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Abstract

The paper considers the problem of bootstrapping kernel estimator
of conditional quantiles for time series, under independent and iden-
tically distributed errors, by mimicking the kernel smoothing in non-
parametric autoregressive scheme. A quantile autoregression bootstrap
generating process is constructed and the estimator given. Under appro-
priate assumptions, the bootstrap estimator is shown to be consistent.
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1 Introduction

We consider a partitioned stationary α-mixing time series (Xt+1, Zt) where
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the real-valued response variable Xt+1 ∈ R is Ft+1-measurable and the variate

Zt ∈ Rp is Ft-measurable. For some 0 < θ < 1, we are interested in estimat-

ing the conditional θ-quantile of Xt+1 given the past Ft, assuming that it is

completely determined by Zt. For that purpose, we consider the model

Xt+1 = µθ(Zt) + ξt+1, t = 1, 2, . . . (1)

where µθ(Zt) is the conditional quantile function providing the conditional θ-

quantile of Xt+1 given Zt = z. The quantile innovations ξt+1 are assumed to

be independent and identically distributed (i.i.d) with θ-quantile 0. Model (1)

includes the case of the quantile autoregression (QAR) of order p,

Xt+1 = µθ(Xt, . . . , Xt−p−1) + ξt+1,

where Zt = (Xt, . . . , Xt−p−1) is just part of the past of the univariate time

series Xt+1. Model (1) also includes autoregressive (AR) models:

Xt+1 = µ(Xt, . . . , Xt−p−1) + εt+1, t = 1, 2, . . . (3)

where µ is an arbitrary autoregressive function and {εt+1} is a sequence of (i.i.d)

random variables with mean 0. In the latter special case, we have µθ(Zt) =

µ(Zt) + εθ, where εθ is the θ-quantile of εt. Correspondingly, the quantile

innovations are given by Xt+1−µθ(Zt) = εt+1−εθ. For Zt independent of Xt+1,

the parametric quantile regression model was first introduced in Koenker and

Basset (1978).

Another example, leading to non identically distributed quantile residuals,

is AR-ARCH processes of say, common order p:

Xt+1 = µ(Xt, . . . , Xt−p−1) + σ(Xt, . . . , Xt−p−1)εt+1, t = 1, 2, . . . (4)

where, now, {εt} is a normalized sequence of i.i.d random variables with mean

0 and variance 1. In this special case of (1), we have µθ(Zt) = µ(Zt)+σ(Zt)ε
θ,

where again, εθ is the θ-quantile of ε. In this case

ξt+1 = σ(Zt)(εt+1 − εθ).

In model (3), Nadaraya (1964) and Watson (1964) kernel smoothing pro-

vides nonparametric estimates of µ. Assuming finite moments up to order

4, Franke and Wendel (1992) and Kreutzberger (1993) proposed and autore-

gression bootstrap resampling scheme that approximates the laws of kernel
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estimator of µ and σ. Franke et al. (2002) considered two estimators for the

estimation of conditional variance, and gave consistency of the residual based

and Wild bootstrap procedures for µ and σ. Although the errors in model

(1), are homoscedastic, we follow similar lines as in Franke et al. (2002) for

bootstraping µ. Furthermore, in this paper, properties of the estimators are

derived without assuming the finiteness of the variance of Xt+1.

We get a nonparametric estimator of µθ(Zt) and its bootstrap version by

first estimating respective conditional distribution functions and then invert-

ing. We use the standard kernel estimate of Nadaraya-Watson type for the

conditional distribution. Apart from the disadvantages of not being adaptive

and having some boundary effects, which can be fixed by well-known tech-

niques (see Hall et al. 1999), it has advantages of being a constrained estimator

between 0 and 1 and a monotonically increasing function. This is an impor-

tant property when deriving quantile function estimators by the inversion of a

distribution estimator.

In the following section, we present the estimator of the QAR which we

are considering, and formulate a bootstrap algorithm for approximating the

distribution of the estimator. In section 3, we state our main results on con-

sistency properties of the bootstrap procedure, where the proofs are deferred

to the appendix in section 5. Section 4 gives the conclusion.

2 Quantile Autoregression Bootstrap Estima-

tor

For simplicity, we will assume that Zt = Xt ∈ R. Let ρθ(µ) = µ(θ− I{µ≤0})

be the so-called check function. We define the true objective function of µ as

Q(x, µ) = E[ρθ(Xt+1 − µ)|Xt = x] = E[(Xt+1 − µ)(θ − I{Xt+1−µ≤0})|Xt = x]

The QAR function may be obtained by minimizing Q(Xt, µ) with respect to

µ, i.e.,

µθ(x) = arg min
µ∈R

Q(x, µ) (6)

The kernel estimator of (6) at point Xt = x is obtained as

µ̂θ(x) = arg min
µ∈R

Q̂(x, µ)



178 Bootstrap in quantile autoregression

where, assuming that the data X1, . . . , Xn+1 are available,

Q̂(x, µ) =
1

n

n∑
t=1

Kg(x−Xt)ρθ(Xt+1 − µ)

and Kg(u) = 1
g
K(u

g
), is 1-dimensional rescaled kernel with bandwidth g > 0.

The properties of Q̂(x, µ) are well investigated in Mwita (2003). The objec-

tive function is strictly convex and continuous as a function of µ. This implies

the minimizer, µ̂θ(x), of Q̂(Xt, µ) at point x exists uniquely and is practically

the same as the solution to the following differential equation;

d

dµ
Q̂(x, µ) ≈ 0 (9)

Rearranging (9), we get the standard Nadaraya-Watson kernel estimator,

F̂x(µ) =

∑n
t=1 Kg(x−Xt)I{Xt+1≤µ}∑n

t=1 Kg(x−Xt)

=
(p̂g(x))−1

n

n∑
t=1

Kg(x−Xt)I{Xt+1≤µ}

≈ θ

where p̂g(x) is the kernel estimator of the density function p(x) of Xt at x.

For any θ ∈ (0, 1), the quantile autoregression function µθ(x) is given by

µθ(x) = inf{µ ∈ R|Fx(µ) ≥ θ}.

Therefore, µθ(x) can be estimated by the following kernel estimator

µ̂θ(x, g) = inf{µ ∈ R|F̂x(µ) ≥ θ} ≡ F̂−1
x (θ),

where F̂−1
x (θ) denotes the inverse of the distribution function F̂x(µ), which is

a pure jump function of µ.

To construct the bootstrap generating process, we mimic the scheme of

the autoregressive or residual-based bootstrap proposed in Franke and Wen-

del (1992), Kreutzberger (1993) and Franke et al.(2002). We choose the pilot

estimate of µθ(x), denoted by µ̃θ(x, g), in the following way; Let 1 = [−γn, γn]

be a growing interval with γn →∞ for n →∞. The pilot estimator is chosen

as µ̃θ(x, g) = µ̂θ(x, g)1{|x|≤γn} such that, outside 1, the estimator µ̂θ(x, g) is

replaced by constants. This ensures that µ̂θ(x, g) is fairly reliable estimator
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for |x| large.

The resampling algorithm, then, runs as follows:

Initialization:

• Calculate the pilot estimates µ̃θ(Xt), t = 1, . . . , n.

• Obtain the residuals as ξ̂t+1 = Xt+1 − µ̃θ(Xt), t = 1, . . . , n.

• Let Tn = {t ≤ n; Xt /∈ In}; calculate the θ-sample quantile ξ̂θ of the

corresponding residuals, i.e. of {ξ̂t+1, t ∈ Tn}.

• Reshift the remaining residuals to ensure that their empirical distribution

has θ-quantile at 0:

ξ̃t+1 = ξ̂t+1 − ξ̂θ, t ∈ Tn.

• Let F̃n be the empirical distribution of ξ̃t+1, t ∈ Tn.

• Smooth F̃n by convolving it with some probability density Hb(u) =
1
b
H

(
u
b

)
, where H is the density of a distribution whose θ-quantile is zero.

Denote the resulting smoothed empirical law of ξ̃t+1 as F̃n,b = F̃n ∗Hb.

Resampling:

• The bootstrap quantile residuals ξ∗t+1, t = 1, . . . , n are generated as i.i.d.

variables from the smoothed distribution F̃n,b.

• The bootstrap data X∗
1 , X

∗
2 , . . . , X

∗
n are generated analogously to the

QAR scheme (1).

X∗
t+1 = µ̃(X∗

t ) + ξ∗t+1, t = 1, 2, . . . , n + 1.

• From the bootstrap data, the Nadaraya-Watson estimate of the condi-

tional distribution function F ∗
x (µ) of X∗

t+1 given X∗
t = x is calculated:

F̂ ∗
x (µ, h) =

1

np̂∗h(x)

n∑
t=1

Kh(x−X∗
t )I{X∗

t+1−µ≤0}

with

p̂∗h(x) =
1

n

n∑
t=1

Kh(x−X∗
t ).
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• Finally, we get the quantile kernel estimator µ̂∗θ(x, h), in the bootstrap

world by inversion, i.e. by solving

F̂ ∗
x (µ̂∗θ(x, h)) = θ

Note that the pilot estimator of µθ(x) may be taken as µ̃θ(x) = µ̂θ(x, g).

3 Consistency of the bootstrap estimator

For our convergence considerations, we have to assume that the time series

(Xt+1, Xt) satisfies appropriate mixing conditions. There are a number of mix-

ing conditions discussed, e.g., in the monograph of Doukhan (1995). Among

them strong or α- mixing is a reasonably weak one known to be fulfilled for

many time series models. In particular, for a stationary solution of (4), ge-

ometric ergodicity implies the process is strongly mixing with geometrically

decreasing mixing coefficient. Because model (3) is a special case of (4), then

the time series is an example of a quantile autoregressive process (1) for which

(Xt+1, Xt) is α-mixing as well.

Let π be the unique stationary distribution. We will assume that process

(1) and hence, (3) satisfy the following assumptions.

(M1) The distribution of innovations ξt possesses a density pξ, which sat-

isfies infx∈C pξ(x) > 0 for all compact sets C.

( M2) µθ is bounded on compact sets and lim sup|x|→∞ |x|−1|µθ(x)| < 1

The two conditions imply stationarity and geometric ergodicity of the pro-

cess, see Theorems 1 and 2 in Diebold and Guegan (1990), in the case of

autoregressive mean model. The assumptions ensure that the stationary dis-

tribution π possesses an everywhere positive Lebesgue density, here denoted

as p. From (1), we have

p(y) =

∫

R

pξ

(y − µθ(x)

σθ

)
p(x)dx
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with σθ > 0 being some constant scale at θ. For a stationary solution of (1),

geometric ergodicity implies that the process is α-mixing with geometrically

decreasing mixing coefficients.

Let us denote by `F (x), the law of
√

ng(F̂x(µ, g)−Fx(µ)) and, in the boot-

strap world, `F̃ (x) , the conditional distribution of
√

nh(F̂ ∗
x (µ, h)−F̃x(µ)) given

the original data. Likewise, denote the distribution of
√

ng(µ̂θ(x, g)−µθ(x)) by

`µ(x) and the conditional distribution of the estimator
√

nh(µ̂∗θ(x, h)−µ̃θ(x, g))

by `µ̃(x). The following assumptions are now made.

(A1) The kernel K is nonnegative Lipschitz continuous function with com-

pact support [−1, 1], satisfying
∫

K(u)du = 1,
∫

uK(u)du = 0. The band-

width h satisfies h → 0, nh → ∞ as n → ∞. As abbreviations, we use

K∞ = maxu|K(u)|, s2
K =

∫
K2(u)du, σ2

K =
∫

u2K(u)du.

(A2) For all µ, x satisfying 0 < Fx(µ) < 1

(i) Fx(µ) and p(x) are twice continuously differentiable with continuous

and bounded derivatives in x, µ.

(ii) The distribution Pξ of the innovations ξt+1 has a density pξ with the

following properties: infx∈C pξ(x) > 0 for all compact sets C, pξ is twice con-

tinuously differentiable, and supx∈R |xp
′
ξ(x)| < ∞.

(iii) for fixed x, Fx(µ) has the conditional density, fx(µ), which is contin-

uous in x and Hölder-continuous in µ: |fx(µ) − fx(µ
′)| ≤ c|µ − µ′|β for some

c, β > 0.

(iv) fx(µθ(x)) > 0 for all x.

(v) The conditional density fx(µ) is uniformly bounded in x and µ by, say,

cf and has at least two bounded derivatives.

(A3) The quantile innovations ξt+1 and ρθ(ξt+1, 0)− 1, have a continuous pos-

itive density in the neighborhood of 0.

(A4)
√

nh(µ̂θ(x, h)− µθ(x)) has asymptotic normal distribution.

(A5) The bootstrap innovations ξ∗t+1 have (conditional) θ-quantile zero

and dK(P̃ξ, Pξ) = op(1), where dK denotes the Kolmogorov distance between

the probability measures.

(A6) For some compact set G,

(i) there are ε > 0, γ > 0, such that p(x) ≥ γ for all x in the ε-neighborhood

{x; |x− u| < ε for some u ∈ G} of G.

(ii) In addition to (i) above, there exists some compact neighborhood Θ0
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of 0, for which the set Θ = {ν = µθ(x) + µ; x ∈ G,µ ∈ Θ0} is compact too,

and for some constant c0 > 0, fx(ν) ≥ c0 for all x ∈ G, ν ∈ Θ.

(A7) (Xt+1, Xt) is stationary and α-mixing with mixing coefficients satisfying

α(sn) = O(s
−(2+δ)
n ), n ≥ 1, δ > 0 and sn is an increasing sequence of positive

integers such that for some finite A

n

sn

α2sn/(3n)(sn) ≤ A, 1 ≤ sn ≤ n

2
for all n ≥ 1.

(A8) There exists a sequence γn →∞ such that sup−γn≤x≤γn
|µ̃θ(x)| = Op(1)

and the function µθ(x) is Lipschitz continuous with constant Lµ, and sup−γn≤x≤γn
|µ̃θ(x)−

µθ(x)| = op(1)

(A9)Let F ij
x (µ) = ∂i+jFx(µ)

dxidµj and correspondingly for F̃x(µ). Moreover, let p
(i)
ξ

denote the i-th derivative of pξ, and correspondingly for p̃ξ. With γn as in (A8),

sup−γn≤x≤γn
|F̃ ij

x (µ)−F ij
x (µ)| = op((γn)−1), and for C > 0, sup|x|≤C |p̃(i)

ξ (x)−
p

(i)
ξ (x)| = op(1), for i, j = 0, 1, 2.

Consistency of the bootstrap nonparametric quantile autoregression func-

tion estimator is now stated in the following Theorem.

Theorem 3.1. Assume (A1)-(A9) hold for x ∈ R. Then

dK(`F̃ (x), `F (x)) → 0 in probability, and (16)

dK(`µ̃(x), `µ(x)) → 0 in probability. (17)

4 Conclusion

In this paper, we have given the bootstrap resampling algorithm for esti-

mating the quantile autoregression function. Rigorous proof has shown that

the distribution of the estimator of the function, in the bootstrap world, con-

verges uniformly to the one in the real world. However, simulation study may

be necessary to ascertain the accurracy of the two methods. This is the topic

of the next paper.
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5 Appendix

For simplicity, identical bandwidths are assumed and henceforth dropped

from various estimators. To facilitate comparisons of various terms, the fol-

lowing definitions and proposition are important.

Definition B.1. For two random variables X and Y , the Mallows distance is

defined as

dq
q(X,Y ) = dq

q(`(X), `(Y )) = inf{E|U − V |q|`(U) = `(X), `(V ) = `(Y )}

For q = 1, we have the absolute loss function. In current work, we modify

the distance to cater for asymmetries, that depend on the value of θ, and call

the distance, the Mallows-Check distance, for q=1.

Definition B.2. For two random variables, X and Y , the Mallows-Check

distance is defined as

d1,θ(X, Y ) = d1,θ(`(X), `(Y ))

= inf{Eρθ(U − V )|`(U) = `(X), `(V ) = `(Y )}

where ρθ is the usual check function defined in section 2.

Let Fξθ
denote the law of the innovations ξt+1. Suppose F̂n is the empir-

ical distribution of ξj,θ, j = 1, 2, . . . , n and F̂n,b = F̂n ∗ Hb is the empirical

smoothed version of the empirical law with bandwidth b. Also, let F̃n and

F̃n,b be the empirical distribution and convoluted (smoothed) distribution of

ξ̃j,θ, j = 1, 2, . . . , n. The following proposition shows that the bootstrap inno-

vations ξ∗t+1 approximate the true residuals ξt+1 in the Mallows-Check distance.

Proposition B.1. Under assumption in Theorem 3.1

d1,θ(ξt+1, ξ
∗
t+1) → 0, if b → 0 for n →∞.

Proofof Proposition B.1

We have

d1,θ(ξt+1, ξ
∗
t+1) = d1,θ(Fξθ

, F̃n,b) ≤ d1,θ(Fξθ
, F̂n,b) + d1,θ(F̂n,b, F̃n,b)
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For the second term, let J be laplace distributed on a set {1, 2, . . . n}, i.e J = j

with probability n−1 for each j = 1, 2, . . . , n. Consider the random variables

ξJ and ξ̃J which have marginals F̂n and F̃n respectively. Let χ be a random

variable with density Hb. Then ξJ +χ and ξ̃J +χ have marginals F̂n,b and F̃n,b

respectively and

d1,θ(F̂n,b, F̃n,b) ≤ E∗ρθ(ξJ + χ− ξ̃J − χ)

=
1

n

∑
j

ρθ(ξj,θ − ξ̂j,θ + ξ̂θ
θ), where ξ̂θ

θ is θ − quantile of ξ̂j,θ, j = 1, 2, . . . n

=
1

n

∑
j

[ρθ(µ̂θ(Xj − µθ(Xj), 0) + ρθ(ξ̂
θ
θ , 0)]

≤ 1

n

∑
j

[|µ̂θ(Xj)− µθ(Xj)|+ |ξ̂θ
θ |] → 0

These terms go to zero by law of large numbers. For the first term, we have

d1,θ(Fξθ
, F̂n,b) ≤ d1,θ(Fξθ

, F̂n) + d1,θ(F̂n, F̂n,b). As n → ∞, the first term con-

verges to 0 by lemma 8.4 in Bickel and Freedman (1981). And

d1,θ(F̂n, F̂n,b) ≤ E∗ρθ(ξJ − ξJ − χ)

= E∗ρθ(χ, 0)

which is O(b) → 0 as n →∞. ¤
The infimum of the Mallows-Check distance is attainable in the Mallows L1

distance sense, as shown below;

d1,θ(ξt+1, ξ
∗
t+1) = inf

`(ξ
′
t+1)=`(ξt+1),`(ξ

′∗
t+1)=`(ξ∗t+1)

Eρθ(ξ
′
t+1 − ξ

′∗
t+1)

≤ inf
`(ξ

′
t+1)=`(ξt+1),`(ξ

′∗
t+1)=`(ξ∗t+1)

E|ξ′t+1 − ξ
′∗
t+1|

= d1(ξ
′
t+1, ξ

′∗
t+1)

where the last expression is the L1 Mallows distance. From assumption(A5),

E∗(ξ∗t+1)
2 = E(ξ2

t+1), and Proposition B.1, we have

d1,θ(ξt+1, ξ
∗
t+1) = d1,θ(Pξθ

, P̃ξθ
) = E∗ρθ(ξ̃t,θ − ξ∗t+1, 0) = op(1),

Let X̃o be such that `∗(X̃o) = `(Xo) and define X̃t = µθ(X̃t−1) + σθξ̃t,θ. The

following three Lemmas show that for the distributions of X̃t and X∗
t , |X∗

t | ≤
γn, for θ = 0.5, holds with probability one.
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Lemma B.1. Under assumptions (A1)-(A9),

max
0≤t≤n

P ∗(|X∗
t | ≥ γn) → 0 in probability.

Lemma B.2. Under assumptions (A1)-(A9), for a constant 0 < λ < 1 and

for random variables S1 = op(1), S2 = Op(1) and L < λ + op(1) that do not

depend on t, we have for 1 ≤ t ≤ n, that

sup
1≤t≤n

E∗|X∗
t − X̃t| = S1 + Lt−1S2.

Lemma B.3. Under the assumptions of Theorem 3.1, we have

E∗{ 1

n

n∑
t=1

|X̃t −X∗
t |

}
= op(1)

The proofs of Lemmas B.1, B.2 and B.3 are found in Franke et al. (2002). In

the proofs, Xt is assumed to have approximately the same distribution as X∗
t .

For strong approximation of this property, we can construct samples of errors

ξ̃1,θ, ξ̃2,θ, . . . , ξ̃n,θ that have conditional distribution Pξθ
, given X1, X2, . . . , Xn.

The errors are then used to construct a process X∗
t with conditional distri-

bution equal to unconditional distribution of Xt. The samples of the error

variables are choosen such that they have the following properties:

(i) ξ̃1,θ, ξ̃2,θ, . . . , ξ̃n,θ are conditionally iid, given the original data (X1, . . . , Xn)

(ii)ξ̃t,θ has a conditional distribution, given the original data (X1, . . . , Xn),

which is identical to unconditional distribution ξt,θ, i.e., `∗(ξ̃t,θ) = `(ξt,θ)

(iii) E∗ρθ(ξ̃t,θ − ξ∗t,θ) = d1,θ(ξ̃t,θ, ξ
∗
t,θ) = d1,θ(ξt,θ, ξ

∗
t,θ) where d1,θ is the Mallows-

Check distance.

Theorem B.1. Under assumptions (A1), (A2) and (A7),

√
nh(F̂x(µ)− Fx(µ)−B(µ) + op(h

2)) →D N(0, V 2(µ))

where

B(µ) = h2µ2
K [

p
′
(x)

p(x)
F 10

x (µ) +
1

2
F 20

x (µ)], and

V 2(µ) =
1

p(x)
[Fx(µ)(1− Fx(µ))σ2

K ]
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Proofof Theorem B.1

The Theorem can easily be proved by employing Doob’s small- and large-

block techniques, see Ibragimov and Linnik (1971) page 316. First show that

the summands over residuals and in large blocks are asymptotically negligi-

ble in probability and asymptotically independent respectively. Then show

that the standard Lindeberg-Feller conditions for asymptotic normality of the

summands in large blocks hold under independence assumptions. See Mwita

(2003) for a complete proof. ¤

Theorem B.2 below gives the asymptotic distribution with bias and variance

of the estimator µ̂θ(x).

Theorem B.2. Assume that (A1)-(A3) and (A7) hold. As n → ∞, let the

sequence of bandwidths h > 0 converge to 0 such that nh → ∞. Then, the

QAR function estimator is consistent, µ̂θ(x) →p µθ(x), and asymptotically

unbiased,

E
√

nh(µ̂θ(x)− µθ(x)) =
√

nhBµ(µθ(x)) + o(
√

nh5) where

Bµ(µ) = −B(µ)

fx(µ)
.

If additionally, the bandwidths are chosen such that nh5 converges to 0 as

n →∞, then the µ̂θ(x) is asymptotically normal,

√
nh

(
µ̂θ(x)− µθ(x)−Bµ(µθ(x))

) →D N

(
0,

V 2(µθ(x))

f 2
x(µθ(x))

)
, (26)

where, B(y) and V 2(y) are defined as in Theorem B.1 above.

Proofof Theorem B.2

Theorem B.1 implies that, F̂x(µ) → Fx(µ) in probability for all x ∈ R and

y. The Glivenko-Cantelli Theorem in Krishnaiah (1990) for strongly mixing

sequences implies

sup
µ∈R

|F̂x(µ)− Fx(µ)| → 0 in probability. (27)

By the uniqueness assumption (A2 iv) on µθ(x), for any fixed x ∈ R, there

exists an ε > 0 such that

δ = δ(ε) = min{θ − Fx(µθ(x)− ε), Fx(µθ(x) + ε)− θ} > 0.
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This implies, using the monotonicity of Fx, that

P{|µ̂θ(x)− µθ(x)| > ε} ≤ P{|Fx(µ̂θ(x))− Fx(µθ(x))| > δ}
≤ P{|Fx(µ̂θ(x))− F̂x(µ̂θ(x))| > δ − cγ

nh
}

≤ P{sup
µ
|F̂x(µ)− Fx(µ)| > δ′} (28)

for arbitrary δ′ < δ and n large enough. Here, we have used Fx(µθ(x)) = θ

and θ ≤ F̂x(µ̂θ(x)) ≤ θ + 2K∞/(γnh). Now, (28) tends to zero by (27). Hence

the consistency follows.

To prove (26), let b = −B(µθ(x))f−1
x (µθ(x)) and v = V (µθ(x))f−1

x (µθ(x)).

Let

qn(z) = P (
√

nh
µ̂θ(x)− µθ(x)− b

v
≤ z)

= P (µ̂θ(x) ≤ µθ(x) + b + (nh)−1/2vz)

As F̂x(y) is increasing, but not necessarily strictly, we have

P
(
F̂x(µ̂θ(x)) < F̂x(µθ(x) + b + (nh)−1/2vz)

)

≤ qn(z)

≤ P
(
F̂x(µ̂θ(x)) ≤ F̂x(µθ(x) + b + (nh)−1/2vz)

)

By the same argument as in (28), we may replace F̂x(µ̂θ(x)) by Fx(µθ(x)) up

to an error of (nh)−1 at most, and we get, by Taylor expansion and neglecting

the (nh)−1-term which is asymptotically negligible anyhow,

qn(z) ∼ P (Fx(µθ(x)) ≤ F̂x(µθ(x) + b + (nh)−1/2vz)

∼ P (−δnfx(µθ(x)) ≤ F̂x(µθ(x))− Fx(µθ(x)))

with δn = b + (nh)−1/2vz. Horvath and Yandell (1988) have also shown that

the conditional distribution estimator F̂x(y) is asymptotically normal with

asymptotic bias and variance as in Theorem B.1. This follows also under sim-

ilar conditions from a functional central limit Theorem for F̂x(µ) of Abberger

(1996) - Corollary 5.4.1 and Lemma 5.4.1. Therefore, with yθ = µθ(x), we get

qn(z) ∼ P
(√

nh
F̂x(yθ)− Fx(yθ)−B(yθ)

V (yθ)
≥
√

nh
−fx(yθ)δn −B(yθ)

V (yθ)

)

∼ Φ
(√

nh
fx(yθ).(h

2b + (nh)−1/2vz) + B(yθ)

V (yθ)

)

= Φ(z)
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by our choice of b and v and our condition on the rate of h. This proves the

Theorem. ¤

The following Theorem gives the uniform convergence of µ̂θ(x).

Theorem B.3. Assume (A1), (A2), (A3) (A6) and (A7) hold. Suppose h → 0

is a sequence of bandwidths such that S̃n = nh(sn log n)−1 → ∞ for some

sn →∞. Let Sn = h2 + S̃
− 1

2
n . Then we have

sup
x∈G

|µ̂θ(x)− µθ(x)| = O(Sn) + O(
1

nh
) a.s. (29)

The proofs of Theorem B.3 can be found in Franke and Mwita (2003). Usu-

ally, Sn will be much larger than (nh)−1, and the rate of (29) will be O(Sn).

In particular, bias and variance are balanced and the mean-square error is

asymptotically minimized.

Proofof Theorem 3.1

For the prove of (16), we first split F̂x(µ) into variance and bias terms

√
nh(F̂x(µ)− Fx(µ)) =

√
nhr̂V,h(x, µ)

p̂h(x, µ)
+

√
nhr̂B,h(x)

p̂h(x)

where

r̂V,h(x, µ) =
1

n

∑
t

Kh(x−Xt)(I{Xt+1≤µ} − FXt(µ))

r̂B,h(x, µ) =
1

n

∑
t

Kh(x−Xt)(FXt(µ)− Fx(µ))

Similarly, we decompose the bootstrap distribution estimate, F̂ ∗
x (µ) as

√
nh(F̂ ∗

x (µ)− F̃x(µ) =

√
nhr̂∗V,h(x, µ)

p̂∗h(x)
+

√
nhr̂∗B,h(x, µ)

p̂∗h(x)

where

r̂∗V,h(x, µ) =
1

n

∑
t

Kh(x−Xt)(I{X∗
t+1≤µ} − F̃X∗

t
(µ))

r̂∗B,h(x, µ) =
1

n

∑
t

Kh(x−Xt)(F̃X∗
t
(µ)− F̃x(µ))
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We now compare random variables r̂V,h(x), r̂B,h(x) and p̂h(x) with r̂∗V,h(x), r̂∗B,h(x)

and p̂∗h(x) and show that they have the same asymptotic behaviour.

Lemma B.4. Under assumptions (A1)-(A9),

dK [`(
√

nhr̂V,h(x, µ)), N(0, τ 2(x)] = op(1)

dK [`(
√

nhr̂∗V,h(x, µ)), N(0, τ 2(x)] = op(1) (32)

where τ 2(x) = Fx(µ)(1− Fx(µ))p(x)
∫

K2(v)dv.

Proofof Lemma B.4

We will verify the assumptions of a version of the central limit Theorem for

martingale difference arrays, Brown (1971), also used in Franke et al.(2002).

That is

E(
√

nhr̂∗V,h(x, µ))2 =
h

n

∑
t

E∗[K2
h(x−X∗

t )(η∗t+1,θ)
2|F∗t ] →p τ 2(x)

where η∗t+1,θ = I{X∗
t+1≤µ} − F̃X∗

t
(µ) and F∗t = σ(X∗

1 , . . . , X
∗
t ), and for all ε > 0,

h

n

∑
t

E∗[K2
h(x−X∗

t )(η∗t+1,θ)
2I{K2

h(x−X∗
t )(η∗t+1,θ)2>ε}|F∗t ] →p 0

Since K is bounded in the neighbourhood of x, we have

1

nh

∑
t

E∗[(η∗t+1,θ)
2I{(η∗t+1,θ)2>K2∞nhε}|F∗t ]

≤ n−1(K2
∞εnh)−(γn−2)/2E∗(I{(η∗t+1,θ)2)γn} = op(1)

For (33), we have

h

n

∑
t

E∗[K2
h(x−X∗

t )(η∗t+1,θ)
2|F∗t ]

=
1

nh

∑
t

(
K2(

x−X∗
t

h
)(F̃X∗

t
(µ)− F̃ 2

X∗
t
(µ))

− E∗[K2(
x−X∗

t

h
)(F̃X∗

t
(µ)− F̃ 2

X∗
t
(µ))|F∗t−1]

)

+
1

nh

∑
t

∫
K2(

x− µ̃θ(X
∗
t−1)− σ̃θu

h
)(F̃µ̃θ(X∗

t−1)+σθu(µ)

− F̃µ̃θ(X∗
t−1)+σθu(µ)2)P̃ξθ

(du)



190 Bootstrap in quantile autoregression

Note that because K and FX∗
t
(µ) are bounded, the first summand is of order

Op((nh)−2) = op(1). We only consider the second summand. Letting v =

−(x− µ̃θ(X
∗
t )− σ̃θu)/h, the second summand is equal to

1

n

∑
t

∫

[−1,1]

K2(v)(F̃x+hv(µ)− F̃ 2
x+hv(µ))p̃ξθ

(x− µ̃θ(X
∗
t−1)

σθ

+
hv

σθ

) 1

σθ

dv

p̃ξθ
is bounded in absolute value by

(|x|+ sup
|x|≤γn

|µ̃θ(x)− µθ(x)|+ sup
|x|>γn

|µ̃θ(x)| sup
|x|≤γn

|µθ(x)|+ h)/σθ (36)

The fact that the time series X1, . . . , Xn is a realization of stationary process

with iid innovations and by assumptions (A8), the order of the (36) is Op(γn).

Since σθ is constant, we can replace p̃ξθ
by pξθ

and using uniform convergence

of F̃x to Fx on a compact set, see assumptions (A9), we obtain

1

n

∑
t

∫
K2(v)(Fx+hv(µ)− F 2

x+hv(µ))pξθ

(x− µ̃θ(X
∗
t−1)

σθ

+
hv

σθ

) 1

σθ

dv + op(1).

(37)

Assume that Fx and pξθ
have bounded derivatives and that σθ > 0, then

expression (37) is the equal to

∫
K2(v)dv(Fx(µ)− F 2

x (µ))
1

n

∑
t

pξθ

(x− µ̃θ(X
∗
t+1)

σθ

) 1

σθ

dv + op(1).

We now have to show that

1

n

∑
t

pξθ

(x− µ̃θ(X
∗
t−1)

σθ

) 1

σθ

=
1

n

∑
t

pξθ

(x− µθ(X̃t−1)

σθ

) 1

σθ

+ op(1) (39)

1

n

∑
t

pξθ

(x− µθ(X̃t−1)

σθ

) 1

σθ

= p(x) + op(1) (40)

Note that {X̃t} is a process with conditional distribution equal to unconditional

distribution of {Xt} and the expected value of the left-hand side of (40) equals

to p(x). Hence (40) follows from the ergodicity of the process {Xt}. To show

(39), we have by splitting,
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1

n

∑
t

1

σθ

pξθ

(x− µ̃θ(X
∗
t−1)

σθ

)
I{|X∗

t−1|>γn} = op(1) (41)

1

n

∑
t

{ 1

σθ

pξθ

(x− µ̃θ(X
∗
t−1)

σθ

)− 1

σθ

pξθ

(x− µθ(X
∗
t−1)

σθ

)}
I{|X∗

t−1|≤γn}

= op(1) (42)

1

n

∑
t

1

σθ

pξθ

(x− µθ(X
∗
t−1)

σθ

)
I{|X∗

t−1|>γn} = op(1) (43)

1

n

∑
t

| 1

σθ

pξθ

(x− µ̃θ(X
∗
t−1)

σθ

)− 1

σθ

pξθ

(x− µθ(X̃t−1)

σθ

)|

= O
( 1

n

∑
t

|X∗
t−1 − X̃t−1|

)
(44)

Because of the boundness of pξ and the fact that σθ < ∞, then the left-hand

side of (41) is bounded by 1
n

∑
t I{|X∗

t−1|>γn}Op(1), which is op(1) by Lemma B.1.

Likewise (43) follows from Lemma B.1 and the boundedness of pξθ
and σ−1

θ .

Claim (42) follows from the boundedness of pξθ
and p

′
ξθ

and from the fact

that µ̃θ converges uniformly on [−γn,θ−1, γn,θ]. For the proof of (44), note

that from the stationarity of the process, the boundedness of p
′
ξθ

and σ−1
θ and

assumptions in (A2)(ii), the function σ−1
θ pξθ

(x − µθ(x))/σθ(x)) is Lipschitz

continuous.Therefore claim (39) follows from Lemma B.3. This completes the

proof of (32).

The following Lemma shows that the bootstrap density estimator converges

to the true stationary density in probability.

Lemma B.5. Under assumptions (A1)-(A9),

p̂h(x) → p(x) in probability

p̂∗h(x) → p(x) in probability

Proofof Lemma B.5

The prove of Lemma B.5 can be found in Franke et al (2002). ¤

Lemma B.6. Under assumptions (A1)-(A9),

√
nhr̂B,h(x, µ) → b(x) in probability (45)√
nhr̂∗B,h(x, µ) → b(x) in probability (46)



192 Bootstrap in quantile autoregression

where b(x) =
√

nh5
∫

v2K(v)dv[p
′
(x)F 10

x (µ) + 1
2
p(x)F 20

x (u)].

Proofof Lemma B.6

The proof of (46) is given. Similar lines can be used for (45). Now,

√
nhr̂∗B,h(x, µ) =

√
h

n

∑
t

Kh(x−X∗
t )(F̃X∗

t
(µ)− F̃x(µ)).

The Taylor expansion about x gives

√
nhr̂∗B,h(x) =

√
h

n

∑
t

Kh(x−X∗
t )(X∗

t − x)F̃ 10
x (µ)

+
1

2

√
h

n

∑
t

Kh(x−X∗
t )(X∗

t − x)2F 20
X̂t

(µ). (48)

Here, X̂t denotes a suitable value between x and X∗
t . We will show that

√
h

n

∑
t

E∗[Kh(x−X∗
t )(X∗

t − x)|F∗t−1] → Bp′(x)

∫
v2K(v)dv (49)

√
h

n

∑
t

E∗[Kh(x−X∗
t )(X∗

t − x)2|F∗t−1] → Bp(x)

∫
v2K(v)dv (50)

and then (46) will follow from the convergence of F̃ 10
x and F̃ 20

x , see assumption

(A9), and from the fact that the conditional variance of both terms on the

right-hand side of (48) are of order op(1).

Now, we can express (49) as
√

h

n

∑
t

E∗[Kh(x−X∗
t )(X∗

t − x)|F∗t−1]

=

√
h

n

∑
t

∫
1

h
K(

x− µ̃θ(X
∗
t−1)− σθu

h
)(µ̃θ(X

∗
t−1) + σθu− x)P̃ξθ

(du)

=

√
h3

n

∑
t

∫
vK(v)p̃ξθ

(
x− µ̃θ(X

∗
t−1) + vh

σθ

)
1

σθ

dv

A Taylor expansion for p̃ξθ
yiels

√
h5

n

∑
t

∫
v2K(v)p̃

′
ξ(Ẑ

∗
t )

1

σθ

dv + op(1)
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where Ẑ∗
t is a suitable value between (x − µ̃θ(X

∗
t−1))/σθ and (x − µ̃θ(X

∗
t−1) +

hv)/σθ as argument of p̃
′
ξθ

. From Lemma B.5, p̃ξθ
converges uniformly to pξθ

for all C > 0 (see (A9)), and since p
′′
ξθ

(x) is bounded, the left hand-side of (49)

is asymptotically equal to

√
nh5

∫
v2K(v)dv

1

n

∑
t

p
′
ξθ

(
x− µ̃θ(X

∗
t−1)

σθ

)
1

σθ

and the left hand side of (50) is asymptotically equal

√
nh5

∫
v2K(v)dv

1

n

∑
t

pξθ
(
x− µ̃θ(X

∗
t−1)

σθ

)
1

σθ

.

Similar arguments, to those of claim (39) and (40) are then used to complete

the proof.

To show (17), we mainly use Taylor expansion. Now from Lemmas B.4 and

B.5, the variance is

E(
√

nh(F̂ ∗
x (µ)− F̃x(µ))2 →p

Fx(µ)(1− Fx(µ))σ2
K

p(x)

Setting µ = µ̂∗θ(x), and expanding the left side, we get

E(
√

nh(µ̂∗θ(x)− µ̃θ(x))(F̃ 01
x (µ̃θ(x)))2 →p

θ(1− θ)σ2
K

p(x)

where terms small in probability have been ommited. By assumption (A9) and

uniform convergence of µ̂θ(x) to µθ(x), in Theorem B.3, we get f̃x(µ̃θ(x)) →p

fx(µθ(x)) and

E(
√

nh(µ̂∗θ(x)− µ̃θ(x))2 →p
θ(1− θ)σ2

K

p(x)f 2
x(µθ(x))

From Lemmas B.5 and B.6, we have the bias is

E
√

nh(F̂ ∗
x (µ)− F̃x(µ))

→p

√
nh5µ2

K

p(x)
[p
′
(x)F 10

x (µ) +
1

2
p(x)F 20

x (µ)]

Again, setting µ = µ̂∗θ(x), we get

−E
√

nh(µ̂∗θ(x)− µ̃θ(x))F̃ 01
x (µ̃θ(x))−

√
nh(µ̂∗θ(x)− µ̃θ(x))2F̃ 02

x (µ̃θ(x)))

→p

√
nh5µ2

K

p(x)
[p
′
(x)F 10

x (µθ(x)) +
1

2
p(x)F 20

x (µθ(x))]
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Hence, by assumption (A9) on convergence of F̃x and uniform convergence of

µ̃θ(x), we get
√

nh(µ̂∗θ(x)− µ̃θ(x))

→p −
√

nh5µ2
K

fx(µθ(x))p(x)
[p
′
(x)F 10

x (µθ(x)) +
1

2
p(x)F 20

x (µθ(x))]

where again, terms of smaller order in probability have been left out. This

completes the proof of Theorem 3.1. ¤
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