 1 -3 i -3 1 3 i ,3
A==,P =P A=P 2P = PP
Substituting into (11) we find that \
f.(alx,A) = %p“* {—ep(x‘a) +e P _jglp(x-a) 4 ja-iP(x-a) }
9@l = %p—z {_ep(x—a) _pplea) 4 giplea) 4 g-iPx-a) }
f,9@ix 1) = %p‘l {—e“x-a) +e7 P 4 jgPl® _jgP2) } > (12)
1O@ixa) = % {ep(x—m _ o P(x-a) _gi(x-a) _ g-iP(x-a) }
fYa@lx 1) = %p {ep(x‘a) +e P _jgirla) 4 jaiP(x-a) }
- 1y {f(a/x )4 3}
4 1@ A2P J

hence

fYalx,2) =p* f(alxA).

Next we prove that

f,(x)=- fl(l) (x); f,(x)= fl(Z) (x); f,(x)=— fl(s) (x)

Let R, (x)=- f,”(x). Then R,(x) is a solution of (5) such that
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R, (a) ~£,%@)| [0
R (a) _|- f1(2)(a) _ 0 (13)
RP?@| |-£,%a)]| |1
Rl(s) (@) - f1(4) (a) 0
We note that (13) is obtained by substituting x = a into (12). From (8)
f,(a) 0 R, (a) - f.(a) 0 f,(a)
f,"@) |_[o RY@|_|-t7@|_|0o] | 7@
@ oy = and so, (2) = @y |11 ¢ @
f, @] |1 R, (a) -f,7@ ]| |1 | f,7(a)
£,7@] [0 RY@| [-t7@] [0] [£.7(@)
which implies that R, (x) = f,(a/ X, 4).
Again, R (x) =— f,%(a/x, 1) implies that
f,(alx,A) =-f,%@lx ). (14)
Let R,(x) = f,)(x), then R,(x) is a solution of (5) such that
R, (a) f,“@] [0 f,(a)
RY@ | _ | 12a]|_|-1| _| ")
RZ(Z)(a) - f1(4)(a) - 0 - f3(2)(a)
Rz(S) (a) fl(s) (a) 0 fs(s) (a)
andso R,(x) = fy(a/x,A). Thus, R,(x) = f,“(a/x,1)implies that
f,(alx,2) = f£%@lxA). (15)
Next we let R,(x) = — £, (x),so that R,(x) is a solution of (5) implies that
R;(a) -f%a) | [1 fy(a)
RY@ | _ |- f,9@]|_|0o] _| f."@
R,?(a)| ~ [, | (0] | ()|
R3(3) (a) . fl(G) (a) 0 f4(3) (a)
Therefore R,(x) = f,(a/x,A). Finally, R,(x) = — f,®)(x) implies that
f,(ax,2) = -£9. (16)

It follows from (14), (15) and (16) that
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f.)=(-1)¢? £, (x) (2<s<4).
Similarly g, (x)=(-1)“"g,*"(x) (2<s<4). The proof of the theorem is

complete. 0

Theorem 2 Let
R(t/x,A) =P, (t)f,(t/x,2)-P,t) £, P (t/x, 1) + P, (1) f,? (t/ x, 2) (17)
S(t/x,2) =P, (1), (t/x, 2)-Py(1)g,” (t/ x, 2) + B (1) 9, (t/ x, 2).

Then the boundary condition functions for the boundary value problem (1) and (2)

are given by

v, (@lx,A) = we (alx,4) +JX'R(t/x,/1)x//r (t)dt @<r<4

2.0/%2) = 70 (BI%,A) +_X[S(t/x,/1);(r(t)dt (L<r<4),

Proof. Asa function of x, f,(t/x,4) (x,t €[a,b]) is a solution of
w @ (x)=Aw(x) such that from (8)

f,(X /%, A) = £,9(%, /%5, 4) = £,7 (X, /%5, 4)= 0 (18)
and

£, (x,/%,,4) = —1 where x, [a,b]. (19)
It follows from (17), (18) and (19) that R(t/x, 1) is a solution of ™ (x)=A w(x

(17), (18) and (19) ( ) y (X)=Aw(X)

such that
R(X, /%,,4)=0
R(l)(XO/XO,/l) :_F_)z(xo)
R(Z)(Xolxwﬂ) = F_)s(xo)
R(S)(Xo / X01/1) :—|54(X0)

(20)

If w.(alxA) = w.(alxA) +fR(t/x,1)w, ®dt  (L<r<4). (1)
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Then using the formula

d oF : : .
—IF(x,t)dt:j—(x,t)+F(x, x) and (20) we obtain the following equations
dx 5 OX

from (21)

v, P (@l % 2) =y () + [RO /X, Ay, (O)dt+ R/ x, Ay, (X)

v, @@l %, 4) =y, @)+ [RO(t/ x, Ay, (©)dt+ R (x/ X, Ay, (%)

—p D0+ [RO( %, 2y, (Ot ~P2 (v, ()

v, ®(@lx2) =wFr<3>(x)+fR<3> (t/ % Ay, (O)dt+RP (x/ x, Ay, (x) ~[P2(x)y, ()]”
=wFr<3>(x)+fR<3> (t/ % Ay, ©)dt+Pa(x)y, (x) ~[P2(x)y, ()]?

y@@lx,A) =y P (x)+ j ROt/ x, Ay, (t)dt+ R (x/ x, D, (X)

+Pa(x)y, () =[Pz (), ()]

e 00+ RO, 2y, Ot~y ()

- - 2
+ [P (X, (01 =[ By, ()]
By definition, R(t/ x, 1) being a solution of ' (x)=21y(x) implies that

R™(t/x,A)=AR(t/x,A) and so

v, D) =y, D)+ j R@(t/x, )y, (t)dt
! (22)
B, (0w, (0 + IRy, 1Y ~[ B, (0w, (0]
Substituting (21) into (22) we have
2 (0) = e () + 2l () e 001 = Puw (0 + [ (0w 001 =[P (9w (0]
But, ™ (x)=Aw(x) implies that . (x)= 2w, (x) and hence,
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v, () = 2y () + Ay, () = e (01 =P, (), (x)
HR 0w, (017 ~[ Fow, ()]
v 00 = 2w, (0 =P 00w, (0 +IP, 0y, 001° = [P (0, (0] (23)
v 000 + P00 (0 =[Py, 0019+ [P0y, (0] = Zy, (), hence
w,(x) (1< r < 4) are solutions of (23) such that ¥(a) =B(a)M* .
Similarly y,(x) (1< r <4) are solutions of (23) such that X(b) = B(b)N *.
Hence we conclude that {w,(a/x,A),x,(b/x,A)} are the set of boundary

conditions of r. O

Theorem 3

we (@l ) = O(]P|(S_l)e"(x‘a)) as [4| > o (1<r1,5<4)
0 (1x,2) =O(P|* e ) as |4 > 0 (L< 1,55 4)

Proof.

4
ve (alx,2) =Y m f(alxA)

s=1

=m,f(a/x,A)+m,f,(alx,A)+m,f,(al/x,A)+m,f,(alx A1)
=m,f(a/x2)-m,fY(alx,A)+m f? (alx,2)-m, {(alx ).

For r=1r =1 and using (12) we have

m, _ (e . ixe . iP(xe
we (@l X, 1) =—2L p? Pt g Pla) _jghh-a) 4 jg-iPlx-a)
F1 4
LLLP 0’ {_ep(xfa)_efp(xfa) JPUIESY +efiP(xfa)}
4
+ M p—l{_ep(x—a)+e7p(xfa)+ieip(x7a)_ie7ip(x7a)}
4
”24{ _P-a) e—p(x—a)_eip(x—a)_e—iP<x—a)}

Furthermore,
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| we(@lx,2) |< K1|P|_3|—ep(xf""’+e*"(H’—ieip(x*"")+ie*ip(xfa’

+K, |p|*2 |_ep(x—a) _pP(x-a) | aib(x-a2) | o-iP(x-a)

-1 _ —n(x— - in(x— . _iP(x—
+ K, [P |—e"(X Ve PO 4Pl _je PO

+ K4 |_ep(x—a) _ e—p(x—a) _ eip(x—a) _ e—iP(x—a)

< Kl |P|—3 { ep(x—a) | + |e—p(x—a) | + |eip(x—a) | + |e—iP(x—a) | }
+K, |p|*2 P | 4 [P0 | 4 [ePR| 4 e PO |}
" K3 | P|_1 { |ep(x—a) | + |e—p(x—a) | + |eip(x—a) | + |e—iP(x—a) | }

+K4{ |ep(x—a)| + |e*P(x—a)| + |eip(x—a)| " |e,ip(x,a)| }

s(K4+ K, |P[*+K,|P|” +K1|P|’3)-

{|(>| | ()| |<)| | ()|} (24)

3 ep X—a + e—p X—a + eip X—a + e—iP X—a

Since p = p = o +ir we see that

‘e p(x-a)| — ‘ea(x—a) ’ ‘e—p(x—a) :‘e—a(x—a) ’ ‘eip(x—a) - e—r(x—a) ’

‘e—ip(x—a) — e—r(x—a) . (25)
From (24) and (25) we find that

| ve (@l x,4) |

s(K4+K3|P|‘1+K2|P|‘2+K1|P|‘3){ et | 4 e 0| + e | 4 [e | |

< (K4 + K3|P|_1 n K2|P|_2 n K1|P|_3) { |e\0\(x—a)| n |e\0\(x—a)| + e‘f‘(xfa)| + e\f\(x,a)| }
= 2(K4 FIGIP[T KP4 K1|P|73) { |e70| 4 |efl?] }
asli| >, [Pl > andso PI* > 0; " 505 [P7 0

Hence, |y (alx A) | < K(e"(x‘a)+e"‘(x‘a)), where K = 2K,. But from (9)
o=rt cosZ and 7 = r%sin% andsoo >7 ando > 0. Thus,

| ve(alx,2) |SK(e"(X‘a’) as |4 —>o and so z//Fl(a/x,/i):O(e"(X*a’) as

|/t| — o0,
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By similar argument

ve”(@lx2) = O(ple”* ) as | > (Lss5<4)

and so,

v @ix ) = (P Vert®)as i >0 (A<s<4).
Also,

e, (@ix 2) = OP Vet ) as 2| >0 (A<s<4)
Similarly,

2001 %, 4) = O([P|(Sfl)e"(b’x’) as || —» o (1<s<4)

20, (0/%2) = O(P[ Ve ) as 2| >0 (A<s<4).
By combining all the result we have

eV (alx2) = OfP[* Ve ) as |4 >0 (A<s<4) (26)

1 01x.2) = O[P[*e)as |3 > (1<5<4)

O
Theorem 4
RED(t/x,A) = O([P|(S_2)e"(“)) as || >  (1<s<4)
SV (t/x, 1) = QQP|(S‘2’e"“‘X)) as || »>o (I<s<4)andp=o+ir.
Proof.
R(t/x,A) = P,(t)f,(t/x,2) — P,(t)f,"(t/x,2) + P,(t)f, (t/x,A) (27)
From (12)
f.(alx A) :% P {—ePt ) e Pt gl 4 jg PO}
1 5 (o+ir)(x-a) —(o+ir)(x=a) :ni(o+ir)(x-a) | ia-i(o+ir)(x-a)
== —e +e —ie +ie
P |
P . . o

RO e B e I e I I
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=e*. Hence,
[f.(t/x,2) < I { eV 4 gol D 4 gl | glrl0:0 }
< 1 2700 4 gl D
4
P
< ? { g | gl }as|/1|—>oo.
i
| f,(t/ % 2)| S; e as || - oo,
Similarly

-2
| @ (t1x, )| s@ e?™  as || > oo

and

-1
| @t/ x,2)| s@ e’ as|i| >

137

Since P,(t) ,P,(t) and P,(t) are continuous in [a,b] they are bounded in [a,b] and

SO

PO<Ky  [POIK, [P0 Ks:

Substituting all the above into (27) we have

R/ x,2)] s{K1|P|3 _KofP[, K3|P|l}eg<“)
2 2 2

IR(t/x,2)| <K|P["e"* as 1| > .
or

R(t/x,4) = O(P["e"0) as |2 >
From (27)

(28)

(29)

(30)

RO@t/x,A) = P,(t)f,°t/x,2) — P,t)f,?t/x,2) + P,t)f,® (t/x 1).
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By similar argument

-2 - -0
‘R(l)(t/X,ﬂ)‘ S{K1|P| _ K2|P|1 + K3|P| } ea(xft) < K|P|7O ea(xft)

2 2 2

or
RO(t/x,4) = O[e"*) as || > w (31)
Combining (30) and (31) and generalizing we have

RED(t/x,4) = O(P7e*®) as |t > (L<s<4).
Similarly

gD (t/x,2) = QQPF_ZQC’(H)) as |,1| —w (1<s<4). a

Theorem 5

w,(@lx,A) = O(e"(x’a)) as |4 » o

7, (0/x,2) = O(e"“”)) as || — oo,

Proof. Let

w,(@lx,A) = F, (a/x,/l)(e"‘x‘a)) as || —» o (32)
then

v (1) = F.®EC?) as i (33)
and

F (alx,A)=e 7"y (alx, 1) (34)

Next we substitute y, (a/x,1) = 1//Fr(a/x,/1)+IR(t/x,ﬂ)wr(t)dt into (34) to

obtain
F.(a/x,A)= g o2 {WF, (a/x,/l)+jR(t/x,ﬂ,)(//r (t)dt } (35)

Similarly, substituting (33) into (35) we have
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F(alx,A)=e "y, (a/x,i)+jR(t/x,/t) e’™ F (t)dt as 4] > .

Now

IF (alx2) < e

e (@l %,A)|+ )j( R(t/x,2)| ‘eﬁ(t—x)
a

|F, (t)[dt. (36)

But from (26) and (29)
e (@l %, 2) < K75 |R(t/x, A)| < K,|P[e7®

By the mean value theorem for integrals
'X[ F.(t)dt = F, (a/&,A)(x—a)
where a<¢& <x.But(x — a)being aconstant imply that
I‘F, (t)dt = F.(a/x,A)K

where x e[a,b], K= (x — a). Substituting the above into (36) we have
IF.(alx,2)| < K, +K,|P| '|F, (a/x, )|
where K, = K,K = K, (x—a). Therefore,

IF.(alx,2)|— K,|P["|F,(a/x,2) < K,.

Hence,
IF.(a/x A) - K,|P| | < K,
and so
F (al/x,2)| < L_l provided that 1— K3|P|_1 >0 . (37)
(1-KsP[)

This is true if |P| is large enough. Substituting (37) into (32) we have

v, (alx, 1) <K,e?™? as 1| >

K
where K, = ————— andso

1-K,|P["
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v (@lx,A) = 0@’™™) as [} (38)
Similarly 7, (b/x,4) = 0(e°®™) as |1 > m
Theorem 6

v, " P(@alx ) ~ w, " (alx 1) as |4 - oo

2 0I62) = e b0/x,2) 8 |2 >0 (<1 <4)

Proof.
v, (@lI%2) = we(@lxA)+ [Rt/x Ay, (t)dt (39)
v, @lx2) = we"(@lx2)+ [RO/x Ay, t)dt (40)

From (30), (31) and (38)

R(t/x,A) :O(|P|_1 e"(x‘t)) as |A| >0

(41)
RO(t/x,4)=0(e"*") as |A| >
w,(t) = O(e"(t*a)) as || >
According to (35) there exist constants K, K, and K, such that
IR(t/x,2)| <K,|P[" e as 4| > w2
IRO(t/x,2)] <K, as |1|—>wo

v (0 <K as|i oo

Substituting (42) into (39) we have

X R(t/x Ay, t)dt] < X K,K,|P["es*dt
3

IN

K,K,|P| e (x~a) since Idt =(x-a)

K K,|P| " (b-a)e”™™ sinceif a<x<b,thenb-a>x-a
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= K,|P['e"*® as 2| »> o

TR(t/x, Ay, O)dt= O(P[ e ) as |2 - . 43)
a

Similarly IR“)(t/x,/m)y/r(t)dt = 0(e"*®) (44)
From (39) and (43)

v.(alx2) = ye(alx2)+0(P[ e )as |2 - (45)
From (40) and (44)

w,P@lx,2) = y.® (a/x,/l)+0(e"(x‘a)) as | 4| — . (46)
Combining (45) and (46) we obtain a general formula

vV (@lx2) = ¢V (@lx 2)+ 0P| ?e ) as |2| - oo, @7)
Similarly

2500162 = 20, P (01%2)+O(P|*e ) as 2] - . (48)

If follows from theorem 3 and (47) that
v, P@lx ) ~ w P @ixl)  as|iow
Similarly it follows from theorem 3 and (48) that
250 I%A) ~ xx P 0IxA) as|lso  (1<rs<4)

The proof is complete. O

5 Conclusion

We have successfully proved that the boundary condition functions for the
boundary value problem in (1) and (2) are asymptotically equivalent for large
values of ||, to the boundary condition functions for the corresponding Fourier

boundary value problem for r, given by (3) and (4).
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