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1 Introduction

Consider a system consisting of two seemingly unrelated regressions (SUR)

{
Y1 = X1β1 + ε1

Y2 = X2β2 + ε2

, (1.1)

where Yi(i = 1, 2) are n × 1 vectors of observations, Xi(i = 1, 2) are n × pi

matrices with full column rank, βi(i = 1, 2) are pi × 1 vectors of unknown

regression parameters, εi(i = 1, 2) are n× 1 vectors of error variables, and

E(εi) = 0, Cov(εi, εj) = σijIn, i, j = 1, 2,

where Σ∗ = (σij) is a 2× 2 non-diagonal positive definite matrix. This kind of

system has been widely applied in many fields such as econometrics, social and

biological sciences and so on. It was first introduced to statistics by the Zell-

ner’s pioneer works (Zellner (1962, 1963)) and later developed by Kementa and

Gilbert (1968), Revankar (1974), Mehta and Swamy (1976), Schmidt (1977),

Wang (1989) and Lin (1991), etc.

Denote Y = (y′1, y
′
2)
′, X = diag(X1, X2), β = (β′1, β

′
2)
′, ε = (ε′1, ε

′
2)
′. One

can represent the system (1.1) as the following regression model

Y = Xβ + ε, ε ∼ (0, Σ∗ ⊗ In), (1.2)

where ⊗ denotes the Kronecker product operator.

Following from Wang et al (2011), we know that if Σ∗ is known then the

generalized least square estimator of βi(i = 1, 2) would be

β̄1,GLS = (X ′
1X1)

−1X ′
1

[
In − ρ2

∞∑
i=0

(ρ2P2P1)
iP2N1

]
(Y1 − σ12

σ22

N2Y2) (1.3)

and

β̄2,GLS = (X ′
2X2)

−1X ′
2

[
In − ρ2

∞∑
i=0

(ρ2P1P2)
iP1N2

]
(Y2 − σ21

σ11

N1Y1), (1.4)
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where Pi = Xi(X
′
iXi)

−1X ′
i, Ni = In − Pi and ρ2 = σ2

12/(σ11σ22).

Further, also by the Theorem 3.1 of Wang et al (2011), we know that

under the condition that X ′
1X2 = 0 (see Zellner (1963)) or X1 = (X2, L)

(see Revankar (1974)) or P1P2P1N2 = 0 (see Liu (2002)), formally β̄1,GLS and

β̄2,GLS have unique simpler form, respectively. Thus, in what follows we assume

X ′
1X2 = 0 which implies X ′

iNj = 0(i 6= j) and causes β̄1,GLS and β̄2,GLS to be

simplified into

β̂∗1 = β̂1 − σ12

σ22

(X ′
1X1)

−1X ′
1Y2, (1.5)

β̂∗2 = β̂2 − σ12

σ11

(X ′
2X2)

−1X ′
2Y1, (1.6)

where

β̂1 = (X ′
1X1)

−1X ′
1Y1, β̂2 = (X ′

2X2)
−1X ′

2Y2.

In Section 2 we derive the Bayes minimum risk linear unbiased (MBRLU)

estimator for β and accordingly the MBRLU estimators for βi(i = 1, 2). In

Section 3 the superiorities of the MBRLU estimators of βi(i = 1, 2) are estab-

lished based on the mean square error matrix (MSEM) criterion. In Section

4 we discuss the superiorities of MBRLU estimators in terms of the predic-

tive Pitman closeness (PRPC) criterion and the posterior Pitman closeness

(PPC) criterion, respectively. In the case that the design matrices are non-full

rank, we investigate the superiorities of BMRLU estimators of some estimable

functions. Finally, brief concluding remarks are made in Section 6.

2 The BMRLU Estimators of Regression Pa-

rameters

Normally, there are two different approaches concerned with Bayes esti-

mation in linear model. The first one supposes that the prior of regression
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parameter is normal which implies under the normal linear model the poste-

rior is still a normal distribution. Thus under the quadratic loss the Bayes

estimator of the regression parameter would be the posterior mean (see Box

and Tiao (1973), Berger (1985) and Wang and Chow (1994), etc). Recently,

Wang and Veraverbeke (2008) employed this approach to exhibit the superi-

orities of Bayes and empirical Bayes estimators in two generalized SURs. The

second approach proposed by Rao (1973) which yields the minimum Bayes risk

linear (MBRL) estimator of the regression parameter by minimizing the Bayes

risk under the assumption that some moment conditions of the prior are given.

Rao (1976) further pointed out that the admissible linear estimators of regres-

sion parameter are either MBRL estimators or the limit of MBRL estimators.

Gruber (1990) proposed a MBRL estimator for an estimable function of the

regression parameter and obtained an alternative form of MBRL estimator.

Some results related to this area can be found in Trenkler and Wei (1996),

Zhang (2005) and others. In this paper, we use the second approach to derive

MBRL estimator of the regression parameter and discuss the superiorities of

MBRL estimator in terms of MSEM, PRPC and PPC criterion, respectively.

Denote the prior of β by π(β). It is assumed that the prior π(β) satisfies:

E(β) =

(
µ1

µ2

)
=̂µ, Cov(β) =

(
τ 2
1 Ip1 0

0 τ 2
2 Ip2

)
=̂V, (2.1)

where µi and τi(i = 1, 2) are known.

Let the loss function be defined by

L(δ, β) = (δ − β)′(δ − β), (2.2)

and the linear estimator class of β be

F =
{

β̃ = AY + b : where A is (p1 + p2)× 2n matrix, b is (p1 + p2)× 1 vector
}

.

(2.3)
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Then the MBRLU estimator β̂B is defined to minimize the Bayes risk

R(β̂B, β) = min
A,b

R(β̃, β) = min
A,b

E[(β̃ − β)′(β̃ − β)] (2.4)

and subject to the constraint E(β̃ − β) = 0, where E denotes the expectation

with respect to (w.r.t.) the joint distribution of (Y, β).

From the constraint, we have b = (I − AX)µ. Note that the fact that

R(β̃, β) = E
{

[AY + (I − AX)µ− β]
′
[AY + (I − AX)µ− β]

}

= E
{

[A(Y −Xµ)− (β − µ)]
′
[A(Y −Xµ)− (β − µ)]

}

= Etr
{

[A(Y −Xµ)− (β − µ)] [A(Y −Xµ)− (β − µ)]
′}

= tr
{

A(XV X
′
+ Φ)A

′
+ V − AXV − V X

′
A
′
}

,

by solving
∂R(eβ,β)

∂A
= 0, we obtain

A = V X ′(XV X ′ + Φ)−1. (2.5)

By the fact that

(P + BCB′)−1 = P−1 − P−1B(C−1 + B′P−1B)−1B′P−1, (2.6)

we obtain

A = V X ′(XV X ′ + Φ)−1 = (X ′Φ−1X + V −1)−1X ′Φ−1, (2.7)

and

I − AX = I − (X ′Φ−1X + V −1)−1X ′Φ−1X = (X ′Φ−1X + V −1)−1V −1. (2.8)

Hence, we have

β̂B = AY + b = AY + (I − AX)µ

= (X ′Φ−1X + V −1)−1(X ′Φ−1Xβ̂LS + V −1µ)

= β̂LS − (X ′Φ−1X + V −1)−1V −1(β̂LS − µ)

=

(
β̂∗1 − (τ 2

1 σ−1
11.2X

′
1X1 + Ip1)

−1(β̂∗1 − µ1)

β̂∗2 − (τ 2
2 σ−1

22.1X
′
2X2 + Ip2)

−1(β̂∗2 − µ2)

)
. (2.9)
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Thus the MBRLU estimators of βi (i = 1, 2) are

β̂1B = β̂∗1 − (τ 2
1 σ−1

11.2X
′
1X1 + Ip1)

−1(β̂∗1 − µ1), (2.10)

β̂2B = β̂∗2 − (τ 2
2 σ−1

22.1X
′
2X2 + Ip2)

−1(β̂∗2 − µ2), (2.11)

where σ11.2 = σ11 − σ2
12σ

−1
22 and σ22.1 = σ22 − σ2

12σ
−1
11 .

3 The Superiorities of MBRLU Estimator Un-

der MSEM Criterion

We state the following MESM superiorities of β̂iB(i = 1, 2).

Theorem 3.1 Let the GLS estimators and MBRLU estimators of βi are

given by (1.5),(1.6) and (2.10), (2.11) respectively, then

M(β̂∗i )−M(β̂iB) > 0, i = 1, 2.

Proof: We only prove the above conclusion for the case of i = 1. Denote

B1 = (τ 2
1 σ−1

11.2X
′
1X1 + Ip1)

−1, we have

M(β̂1B) = E
[
(β̂1B − β1)(β̂1B − β1)

′
]

= E

{[
(β̂∗1 − β1)−B1(β̂

∗
1 − µ1)

] [
(β̂∗1 − β1)−B1(β̂

∗
1 − µ1)

]′}

= M(β̂∗1)− E[(β̂∗1 − β1)(β̂
∗
1 − µ1)

′
]B

′
1 −B1E[(β̂∗1 − µ1)(β̂

∗
1 − β1)

′
]

+B1E
[
(β̂∗1 − µ1)(β̂

∗
1 − µ1)

′
]
B
′
1

= M(β̂∗1)− J1B
′
1 −B1J

′
1 −B1J2B

′
1, (3.1)

where

J2 = Cov(β̂∗1) = E
{

Cov
(
β̂∗1 |β

)}
+ cov

{
E

(
β̂∗1 |β

)}

= E
{

cov
(
β̂∗1 | β

)}
+ τ 2

1 I, (3.2)
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and

E
{

Cov
(
β̂∗1 |β1

)}
= E

{
E

[(
β̂∗1 − β1

)(
β̂∗1 − β1

)′
|β1

]}

= E
{

Cov(β̂1|β1) + Cov
(
σ12σ

−1
22 (X

′
1X1)

−1X
′
1Y2 |β1

)

−2Cov
(
β̂1, σ12σ

−1
22 (X

′
1X1)

−1X
′
1Y2 |β1

)}

= σ11(X
′
1X1)

−1 + σ2
12σ

−1
22 (X

′
1X1)

−1 − 2σ2
12σ

−1
22 (X

′
1X1)

−1

=
(
σ11 − σ2

12σ
−1
22

)
(X

′
1X1)

−1 = σ11.2(X
′
1X1)

−1. (3.3)

Putting (3.3) into (3.2) we have

J2 = E
{

Cov
(
β̂∗1 |β1

)}
+ τ 2

1 I = σ11.2(X
′
1X1)

−1 + τ 2
1 I. (3.4)

Then J1 can be expressed as follows

J1 = E
[
(β̂∗1 − β1)(β̂

∗
1 − µ1)

′
]

= J2 − Cov(β1) = σ11.2(X
′
1X1)

−1. (3.5)

Combining (3.4) and (3.5) with (3.1), we obtain

M(β̂1B)−M(β̂∗1) = J1B
′
1 + B1J

′
1 −B1J2B

′
1

= B1

[
B−1

1 σ11.2(X
′
1X1)

−1 + σ11.2(X
′
1X1)

−1B−1
1

−τ 2
1 I − σ11.2(X

′
1X1)

−1
]
B
′
1

= B1

[
τ 2
1 I + σ11.2(X

′
1X1)

−1
]
B
′
1 > 0. (3.6)

Theorem 3.1 has been proved.

Obviously, the MSEM is much stronger than the MSE. A point estimator

could be MSE superior to another, but not necessarily superior in sense of

MSEM. Hence, we have

MSE(β̂∗i )−MSE(β̂iB) > 0, i = 1, 2.
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4 Superiorities of MBRLU Estimators Under

PRPC and PPC Criterion

The criterion of Pitman Closeness (PC), originally introduced by Pitman

(1937), is based on the probabilities of the relative closeness of competing

estimators to an unknown parameter or parameter vector. After a long fallow

period, renewed interest in this topic has been sparked in the last twenty

years. Rao (1981), Keating and Mason (1985) and Rao et al. (1986) helped

to resurrect the criterion as an alternative comparison criterion to traditional

criterion such as MSE criterion and mean absolute error (MAE) criterion.

Mason et al. (1990) and Fountain and Keating (1994) proposed some general

methods for the comparisons between linear estimators under PC criterion.

Many important contributions to this direction were described by Keating et

al. (1993) and others.

Definition 4.1 Let θ̂1 and θ̂2 be two different estimators of θ, L(θ̂, θ) be

the loss function. if

P (L(θ̂1, θ) ≤ L(θ̂2, θ)) ≥ 0.5, ∀ θ ∈ Θ,

with strict inequality “ > ” for some θ ∈ Θ, the parameter space, then θ̂1 is

said to be Pitman closer than θ̂2, or θ̂1 is said to be superior to θ̂2 under PC

criterion.

Ghosh and Sen (1991) introduced two alternative notions of PC moti-

vated from Bayesian viewpoint, which are called Predictive Pitman Closeness

(PRPC) and Posterior Pitman Closeness (PPC) criterion. They are defined as

follows:

Definition 4.2 Let Γ be a class of prior distributions of θ, θ̂1 and θ̂2 be

two different estimators of θ, then θ̂1 is said to be superior to θ̂2 under PRPC

criterion if

Pπ(L(θ̂1, θ) ≤ L(θ̂2, θ)) ≥ 0.5, ∀ π ∈ Γ,
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where Pπ is computed under the joint distribution of Y and θ for every π ∈ Γ.

Definition 4.3 Suppose π is a prior distribution of θ, θ̂1 and θ̂2 are two

different estimators of θ, then θ̂1 is said to superior to θ̂2 under PPC criterion

if

Pπ(L(θ̂1, θ) ≤ L(θ̂2, θ)|y) ≥ 0.5, ∀ y ∈ Y ,

with strict inequality “ > ” for some y ∈ Y , where Y is the sample space.

Obviously, if an estimator θ̂1 of θ is superior to θ̂2 for every π ∈ Γ under PPC

criterion, then it is also superior to θ̂2 under PRPC criterion. The converse is

not necessarily true. Ghosh and Sen presented an example to show that the

classical James-Stein estimator is superior to the sample mean under PRPC

criterion for all priors, but it is not hold under the PPC criterion.

Let the loss function be defined by (2.2) and in this section

ε|β ∼ N(0, Σ∗ ⊗ In). (4.1)

For the MBRLU estimator β̂1B, we have the following results.

Theorem 4.1 Let the GLS estimator and MBRLU estimator of β1 be given

by (1.5) and (2.10). If

τ 2
1

σ11.2

≤ λp1(p1 − 2)

2p1λ2
1

, (4.2)

then

Pπ

(
L(β̂1B, β1)) ≤ L(β̂∗1 , β1)

)
≥ 0.5, for every π ∈ Γ(β1),

where λ1 and λp1 are the maximum and the minimum eigenvalues of X
′
1X1

and Γ(β1) = {π(β1) : E(β1) = µ1, Cov(β1) = τ 2
1 Ip1}.

Proof: Denote B1 = (τ 2
1 σ−1

11.2X
′
1X1+Ip1)

−1 and W
(
β̂1B, β∗1 ; β1

)
= L(β̂1B, β1)−

L(β̂∗1 , β1).

By (2.10) we have

L(β̂1B, β1) = [(β̂∗1 − β1)−B1(β̂
∗
1 − µ1)]

′
[(β̂∗1 − β1)−B1(β̂

∗
1 − µ1)]

= L(β̂∗1 , β1)− 2(β̂∗1 − µ1)
′
B
′
1(β̂

∗
1 − β1) + (β̂∗1 − µ1)

′
B2

1(β̂
∗
1 − µ1). (4.3)
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Hence W < 0 is equivalent to

(β̂∗1 − µ1)
′
B2

1(β̂
∗
1 − µ1)− 2(β̂∗1 − µ1)

′
B
′
1(β̂

∗
1 − β1) ≤ 0. (4.4)

Since B2
1 ≤ B1, we know that (4.4) is implied by

(β̂∗1 − µ1)
′
B1(β̂

∗
1 − µ1)− 2(β̂∗1 − µ1)

′
B1(β̂

∗
1 − β1) ≤ 0. (4.5)

Substituting β̂∗1 − µ1 = β̂∗1 − β1 − (µ1 − β1) into (4.5), it is equivalent to

(β1 − µ1)
′
B1(β1 − µ1) ≤ (β̂∗1 − β1)

′
B1(β̂

∗
1 − β1). (4.6)

Since

(
τ 2
1

σ11.2

λ1 + 1

)−1

Ip1 ≤ B1 =

(
τ 2
1

σ11.2

X
′
1X1 + Ip1

)−1

≤
(

τ 2
1

σ11.2

λp1 + 1

)−1

Ip1 ,

It is easy to see that inequality (4.6) is implied by

(
τ 2
1

σ11.2

λp1 +1

)−1

(β1 − µ1)
′
(β1 − µ1) ≤

(
τ 2
1

σ11.2

λ1+1

)−1

(β̂∗1 − β1)
′
(β̂∗1 − β1). (4.7)

Since 0 <
τ2
1 σ−1

11.2λ1 +1

τ2
1 σ−1

11.2λp1+1
≤ λ1

λp1
, So (4.7) is implied by

λ1

λp1

(β1 − µ1)
′
(β1 − µ1) ≤ (β̂∗1 − β1)

′
(β̂∗1 − β1). (4.8)

Note that (β̂∗1−β1)|β ∼ N
(
0, σ11.2(X

′
1X1)

−1
)
. Let Z = σ

−1/2
11.2 (X

′
1X1)

1/2(β̂∗1−
β1), then Z|β ∼ N (0, Ip1) . So the inequality( 4.8) is equivalent to

λ1

λp1

(β1 − µ1)
′
(β1 − µ1) ≤ σ11.2Z

′
(X

′
1X1)

−1Z. (4.9)

Notice that (X
′
1X1)

−1 > λ−1
1 Ip1 , hence (4.9) is implied by

λ2
1

λp1σ11.2

||β1 − µ1||2 ≤ Z
′
Z. (4.10)
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Since Z
′
Z|β ∼ χ2

p1
, by (4.4)–(4.10) and Markov inequality we have

Pπ

(
W

(
β̂1B, β∗1 ; β1

)
≤ 0

)
≥ Pπ

(
Z
′
Z ≥ λ2

1

λp1σ11.2

||β1 − µ1||2
)

= 1− Pπ

(
||β1 − µ1||2 ≥ λp1σ11.2

λ2
1

Z
′
Z

)

= 1− E

[
Pπ

(
||β1 − µ1||2 ≥ λp1σ11.2

λ2
1

Z
′
Z

∣∣∣Z ′
Z

)]

≥ 1− E

(
λ2

1E ||β1 − µ1||2
λp1σ11.2Z

′Z

)
= 1− λ2

1tr[Cov(β1)]

σ11.2λp1

E

(
1

Z ′Z

)

= 1− λ2
1p1τ

2
1

σ11.2λp1(p1 − 2)
≥ 1

2
.

The proof of Theorem 4.1 is finished.

For the estimator β̂2B, we have similar result as below.

Theorem 4.2 Let the GLS estimator and MBRLU estimator of β2 are

given by (1.6) and (2.11). If

τ 2
2

σ22.1

≤ λ∗p2
(p2 − 2)

2p2λ∗21
, (4.11)

then

Pπ

(
L(β̂2B, β2)) ≤ L(β̂∗2 , β2)

)
≥ 0.5, for every π ∈ Γ(β2),

where λ∗1, λ
∗
p2

are the maximum and the minimum eigenvalue of X
′
2X2 and

Γ(β2) = {π(β2) : E(β2) = µ2, Cov(β2) = τ 2
2 Ip2}.

To discuss PPC properties of MBRLU estimators, we further assume the

prior π(β) is the normal distribution,i.e.

β ∼ N(µ, V ). (4.12)

Thus we have the following results.

Theorem 4.3 Under the assumptions (4.1) and (4.12).

Pπ

(
L(β̂iB, βi)) ≤ L(β̂∗i , βi)|Y = y

)
≥ 0.5 for any y ∈ Y .

i.e., β̂iB is superior over β̂i

∗
under PPC criterion, where Y is sample space.
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Proof: We only prove the case of i = 1. The proof of β̂2B is similar. Note

that

W
(
β̂1B, β̂∗1 ; β1

)
= ||β̂1B − β1||2 − ||β̂∗1 − β1||2

=
[
(β̂1B − β̂∗1) + (β̂∗1 − β1)

]′ [
(β̂1B − β̂∗1) + (β̂∗1 − β1)

]
− ||β̂∗1 − β1||2

= ||β̂∗1 − β̂1B||2 + 2(β̂∗1 − β̂1B)
[
(β1 − β̂1B)− (β̂∗1 − β̂1B)

]

= 2(β̂∗1 − β̂1B)
′
(β1 − β̂1B)− ||β̂∗1 − β̂1B||2. (4.13)

Obviously

W ≤ 0 ⇐⇒ 2(β̂∗1 − β̂1B)
′
(β1 − β̂1B) ≤ ||β̂∗1 − β̂1B||2.

From (4.12) we know that the prior of β1 is normal distribution, hence the

posterior distribution of β1 given Y = y is still normal distribution. Under

the quadratic loss function the Bayes estimator of β1 is E(β1|y), which has the

same expression as (2.10), therefore the posterior of β1 − β̂1B = β1 − E(β1|y)

given Y = y is distributed as p1-dimension normal distribution with zero mean.

Thus, the posterior of 2(β̂∗1 − β̂1B)
′
(β1 − β̂1B) given Y = y is one dimension

normal distribution with zero mean. Hence we have

Pπ

(
L(β̂1B, β1)) ≤ L(β̂1

∗
, β1)|y

)
= Pπ

(
W

(
β̂1B, β̂∗1 ; β1

)
≤ 0|y

)

= Pπ

(
2(β̂∗1 − β̂1B)

′
(β1 − β̂1B) ≤ ||β̂∗1 − β̂1B||2|y

)

> Pπ

(
2(β̂∗1 − β̂1B)

′
(β1 − β̂1B) ≤ 0 | y

)
= 0.5,

the last inequality is true due to ||β̂∗1 − β̂1B||2 > 0 with probability one. The

Theorem 4.3 has been proved.

5 The MBRLU Estimators of Estimatable Func-

tion and Its Superiorities

In this section we consider the case that in (1.2) the rank of X is non-



Radhey S. Singh, Lichun Wang and Huiming Song 165

full rank, i.e., R(X) < p. Note that in this case β is un-estimable, hence we

consider the estimable function η = Xβ. Since any estimable function of β can

be expressed by the linear function of η, it is enough to study the estimator of

η. It is obvious that the GLS estimator of η = Xβ is

η̂GLS = X(X
′
Φ−1X)−X

′
Φ−1Y,

where the expression of η̂GLS does not depend on g-inverse (X
′
Φ−1X)−, so it

can be replaced by Moore-Penrose inverse (X
′
Φ−1X)+. Then we have

η̂GLS = X(X
′
Φ−1X)+X

′
Φ−1Y =

(
η̂∗1
η̂∗2

)
, (5.1)

where η∗i is the GLS estimator of ηi = Xiβi (i=1,2), and

η̂∗1 = X1(X
′
1X1)

+X
′
1Y1 − σ12

σ22

X1(X
′
1X1)

+X
′
1Y2

= η̂1 − σ12

σ22

X1(X
′
1X1)

+X
′
1Y2, (5.2)

η̂∗2 = X2(X
′
2X2)

+X
′
2Y2 − σ12

σ11

X2(X
′
2X2)

+X
′
2Y1

= η̂2 − σ12

σ11

X2(X
′
2X2)

+X
′
2Y1, (5.3)

with η̂1 = X1(X
′
1X1)

+X
′
1Y1, η̂2 = X2(X

′
2X2)

+X
′
2Y2.

Similar to the way used in section 1, we may obtain the MBRLU estimator

of η = Xβ. Let η0 = Xµ. Then we have

η̂B = XV X
′
(XV X

′
+ Φ)−1Y + [I −XV X

′
(XV X

′
+ Φ)−1] η0. (5.4)

By (2.6) and the fact that X
′
Φ−1 = X

′
Φ−1X(X

′
Φ−1X)+X

′
Φ−1 we know

that

XV X
′
(XV X

′
+ Φ)−1 = XV X

′
[Φ−1 − Φ−1X(V −1 + X

′
Φ−1X)−1X

′
Φ−1]

= XV [I −X
′
Φ−1X(V −1 + X

′
Φ−1X)−1]X

′
Φ−1

= X(V −1 + X
′
Φ−1X)−1X

′
Φ−1 = H

= X(V −1 + X
′
Φ−1X)−1X

′
Φ−1X(X

′
Φ−1X)+X

′
Φ−1

= HX(X
′
Φ−1X)+X

′
Φ−1. (5.5)
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Therefore, using (5.4) and (5.5) and the fact that X(X
′
X)+X

′
X = X we

have

η̂B = HX(X
′
Φ−1X)+X

′
Φ−1Y + (I −H)η0

= Hη̂GLS + (I −H)η0 = η̂GLS − (I −H)(η̂GLS − η0)

= η̂GLS − [X −HX(X
′
X)+X

′
X](β̂GLS − µ)

= η̂GLS − [I −HX(X
′
X)+X

′
](η̂GLS − η0). (5.6)

By the assumption X ′
1X2 = 0 we have

X
′
Φ−1X(X

′
X)+X

′

=

(
X

′
1 0

0 X
′
2

)(
σ−1

11.2In − ρ12In

−ρ12In σ−1
22.1In

)(
X1(X

′
1X1)

+X
′
1 0

0 X2(X
′
2X2)

+X
′
2

)

=

(
σ−1

11.2X
′
1X1(X

′
1X1)

+X
′
1 0

0 σ−1
22.1X

′
2X2(X

′
2X2)

+X
′
2

)
=

(
σ−1

11.2X
′
1 0

0 σ−1
22.1X

′
2

)
, (5.7)

and

HX(X
′
X)+X

′
= X[V −1 + X

′
Φ−1X]−1X

′
Φ−1X(X

′
X)+X

′

=

(
X1 0

0 X2

) (
1

σ11.2
X

′
1X1 + 1

τ2
1
Ip1 0

0 1
σ22.1

X
′
2X2 + 1

τ2
2
Ip2

)−1 (
σ−1

11.2X
′
1 0

0 σ−1
22.1X

′
2

)

=

(
X1

(
X

′
1X1 + δ1Ip1

)−1
X

′
1 0

0 X2

(
X

′
2X2 + δ2Ip2

)−1
X

′
2

)
(5.8)

with δ1 = σ11.2τ
−2
1 , δ2 = σ22.1τ

−2
2 .

Substituting (5.8) into (5.6) we obtain

η̂B = η̂GLS − [I −HX(X
′
X)+X

′
](η̂GLS − η0)

=

(
η̂∗1 − [In −X1(X

′
1X1 + δ1Ip1)

−1X
′
1](η̂

∗
1 − η01)

η̂∗2 − [In−X2(X
′
2X2 + δ2Ip2)

−1X
′
2](η̂

∗
2 − η02)

)
, (5.9)

where η′0 = (η′01, η
′
02) and η′ = (η′1, η

′
2). So the MBRLU estimators of ηi(i =

1, 2) are

η̂1B = η̂∗1 − [In −X1(X
′
1X1 + δ1Ip1)

−1X
′
1] (η̂

∗
1 − η01) , (5.10)

η̂2B = η̂∗2 − [In −X2(X
′
2X2 + δ2Ip2)

−1X
′
2] (η̂

∗
2 − η02) . (5.11)
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Theorem 5.1 Let the GLS estimators and MBRLU estimators of ηi = Xiβi

are given by (5.2), (5.3) and (5.10),(5.11), respectively, then

M(η̂∗i )−M (η̂iB) ≥ 0, i=1, 2.

Proof: We only prove the case of i = 1, the case for i = 2 can be proved in a

similar way. Let G1 = In −X1(X
′
1X1 + δ1Ip1)

−1X
′
1, then

M (η̂1B) = E
{

[η̂∗1 −G1 (η̂∗1 − η01)− η1][η̂
∗
1 −G1 (η̂∗1 − η01)− η1]

′
}

= E
{

[(η̂∗1 − η1)−G1(η̂
∗
1 − η01)][(η̂

∗
1 − η1)−G1(η̂

∗
1 − η01)]

′
}

= E
{

(η̂∗1 − η1) (η̂∗1 − η1)
′ − (η̂∗1 − η1) (η̂∗1 − η01)

′
G
′
1

−G1 (η̂∗1 − η01) (η̂∗1 − η1)
′
+ G1 (η̂∗1 − η01) (η̂∗1 − η01)

′
G
′
1

}

= M(η̂∗1)−K1G
′
1 −G1K

′
1 + G1K2G

′
1, (5.12)

where

K2 = E
(
(η̂∗1 − η01) (η̂∗1 − η01)

′)
= Cov (η̂∗1)

= Cov[E (η̂∗1|η)] + E[Cov (η̂∗1|η)]

= τ 2
1 X1X

′
1 + σ11.2X1(X

′
1X1)

+X
′
1, (5.13)

K1 = E[(η̂∗1 − η1) (η̂∗1 − η01)
′
]

= Cov (η̂∗1)− Cov(η1) = σ11.2X1(X
′
1X1)

+X
′
1. (5.14)

Putting (5.13), (5.14) into (5.12) and by the fact of G1 = In −X1(X
′
1X1 +

δ1Ip1)
−1X

′
1 = (In + δ−1

1 X1X
′
1)
−1, we have

M (η̂∗1)−M (η̂1B) = K1G
′
1 + G1K

′
1 −G1K2G

′
1

= G1

(
τ 2
1 X1X

′
1 + σ11.2X1(X

′
1X1)

+X
′
1

)
G
′
1 ≥ 0.

Theorem 5.1 has been proved.

For nay general estimable functions γi = Piβi, where Pi is a ki × pi real

matrix, for which there exists ki×n matrix Ci such that Pi = CiXi, therefore,
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γi = CiXiβi = Ciηi(i = 1, 2). It is easy to know the GLS estimators and

MBRLU estimators of γi would be

γ̂∗i = Ciη̂
∗
i , γ̂iB = Ciη̂iB, i = 1, 2, (5.15)

then we have the following corollary.

Corollary 5.1 Let the GLS estimators and MBRLU estimators of estimable

function γi (i = 1, 2) are given by (5.15), then

M(γ̂∗i )−M(γ̂iB) ≥ 0, i = 1, 2.

Proof: The conclusion holds since

M(γ̂∗i )−M(γ̂iB) = Ci [M(η̂∗i )−M (η̂iB)] C
′
i ≥ 0.

Now we discuss the superiority of MBRLU estimator of η1 under PRPC

criterion, the superiority of MBRLU estimator of η2 can be discussed similarly.

Under the loss function (2.2) we have the following result:

Theorem 5.2 Let the GLS estimator and MBRLU estimator of η1 = X1β1

be given by (5.2) and (5.10). Under the condition (4.1) and suppose R(X1) =

t1 ≤ p1, if

τ 2
1

σ11.2

≤ λ̃t1(t1 − 2)

2t1λ̃2
1

(5.16)

then we have

Pπ (L(η̂1B − η1)) ≤ L(η̂1
∗ − η1)) ≥ 0.5, for every π ∈ Γ(β1),

where λ̃1, λ̃t1 are the maximum and minimum positive eigenvalue of X
′
1X1, and

Γ(β1) is given by Theorem 4.1.

Remark 5.1 The condition of (5.16) indicates the fact that the variance

of prior should not be too larger than that of the samples. It implies some

requirement for the precision of the variance of prior distribution.
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Proof: Let G1 = I − X1(X
′
1X1 + δ1Ip1)

−1X
′
1 = (I + δ−1

1 X1X
′
1)
−1 and

W (η̂1B, η∗1; η1) = L(η̂1B, η1) − L(η̂1
∗, η1), where δ1 is given in (5.8). By (5.10)

we have

L(η̂1B, η1) = [(η̂∗1 − η1)−G1(η̂
∗
1 − η01)]

′
[(η̂∗1 − η1)−G1(η̂

∗
1 − η01)]

= L(η̂∗1, η1)− 2(η̂∗1 − η01)
′
G1(η̂

∗
1 − η1)

+(η̂∗1 − η01)
′
G2

1(η̂
∗
1 − η01). (5.17)

From (5.17), it is easy to see that W < 0 is equivalent to

(η̂∗1 − η01)
′
G2

1(η̂
∗
1 − η01) ≤ 2(η̂∗1 − η01)

′
G1(η̂

∗
1 − η1). (5.18)

since G2
1 < G1, then (5.18) is implied by

(η̂∗1 − η01)
′
G1(η̂

∗
1 − η01) ≤ 2(η̂∗1 − η01)

′
G1(η̂

∗
1 − η1). (5.19)

Substituting η̂∗1 − η01 = η̂∗1 − η1 − (η01 − η1) into (5.19), we have

(η1 − η01)
′
G1(η1 − η01) ≤ (η̂∗1 − η1)

′
G1(η̂

∗
1 − η1). (5.20)

Since λ̃1 and λ̃t1 is the maximum and minimum non-zero eigenvalue of

X1X
′
1 respectively, then

(
τ 2
1

σ11.2

λ̃1 + 1

)−1

In ≤ G1 =

(
τ 2
1

σ11.2

X1X
′
1 + In

)−1

≤
(

τ 2
1

σ11.2

λ̃t1 + 1

)−1

In.

Hence (5.20) is implied by

(
η−1

1 λ̃t1 + 1
)−1

(η1 − η01)
′
(η1 − η01) ≤

(
δ−1
1 λ̃1 + 1

)−1

(η̂∗1 − η1)
′
(η̂∗1 − η1).(5.21)

Note that 0 <
δ−1
1 λ̃1+1

δ−1
1 λ̃t1+1

≤ λ̃1

λ̃t1

, (5.21) is implied by

λ̃1

λ̃t1

(η1 − η01)
′
(η1 − η01) ≤ (η̂∗1 − η1)

′
(η̂∗1 − η1). (5.22)

From (4.1) we know that

(η̂∗1 − η1)|η ∼ N
(
0, σ11.2X1(X

′
1X1)

+X
′
1

)
.
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Since Q = X1(X
′
1X1)

+X
′
1 is an idempotent matrix, there exists an orthog-

onal matrix P such that

PQP
′
=

(
It1 0

0 0

)
.

Let Z̃ = σ
−1/2
11.2 P (η̂∗1 − η1) , then

Z̃|δ1 ∼ N

(
0,

(
It1 0

0 0

))
,

which implies Z̃
′
Z̃ ∼ χ2

t1
. Thus (5.22) is equivalent to

λ̃1

λ̃t1σ11.2

||η1 − η01||2 ≤ Z̃
′
Z̃. (5.23)

by (5.18)-(5.23) and Markov-inequality we obtain

Pπ (W (η̂1B, η∗1; η1) ≤ 0) ≥ Pπ

(
Z̃
′
Z̃ ≥ λ̃1

σ11.2λ̃t1

||η1 − η01||2
)

= 1− Pπ

(
||η1 − η01||2 ≥ σ11.2λ̃t1

λ̃1

Z̃
′
Z̃

)

= 1− E

[
Pπ

(
||η1 − η01||2 ≥ σ11.2λ̃t1

λ̃1

Z̃
′
Z̃

∣∣∣Z̃ ′
Z̃

)]

≥ 1− λ̃1E ||η1 − η01||2
σ11.2λ̃t1

E

(
1

Z̃ ′Z̃

)
= 1− λ̃1tr(Cov(η1))

σ11.2λ̃t1(t1 − 2)

≥ 1− λ̃1τ
2
1 tr(X

′
1X1)

σ11.2λ̃t1(t1 − 2)
≥ 1− t1λ̃

2
1τ

2
1

σ11.2λ̃t1(t1 − 2)
≥ 0.5.

The proof of Theorem 5.2 is completed.

Similar to Theorem 5.2, we have the following theorem.

Theorem 5.3 Let the GLS estimator and MBRLU estimator of η2 = X2β2

be given by (5.3) and (5.11). Under the condition (4.1) and suppose R(X2) =

t2 ≤ p2, if

τ 2
2

σ22.1

≤ λ̄t2(t2 − 2)

2t2λ̄2
1

(5.24)
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then we have

Pπ (L(η̂2B − η2)) ≤ L(η̂2
∗ − η2)) ≥ 0.5, for every π ∈ Γ(β2),

where λ̄1, λ̄t2 are the maximum and minimum positive eigenvalue of X
′
2X2, and

Γ(β2) is the same as that of Theorem 4.2.

Similar to the proof of Theorem 4.3, we have the following result.

Theorem 5.4 Let the GLS estimator and MBRLU estimator of ηi = Xiβi

be given by (5.2), (5.3) and (5.10), (5.11) respectively. Under the conditions

(4.1) and (4.12). Then for i = 1, 2, we have

Pπ (L(η̂iB, ηi)) ≤ L(η̂i
∗, ηi)|y) ≥ 0.5, for any y ∈ Y ,

where Y is the sample space.

6 Concluding remarks

In summary, we have investigated Bayesian estimation problem of regres-

sion parameter in the system of two seemingly unrelated regressions. We derive

the Bayes minimum risk linear unbiased (MBRLU) estimators for regression

parameters and establish their superiorities based on the mean square error

matrix (MSEM) criterion. Also, we exhibit the superiorities of MBRLU esti-

mators in terms of the predictive Pitman closeness (PRPC) criterion and the

posterior Pitman closeness (PPC) criterion, respectively. In the case that the

design matrices are non-full rank, the superiorities of BMRLU estimators of

some estimable functions are investigated.
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