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On the maximum of randomly weighted sums

with subexponential tails

Saliou Diouf1 and Aliou Diop2

Abstract

Consider the randomly weighted sums Sn(θ) =
∑n

k=1 θkXk, where {Xk,
1 ≤ k ≤ n} is a sequence of independent real-valued random variables
with common subexponential distribution function F, and let {θk, 1 ≤
k ≤ n} a sequence of positive random variables, independent of {Xk, 1 ≤
k ≤ n} and satisfying a ≤ θk ≤ b for some 0 < a ≤ b < ∞ for all
1 ≤ k ≤ n. Under a suitable summability condition on the upper
endpoints of |θk| we prove that

P

(
max

1≤n<∞

n∑

k=1

θkXk > x

)
∼

∞∑

k=1

P (θkXk > x) .

This result appears as a direct extension of the results obtained in [12].
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1 Introduction

Throughout this paper we are interested in the tail probability of randomly

weighted sums Sn(θ), n = 1, 2 · · · defined by (1) and their maximum Mn(θ)

defined by (2)

Sn(θ) =
n∑

k=1

θkXk, (1)

Mn(θ) = max
1≤m≤n

Sm(θ), (2)

M∞(θ) = max
1≤m<∞

Sm(θ), (3)

where {Xk, 1 ≤ k ≤ n} is a sequence of independent, identically distributed,

and real-valued random variables with common distribution function F , its

tail is denoted by F̄ = 1− F , and satisfies the tail balancing condition,

lim
x→∞

F̄ (x)

P(|X| > x)
= p , lim

x→∞
F̄ (−x)

P(|X| > x)
= 1− p. (4)

Let {θk, 1 ≤ k ≤ n} a sequence of positive random variables, independent of

{Xk, 1 ≤ k ≤ n}, we consider that each weight θk has upper endpoint

ck = c(θk) = sup{c : P(θk < c) ≤ 1, k = 1, 2, · · · }

and we assume that for some δ > 0, and for m ≥ 1

∞∑

k=m+1

c1−δ
k < 1. (5)

A sequence of random variables {Γk, 1 ≤ k ≤ n} is bounded

1. of type I if P(a ≤ Γk ≤ b) = 1 holds for some 0 < a ≤ b < ∞ and all

1 ≤ k ≤ n,

2. of type II if P(0 < Γk ≤ b) = 1 holds for some 0 < b < ∞ and all

1 ≤ k ≤ n,

3. of type III if P(a ≤ Γk < b) = 1 holds for some 0 < a < ∞ and all

1 ≤ k ≤ n.
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For more details see [12].

A distribution function F or its corresponding random variable X is said to

be heavy tailed to the right if E exp(rX) = ∞ for r > 0. A necessary condition

for F to be heavy tailed is that F̄ (x) > 0 for any real number x.

The most important class of heavy-tailed distribution functions is the subex-

ponential class denoted S.

A distribution function F supported on [0,∞) belongs to the class S if

lim
x→∞

F ∗n(x)

F̄ (x)
= n, for n ≥ 2, (6)

where F ∗n denote the n-fold convolution of F.

A closely related class is the L of long-tailed distributions.

A distribution function F on (−∞, +∞) belongs to the class L if

lim
x→∞

F (x + y)

F̄ (x)
= 1, (7)

holds for some (or, equivalently,) y ≥ 0.

It is known that

S ⊂ L. (8)

Another closely related class is the class D of distribution functions with dom-

inated variations. By definition, a distribution function F belongs to the class

D if

lim
x→∞

sup
F̄ (xy)

F̄ (x)
< ∞, (9)

holds for any (or, equivalent) 0 < y < 1.

It is well known that

R−α ⊂ ERV(−α,−β) ⊂ C ⊂ L ∩ D ⊂ S ⊂ L. (10)

where R−α denote the Regular Variation Class, ERV(−α,−β) the Extended

Regular Variation Class, C the Consistent Variation Class.

For more details about heavy-tailed distribution and their application see [1]

or [4]. The weighted sums plays an important role in actuarial and economic

study; see [5],[12],[16].

Following the works of [10], [11] and [13], we consider this model :

Sn =
n∑

k=1

Xk

k∏
j=1

Yj, (11)
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where {Xn, n ≥ 1} is as in model (1), and {Yn, n ≥ 1} is another sequence of

nonnegative random variables distributed on [0,∞), the two sequences being

mutually independent.

In economics, the random variable Xn in the model (11) is the total loss during

period n and the random variable Yn is the discount factor from time n to time

n − 1, n = 1, 2, · · · . Thus, the sum Sn represents the aggregated discounted

losses by time n of an insurer in a stochastic economic environment.

For the model (11) let

Mn = max
0≤k≤n

n∑

k=1

Xk

k∏
j=1

Yj (12)

and

M∞ = max
0≤k<∞

n∑

k=1

Xk

k∏
j=1

Yj, (13)

The quantity Mn defined by (12) describes the maximum of the discounted

losses of the insurer by time n, n = 1, 2, . . ., and the quantity M∞ defined

by (13) describes the ultimate maximum of the discounted losses.

For the model (11), the finite and infinite time ruin probabilities are defined

for an insurer whose initial wealth is x ≥ 0 as

ψ(x, n) = P(Mn > x)

and

ψ(x) = P(M∞ > x),

respectively.

We notice that the model (11) reduces to model (1) with θk =
∏k

j=1 Yj, a

product of positive random variables.

The motivation of this work comes from the fact that the main result is an

extension of [12], and can play an important role in various applied and theo-

retical problems. For example, in the field of the economic or of the insurance,

our result can be used to evaluate the probability of the ultimate maximum of

the discounted losses.

Throughout this article, all limit relationships are for x → ∞ unless other-

wise stated. For two positive functions a(x) and b(x), we write a(x) ∼ b(x) if

lim a(x)�b(x) = 1.
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Our objective in this work is to establish the following result

P

(
max

1≤n<∞

n∑

k=1

θkXk > x

)
∼

∞∑

k=1

P (θkXk > x) . (14)

If F ∈ S and {θk, 1 ≤ k ≤ n} is bounded of type I then, (15) proved that the

relation

P

(
max

1≤n<m

n∑

k=1

θkXk > x

)
∼

m∑

k=1

P (θkXk > x) (15)

hold as x → ∞. It is important to note that the passage from (15) to (14) is

not obvious.

The rest of this paper is organized as follows. Section 2 presents the main

results. Section 3 proposes an application of the main result for a thresholds

models.

2 Main Results

Recall the randomly weighted sums (1), and their maximum defined by

max
1≤n<∞

n∑

k=1

θkXk,

where {Xk, 1 ≤ k ≤ n} is a sequence of independent, identically distributed

(i.i.d), and real-valued random variables with common distribution function

F and {θk, 1 ≤ k ≤ n} be another sequence of positive random variables.We

suppose {Xk, 1 ≤ k ≤ n}, {θk, 1 ≤ k ≤ n} are mutually independent and
∞∑

k=1

P (θkXk > x) < ∞. (16)

The main result of this paper is the following:

Theorem 2.1. Consider the randomly weighted sums (1) and their max-

imum (2). We suppose F ∈ S and satisfies the balancing condition (4), the

upper endpoint of {θk, 1 ≤ k ≤ n} verifies (5). If {θk, 1 ≤ k ≤ n} is bounded

of type I then

P

(
max

1≤n<∞

n∑

k=1

θkXk > x

)
∼

∞∑

k=1

P (θkXk > x) (17)

hold as x →∞.
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Corollary 2.2. If F ∈ L ∩ D and {θk, 1 ≤ k ≤ n} is bounded of type II,

then the (17) is hold.

Proof

If F ∈ L∩D and {θk, 1 ≤ k ≤ n} is bounded of type II, then by [12] the rela-

tion (19) is hold and the rest being identical to the proof of theorem the (2.1).

Proof of theorem We have for any m ≥ 1

P

(
max

1≤n<∞

n∑

k=1

θkXk > x

)
≥ P

(
max

1≤n<m

n∑

k=1

θkXk > x

)
. (18)

By [12], we have

P

(
max

1≤n<m

n∑

k=1

θkXk > x

)
∼

m∑

k=1

P (θkXk > x) . (19)

Trivially
m∑

k=1

P (θkXk > x) ∼
∞∑

k=1

P (θkXk > x)−
∞∑

k=m+1

P (θkXk > x) (20)

Then, from (16) we deduce that
∑∞

k=1 P (θkXk > x) converge and∑∞
k=m+1 P (θkXk > x) is asymptotically negligible in comparison to∑∞
k=1 P (θkXk > x). Combining (18), (19) and (20) we have

P

(
max

1≤n<∞

∞∑

k=1

θkXk > x

)
≥

∞∑

k=1

P (θkXk > x) . (21)

We will complete the proof if we show

P

(
max

1≤n<∞

∞∑

k=1

θkXk > x

)
≤

∞∑

k=1

P (θkXk > x) . (22)

Note that as in [15], for any m ≥ 1

max
1≤n<∞

n∑

k=1

θkXk ≤ max
1≤n≤m

n∑

k=1

θkXk +
∞∑

k=m+1

θkX
+
k .

Then for any choose of ` such that 0 < ` < 1 and x ≥ 0, we have

P

(
max

1≤n<∞

n∑

k=1

θkXk > x

)
≤

≤ P
(

max
1≤n≤m

n∑

k=1

θkXk > (1− `)x

)
+ P

( ∞∑

k=m+1

θkX
+
k > `x

)

= Am + Bm.
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By [12], we have

Am = P

(
max

1≤n≤m

n∑

k=1

θkXk > (1− `)x

)
∼

m∑

k=1

P (θkXk > (1− `)x) . (23)

Now we show that Bm is asymptotically negligible if
∑

j>m c1−δ
j < 1 .

Here we are going to use the fact that, for the generic r.v. X and the common

distribution function F of {Xi, i ≥ 1}, we have P(X+ ≤ x) = 1 − P(X+ >

x) = 1− P(X > x) = 1− F̄ (x).

Hence

Bm ≤ P

[ ∞∑

k=m+1

θkX
+
k >

∞∑

k=m+1

c1−δ
k `x

]

≤ P

( ∞⋃

k=m+1

[
θkX

+
k > c1−δ

k `x
]
)

≤
∞∑

k=m+1

P(θkX
+
k > `c1−δ

k x)

≤
∞∑

k=m+1

P(θkXk > `c1−δ
k x).

By (16) we have
∞∑

k=m+1

P(θkXk > `c1−δ
k x) < ε.

Then Bm is asymptotically negligible and

P

(
max

1≤n<∞

n∑

k=1

θkXk > x

)
≤

m∑

k=1

P (θkXk > (1− `)x) . (24)

Let m →∞ and ` → 0 in (24) we have

P

(
max

1≤n<∞

n∑

k=1

θkXk > x

)
≤

∞∑

k=1

P (θkXk > x) . (25)

Combining (21) and (25) we obtain (17).
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3 Application

Let the following threshold model with subexponential innovations

αt =

{
φ1αt−1 + ε

(1)
t , if Yt > τ,

φ2αt−1 + ε
(2)
t , if Yt ≤ τ,

(26)

where τ and φi are non random constants and with threshold variable Yt. The

sequences {εi
t, i = 1, 2} are sequence of iid random variables with common

distribution function F .

When we define I1t = 1{Yt−δ>τ}, I2t = 1 − I1t and q = P(Yt ≤ τ) the model

(26) can be written as

αt = φ(t)αt−1 + εt (27)

where

φ(t) = φ1I1t + φ2I2t and εt = ε
(1)
t I1t + ε

(2)
t I2t.

The equation (27) is a stochastic difference equation where the pairs (φ(t), εt)t

are sequences of independent and not identically distributed R2-valued random

variables.

We may give an financial example of model (26) introduced by Breidt [3] for

a financial return Yt defined by :

Yt = σ exp
(αt

2

)
εt. (28)

Where αt is an open-loop threshold autoregressive process defined by 26 with

τ = 0 (see [14]).

The model (26) is called a threshold autoregressive stochastic volatility model

(TARSV). The log-volatility process (αt)t has a piecewise linear structure. It

switches between two first-order autoregressive process according to the sign

of the previous return. In this framework, σ is positive constant and (εt)t is

a sequence of independent and identically distributed random variables with

zero mean and its variance is taken to be one. When either | φ1 |= 1 and

| φ2 |6= 1 or | φ1 |6= 1 and | φ2 |= 1, the process defined in (26) is stationary

in some regimes and mildly explosive in others. These models are stationary

in some regimes and mildly explosive in others. See Gonzalo and Montesinos

[7]. Gouriroux and Robert [8] studied the ACR(1) process where there is a

switching between white noise and a random walk.

Now assume the following conditions holds :
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• H1 : (ε
(i)
t )t is a sequence of independent, identically distributed (i.i.d)

random variables (i = 1, 2) and satisfied the following condition :

E[log+ ε
(i)
1 ] < +∞, (29)

where log+ x = max(0, log x).

• H2 : For each i = 1, 2, the two sequences of random variables (ε
(i)
t )t and

(Yt)t are independent and (ε
(1)
t )t and (ε

(2)
t )t are independent.

• H3 : The sequence of independent and identically distributed random

variables (ε
(i)
t )t whose common distribution F is subexponential and sat-

isfies the follow tail balancing condition :

lim
x→∞

P(ε
(i)
1 > x)

P(|ε(i)
1 | > x)

= p, lim
x→∞

P(ε
(i)
1 < −x)

P(|ε(i)
1 | > x)

= 1− p. (30)

The next proposition gives the strict stationarity of the process αt defined by

(27). The result follows from Theorem 1 of Brandt [2].

Proposition 3.1. (strict stationarity) Assume H1 and H2 and suppose that

φq
1φ

1−q
2 < 1. Then, for all t ∈ Z the series αt defined by (27) admits the

following expansion

αt =
∞∑

j=0

(
j−1∏

k=0

φ(t−k)

)
εt−j. (31)

Now let us consider Θj =
∏j−1

k=0 φ(t−j) and we assume that the sequences

{εj, j ≥ 1} and {Θj, j ≥ 1} satisfy corresponding conditions imposed in The-

orem (2.1). Then by applying Theorem (2.1) we obtain immediately the fol-

lowing asymptotics in next Theorem.

Theorem 3.2. • If F ∈ S and {Θk, 1 ≤ k ≤ n} is bounded of type I,

or

• If F ∈ L ∩ D and {Θk, 1 ≤ k ≤ n} is bounded of type II

then we have

P

(
max

1≤n<∞

n∑
j=0

(
j−1∏

k=0

φ(t−k)

)
εt−j > x

)
∼

∞∑
j=1

P

((
j−1∏

k=0

φ(t−k)

)
εt−j > x

)
(32)

hold as x →∞.
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Proof We have only to show

∞∑
j=1

P

((
j−1∏

k=0

φ(t−k)

)
εt−j > x

)
< ∞ (33)

By [6] we have

P (Yj > x) ∼ F̄ (x)βj, (34)

where

Yj =

((
j−1∏

k=0

φ(t−k)

)
εt−j

)
(35)

and

βj =





qj if φ1 = 1 | φ2 |< 1,

(pδj + (1− p)δj+1)p
−1qj if φ1 = −1 | φ2 |< 1,

(1− q)j si φ2 = 1 | φ1 |< 1,

(pδj + (1− p)δj+1)p
−1(1− q)j if φ2 = −1 | φ1 |< 1,

0 if |φ1| < 1, |φ2| < 1.

(36)

with

δj =

{
1 if k even

0 if k old.
(37)

Combining (34) and (36) we have (33).
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