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Abstract 

This paper introduces a method for simulating univariate and multivariate Dagum 

distributions through the method of 𝐿-moments and 𝐿-correlations. A method is developed 

for characterizing non-normal Dagum distributions with controlled degrees of 𝐿-skew, 

𝐿-kurtosis, and 𝐿-correlations. The procedure can be applied in a variety of contexts such 

as statistical modeling (e.g., income distribution, personal wealth distributions, etc.) and 
Monte Carlo or simulation studies. Numerical examples are provided to demonstrate that 

𝐿-moment-based Dagum distributions are superior to their conventional moment-based 

analogs in terms of estimation and distribution fitting. Evaluation of the proposed method 

also demonstrates that the estimates of 𝐿 -skew, 𝐿 -kurtosis, and 𝐿 -correlation are 
substantially superior to their conventional product-moment based counterparts of skew, 

kurtosis, and Pearson correlation in terms of relative bias and relative efficiency–most 

notably in the context of heavy-tailed distributions. 
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1  Introduction  

The family of Dagum distributions is commonly used for fitting income and personal 

wealth data. For example, some of the countries for which personal income data were fitted 
by Dagum distributions are Argentina, Canada, Sri Lanka, and the USA [2]. For a list of 

other applications of Dagum distributions, see [13].The cumulative distribution function 

(cdf) associated with Dagum distributions is given as [1, 13]:  
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𝐹(𝑥) =  1 +  
𝑥

𝑏
 
−𝑎

 
−𝑝

                                                               (1) 

 

where 𝑥 ∈  0,∞ , 𝑝, 𝑎, 𝑏 > 0 and where 𝑝 and 𝑎 are shape parameters and 𝑏 is a scale 
parameter, respectively. These parameters determine the mean, variance, skew, and 

kurtosis of a distribution. The quantile function associated with the cdf in (1) is given as in 

[13] 

 

𝐹−1 𝑥 = 𝑞(𝑢) = 𝑏 𝑢−1 𝑝 − 1 
−1 𝑎 

                                                 (2) 

 

where 𝑢~𝑖𝑖𝑑 𝑈(0, 1). The scale and shape of a Dagum distribution associated with (2) 

are dependent on the values of the parameters 𝑏, 𝑝, and 𝑎, which can be determined by 

simultaneously solving (A.7)—(A.9) in the Appendix for the given values of standard 

deviation  𝜍 , skew  𝛾3 , and kurtosis  𝛾4 . In order for the equation (2) to produce a 

valid Dagum pdf, the quantile function 𝑞(𝑢) is required to be a strictly increasing 

monotone function [8]. This requirement implies that an inverse function (𝑞−1) exists. 

As such, the cdf associated with (2) can be expressed as 𝐹 𝑞 𝑢  = 𝐹 𝑢 = 𝑢 and 

subsequently differentiating this cdf with respect to 𝑢 will yield the parametric form of 

the pdf  for 𝑞 𝑢  as 𝑓 𝑞 𝑢  = 1 𝑞′ 𝑢  . We would also note that the simple 

closed-form expression for the pdf associated with (1) can be given as [13] 

 

𝑓 𝑥 = 𝑎𝑝𝑏𝑎𝑥− 𝑎+1  1 +  
𝑥

𝑏
 
−𝑎

 
− 𝑝+1 

                                              (3) 

 

Some of the problems associated with conventional moment-based estimates are that they 
can be (a) substantially biased, (b) highly dispersed, or (c) influenced by outliers [3, 9], 

and thus may not be good representatives of the true parameters. To demonstrate, Figure 1 

gives the graphs of the pdf and cdf associated with the Dagum distribution with shape 

and scale parameters as 𝑝 = 0.36, 𝑎 = 4.273, and 𝑏 = 14.28. These values of shape 
and scale parameters are associated with the Dagum distribution fitted to the 1969 US 

family income data given in Dagum (1980, p. 360) as cited in [13, p. 107]. These values 

of 𝑝, 𝑎, and 𝑏 were substituted into (A.6)—(A.9) to determine the values for the mean 
 𝜇 , standard deviation  𝜍 , skew  𝛾3 , and kurtosis  𝛾4  associated with the pdf in 

Figure 1. Table 1 gives the parameters and sample estimates for the mean, standard 

deviation, skew, and kurtosis for the distribution in Figure 1. Inspection of Table 1 

indicates that the bootstrap estimates (𝑆, 𝑔3, and 𝑔4) of standard deviation, skew, and 

kurtosis (𝜍, 𝛾3 , and 𝛾4) are substantially attenuated below their corresponding parameter 

values with greater bias and variance as the order of the estimate increases. Specifically, 

for sample size of 𝑛 = 50, the values of the estimates are only 96.06%, 47.26%, and 

4.14% of their corresponding parameters, respectively. The estimates (𝑆, 𝑔3 , and 𝑔4) of 

standard deviation, skew, and kurtosis (𝜍, 𝛾3 , and 𝛾4) in Table 1 were calculated based on 

Fisher’s 𝑘 -statistics formulae [16, pp. 299-300], which are currently used by most 

commercial software packages such as SAS, SPSS, Minitab, etc., for computing the 

values of skew and kurtosis (where 𝜍 = 1  and 𝛾3,4 = 0  for the standard normal 

distribution). 
Another unfavorable quality associated with conventional moment-based estimators of 

skew and kurtosis is that their values are algebraically bounded by the sample size  𝑛  
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such that |𝑔3| ≤  𝑛 and 𝑔4 ≤ 𝑛 [3]. This constraint implies that if a researcher wants 

to simulate non-normal data with kurtosis 𝛾4 = 66.3722 as in Table 1 by drawing a 

sample of size 𝑛 = 50 from this population, then the largest possible value of the 

computed estimate  𝑔4  of kurtosis  𝛾4  is only 50, which is only 75.33% of the 

parameter.  

 

 
Pdf 

 
cdf 

Figure 1: The pdf and cdf of a Dagum distribution with shape and scale parameters of 

𝑝 = 0.36, 𝑎 = 4.273, and 𝑏 = 14.28. The parameter values of mean  𝜇 , standard 

deviation  𝜍 , skew  𝛾3 , and kurtosis  𝛾4  associated with this distribution are given 

in Table 1. 
 

Table 1: Conventional moment-based parameters (𝜇, 𝜍, 𝛾3, 𝛾4) of mean, standard 

deviation, skew, and kurtosis and their estimates  𝑀, 𝑆, 𝑔3, 𝑔4  for the pdf in Figure 1. 

Each bootstrapped estimate (Estimate), associated 95% bootstrap confidence interval 
(95% Bootstrap C.I.), and the standard error (St. Error) were based on resampling 25,000 

statistics. Each statistic was based on a sample size of 𝑛 =  50. 

Parameter Estimate 95% Bootstrap C.I. St. Error 

𝜇 = 10.4572 𝑀 = 10.46 (10.451, 10.474) 0.00603 

𝜍 = 6.8354 𝑆 = 6.566 (6.5479, 6.5874) 0.01004 

𝛾3 = 2.5838 𝑔3 = 1.221 (1.2103, 1.2313) 0.00539 

𝛾4 = 66.3722 𝑔4 = 2.751 (2.6937, 2.8126) 0.03052 

 

The method of 𝐿-moments introduced by Hosking [9] is an attractive alternative to 

conventional moments and can be used for describing theoretical probability distributions, 

fitting distributions to real-world data, estimating parameters, and hypothesis testing [3, 9, 

11]. In these contexts, we note that the 𝐿 -moment based estimators of 𝐿 -skew, 

𝐿-kurtosis, and 𝐿-correlation have been introduced to address the limitations associated 

with conventional moment-based estimators [3, 4-7, 9-12, 15, 19]. Some qualities of 

𝐿-moments that make them superior to conventional moments are that they (a) exist for 
any distribution with finite mean, (b) have estimates that are nearly unbiased for any 

sample size and less affected from sampling variability, (c) are more robust in the 

presence of outliers in the sample data, and (d) are not algebraically bounded by sample 

size [3, 9-11]. For example, the estimates of 𝐿-scale, 𝐿-skew, and 𝐿-kurtosis (ℓ2, 𝓉3, and 

𝓉4) in Table 2 are relatively closer to their respective parameter values  (𝜆2, 𝜏3, and 𝜏4) 

and have smaller variance relative to their conventional moment-based counterparts as in 
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Table 1. Inspection of Table 2 indicates that for the sample size of 𝑛 = 50, the values of 

the estimates are on average 99.95%, 95.09% and 96.73% of their corresponding 
parameters. 

 

Table 2: 𝐿-moment based parameters (𝜆1, 𝜆2, 𝜏3, 𝜏4) of 𝐿-mean, 𝐿-scale, 𝐿-skew, and 

𝐿-kurtosis and their estimates (ℓ1, ℓ2, 𝓉3, 𝓉4) for the pdf in Figure 1. Each bootstrapped 
estimate (Estimate), associated 95% bootstrap confidence interval (95% Bootstrap C.I.), 

and the standard error (St. Error) were based on resampling 25,000 statistics. Each 

statistic was based on a sample size of 𝑛 =  50. 

Parameter Estimate 95% Bootstrap C.I. St. Error 

𝜆1 = 10.4572 ℓ1 = 10.46 (10.451, 10.474) 0.00603 

𝜆2 = 3.5057 ℓ2 = 3.504 (3.4971, 3.5108) 0.00348 

𝜏3 = 0.1914 𝓉3 = 0.182 (0.1810, 0.1831) 0.00054 

𝜏4 = 0.1683 𝓉4 = 0.1628 (0.1619, 0.1637) 0.00046 

 
In view of the above, the primary purpose of this study is to characterize the family of 

Dagum distributions through the method of 𝐿 -moments to obviate the problems 

associated with conventional moment-based estimators. Further, another aim of this study 
is to develop the methodology for simulating Dagum distributions with specified 

𝐿-correlation matrices [19]. Specifically, in Section 2, a brief introduction to univariate 

𝐿 -moments is provided. The systems of equations associated with the Dagum 

distributions are subsequently derived for determining the shape and scale parameters (𝑝, 

𝑎, and 𝑏) for user specified values of 𝐿-scale  𝜆2 ,  𝐿-skew  𝜏3 , and 𝐿-kurtosis  𝜏4 . 
In Section 3, a comparison between conventional and 𝐿 -moment-based Dagum 

distributions is presented in the contexts of estimation and distribution fitting. Numerical 
examples based on Monte Carlo simulation techniques are also provided to confirm the 

methodology and demonstrate the advantages that 𝐿-moments have over conventional 

moments. In Section 4, an introduction to the coefficient of 𝐿-correlation is provided as 

well as the methodology for simulating Dagum distributions with specified 𝐿-correlations. 

In Section 5, the steps for implementing the proposed 𝐿-moment procedure are described 

for simulating non-normal Dagum distributions with controlled values of standard 

deviation (𝐿-scale), skew (𝐿-skew), kurtosis (𝐿 -kurtosis), and Pearson correlations 

(𝐿-correlations). Numerical examples and the results of a simulation are also provided to 
confirm the derivations and compare the new procedure with the conventional 

moment-based procedure. In Section 6, the results of the simulation are discussed. 
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2  Methodology 

2.1 Theoretical and Empirical Definitions of 𝑳-Moments 

𝐿-moments can be expressed as certain linear combinations of probability weighted 

moments (PWMs). Specifically, let 𝑋1, … , 𝑋𝑖 ,… , 𝑋𝑛  be identically and independently 

distributed random variables each with pdf 𝑓(𝑥), cdf 𝐹(𝑥), and the quantile function 

𝐹−1(𝑥). As such, the PWMs are defined as [3, equation (2.1)]  

 

𝛽𝑟 =  𝐹−1 𝑥  𝐹 𝑥  𝑟𝑓(𝑥)𝑑𝑥                                                        (4) 

where  𝑟 =  0, 1, 2, 3. The first four 𝐿-moments  𝜆𝑖=1,…,4  associated with 𝑋 can be 

expressed in simplified forms as [11, pp. 20-22] 

 

𝜆1 = 𝛽0                                                                 (5) 

𝜆2 = 2𝛽1 − 𝛽0,                                                          (6) 

𝜆3 = 6𝛽2 − 6𝛽1 + 𝛽0,                                                     (7) 

𝜆4 = 20𝛽3 − 30𝛽2 + 12𝛽1 − 𝛽0,                                            (8) 

 

where the coefficients associated with 𝛽𝑟=0,…,3 in (5)—(8) are obtained from shifted 

orthogonal Legendre polynomials and are computed as in [11, pp. 20-22] or in [3, pp. 
4-5]. 

The notations 𝜆1 and 𝜆2 denote the location and scale parameters. Specifically, in the 

literature of 𝐿-moments, 𝜆1 is referred to as the 𝐿-location parameter, which is equal to 

the arithmetic mean, and 𝜆2  (> 0) is referred to as the 𝐿-scale parameter and is 
one-half of Gini’s coefficient of mean difference [16, pp. 47-48]. Dimensionless 

𝐿-moment ratios are defined as the ratios of higher-order 𝐿-moments (i.e., 𝜆3 and 𝜆4) to 

𝜆2 . Thus, 𝜏3 = 𝜆3 𝜆2  and 𝜏4 = 𝜆4 𝜆2  are, respectively, the indices of 𝐿-skew and 

𝐿-kurtosis. In general, the indices of 𝐿-skew and 𝐿-kurtosis are bounded in the interval 

−1 < 𝜏3,4 < 1, and as in conventional moment theory, a symmetric distribution has 

𝐿-skew equal to zero [3]. The boundary region for 𝐿-skew (𝜏3) and 𝐿-kurtosis (𝜏4) for 
a continuous distribution is given by the inequality [14] 

 
5𝜏3

2−1

4
< 𝜏4 < 1                                                                       (9) 

 

Empirical 𝐿-moments for a sample (of size 𝑛) of real-world data are expressed as linear 
combinations of the unbiased estimators of the PWMs based on sample order statistics 

𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛 . Specifically, the unbiased estimators of the PWMs are given as 

[9, pp. 113-114] 

 

𝑏𝑟 =
1

𝑛
 

 𝑖−1  𝑖−2 … 𝑖−𝑟 

 𝑛−1  𝑛−2 … 𝑛−𝑟 
𝑛
𝑖=𝑟+1 𝑋𝑖:𝑛                                                   (10) 

 

where 𝑟 =  0, 1, 2, 3 and 𝑏0 is the sample mean. The first four sample 𝐿-moments 

(ℓ
1

, ℓ2 , ℓ3, ℓ4) are obtained by substituting 𝑏𝑟  from (10) instead of 𝛽𝑟  in equations 

(5)−(8). The sample 𝐿-moment ratios (i.e., 𝐿-skew and 𝐿-kurtosis) are denoted as 𝓉3 

and 𝓉4, where 𝓉3 = ℓ3 ℓ2  and 𝓉4 = ℓ4 ℓ2 . 
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2.2 𝑳-Moment Based System for Dagum Distributions 

If we substitute 𝐹−1(𝑥) = 𝑏 𝑢−1 𝑝 − 1 
−1 𝑎 

 from (2), where 𝐹 𝑥 = 𝑢 and 𝑓 𝑥 = 1 

in (4), then the 𝑟-th PWM for the family of Dagum distributions is given as 
 

𝛽𝑟 =  𝑏 𝑢−1 𝑝 − 1 
−1 𝑎 

 𝑢𝑟1

0
𝑑𝑢.                                         (11) 

Equation (11) can also be expressed as: 

𝛽𝑟 = 𝑏𝑝   𝑢1 𝑝  
 𝑝+𝑝𝑟 +1 𝑎  −1

 1 − 𝑢1 𝑝  
−1 𝑎 1

0
 𝑝−1𝑢 1 𝑝  −1𝑑𝑢 .               (12) 

Let 𝑢1 𝑝 = 𝑥. As such, we have 𝑝−1𝑢 1 𝑝  −1𝑑𝑢 = 𝑑𝑥 and subsequently substituting this 

result into (12) yields the 𝑟-th PWM, which can be expressed as  

 

𝛽𝑟 = 𝑏𝑝  𝑥 𝑝+𝑝𝑟+1 𝑎  −1 1 − 𝑥  1−1 𝑎  −11

0
𝑑𝑥.                              (13) 

 

Integrating (13) for 𝛽𝑟 = 0,1,2,3  and substituting these PWMs into (5)—(8) and 

simplifying gives the following 𝐿-moment based system of equations for the family of 

Dagum distributions as 
 

𝜆1 =  𝑏Γ 1 − 1 𝑎  Γ 𝑝 + 1 𝑎   Γ 𝑝                                        (14) 

𝜆2 = 𝑏Γ 1 − 1 𝑎   Γ 𝑝 Γ 2𝑝 + 1 𝑎  − Γ 2𝑝 Γ 𝑝 + 1 𝑎    Γ 𝑝 Γ 2𝑝             (15) 

𝜏3 = {Γ 1 + 3𝑝  6Γ 1 + 𝑝 Γ 2𝑝 + 1 𝑎  − Γ 1 + 2𝑝 Γ 𝑝 + 1 𝑎   − 

           6Γ 1 + 𝑝 Γ 1 + 2𝑝 Γ 3𝑝 + 1 𝑎  }/                                            (16) 

          {Γ 1 + 3𝑝 (Γ 1 + 2𝑝 Γ 𝑝 + 1 𝑎  − 2Γ 1 + 𝑝 Γ 2𝑝 + 1 𝑎  )} 

            

𝜏4 = {Γ 1 + 4𝑝 {Γ 1 + 3𝑝  Γ 1 + 2𝑝 Γ 𝑝 + 1 𝑎  − 12Γ 1 + 𝑝 × 
             Γ 2𝑝 + 1 𝑎   + 30Γ 1 + 𝑝 Γ 1 + 2𝑝 Γ 3𝑝 + 1 𝑎  } − 

            20Γ 1 + 𝑝 Γ 1 + 2𝑝 Γ 1 + 3𝑝  Γ 4𝑝 + 1 𝑎  }/ Γ 1 + 3𝑝 ×  
            Γ 1 + 4𝑝 (Γ 1 + 2𝑝 Γ 𝑝 + 1 𝑎  − 2Γ 1 + 𝑝 Γ 2𝑝 + 1 𝑎  )}              (17) 

 

Note that equations (16) and (17) have been derived in a similar context for Burr Type III 

distributions by Pant and Headrick [15]. Given specified values of 𝐿-scale  𝜆2 , 𝐿-skew 
 𝜏3 , and 𝐿-kurtosis  𝜏4  the systems of equations (15)−(17) can be simultaneously 

solved for real values of 𝑝, 𝑎, and 𝑏. The solved values of 𝑝, 𝑎, and 𝑏  can be 

substituted into (2) for generating Dagum distributions. Further, the solved values of 𝑝, 

𝑎, and 𝑏 can be substituted in (14) for computing the value of 𝐿-mean  𝜆1 . In the next 

section, two examples are provided to demonstrate the aforementioned methodology and 

the advantages that 𝐿-moments have over conventional moments in the contexts of 

estimation and distribution fitting. 
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3  Comparison of 𝑳-Moments with Conventional Moments 

3.1 Estimation 

To demonstrate the advantages of 𝐿 -moment-based estimation over conventional 

moment-based estimation, an example is provided in Tables 6 and 7 in the context of four 
Dagum distributions depicted in Figure 2. Specifically, Figure 2 gives the pdfs of four 

asymmetric Dagum distributions with their corresponding conventional-moment-based 

parameters of skew (𝛾3) and kurtosis (𝛾4), 𝐿-moment-based parameters of 𝐿-scale (𝜆2), 

𝐿-skew (𝜏3), and 𝐿-kurtosis (𝜏4), and their respective shape and scale parameters of 𝑝, 𝑎, 

and 𝑏. The values of 𝑝, 𝑎, and 𝑏 are determined by simultaneously solving equations 

(A.7)—(A.9) from the Appendix using the standard deviation  𝜍 = 1  12   associated 

with the uniform distribution and the specified values of skew  𝛾3  and kurtosis  𝛾4 . 
The solutions of 𝑝, 𝑎, and 𝑏 are used in (15)—(17) to determine the 𝐿-moment based 

parameters of 𝐿-scale (𝜆2), 𝐿-skew (𝜏3), and 𝐿-kurtosis (𝜏4) as well as in equation (3) to 

produce the pdfs that are given in Figure 2. 

The advantages of 𝐿-moment-based estimators have over those based on conventional 
moments can also be demonstrated in the context of Dagum distributions by considering 

the Monte Carlo simulation results associated with the indices for the percentage of 

relative bias (RB%) and standard error (St. Error) reported in Tables 6 and 7.  

Specifically, a Fortran [18] algorithm was written to simulate 25,000 independent samples 

of sizes 𝑛 = 25, 1000 and the conventional-moment based estimates (𝑔3  and 𝑔4) of 

skew and kurtosis (𝛾3  and 𝛾4 ) and the 𝐿-moment based estimates (𝓉3  and 𝓉4 ) of 

𝐿-skew and 𝐿-kurtosis (𝜏3  and 𝜏4 ) were computed for each of the  2 × 25,000  
samples based on the parameters and the values of 𝑝, 𝑎, and 𝑏 listed in Figure 2. The 

estimates (𝑔3  and 𝑔4) of 𝛾3  and 𝛾4  were computed based on Fisher’s 𝑘-statistics [16, 

pp. 47-48], whereas the estimates (𝓉3 and 𝓉4) of 𝜏3 and 𝜏4 were computed using (16) 

and (17). Bias-corrected accelerated bootstrapped average estimates (Estimate), 
associated 95% confidence intervals (95% Bootstrap C.I.), and standard errors (St. Error) 

were obtained for each type of estimates using 10,000 resamples via the commercial 

software package Spotfire S+ [20]. Further, if a parameter was outside its associated 95% 

bootstrap C.I., then the percentage of relative bias (RB%) was computed for the estimate 
as:   

 RB% = 100 ×  Estimate − Parameter /Parameter                          (18) 

 
 

 

 
 

 



24                                       Mohan D. Pant and Todd C. Headrick 

1 

𝛾3 = −0.5 

𝛾4 = 1.5 

𝜆2 = 0.1579718 

𝜏3 = −0.075116 

𝜏4 = 0.172709 

𝑝 = 0.520053 

𝑎 = 42.352031 

𝑏 = 5.136684 

 

2 

𝛾3 = −1 

𝛾4 = 2.5 

𝜆2 = 0.155298 

𝜏3 = −0.142370 

𝜏4 = 0.178771 

𝑝 = 0.392499 

𝑎 = 118.294929 

𝑏 = 11.632513 
 

 

3 

𝛾3 = 3 

𝛾4 = 60 

𝜆2 = 0.143831 

𝜏3 = 0.211153 

𝜏4 = 0.203575 

𝑝 = 0.820405 

𝑎 = 4.453323 

𝑏 = 0.594326 

 

4 

𝛾3 = 4 

𝛾4 = 400 

𝜆2 = 0.139097 

𝜏3 = 0.243899 

𝜏4 = 0.216258 

𝑝 = 0.984940 

𝑎 = 4.084208 

𝑏 = 0.514413 

 
Figure 2: Four asymmetric Dagum distributions with their conventional moment-based 

parameters of skew (𝛾3) and kurtosis (𝛾4), 𝐿-moment-based parameters of 𝐿-scale (𝜆2), 

𝐿-skew (𝜏3), and 𝐿-kurtosis (𝜏4), and corresponding shape and scale parameters 𝑝, 𝑎, 

and 𝑏 for equation (2). Note that the standard deviation for each distribution is 𝜍 =

1  12 . 
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Dagum distribution ≈ log logistic(10, 5) distribution 

  
Dagum distribution ≈ Pareto (4, 5) distribution 

(a) (b) 

Figure 3: The pdfs of the two distributions, namely, log logistic (10, 5) and Pareto (4, 5) 

superimposed by the pdfs (dashed curves) of (a) conventional moment- and (b) 

𝐿-moment-based Dagum distributions. 

 

The results in Tables 6 and 7 demonstrate that 𝐿-moment-based estimators are superior to 

their conventional moment-based counterparts in terms of both smaller relative bias and 
error. Further, these advantages are most pronounced in the context of smaller sample 

sizes and higher-order moments. For example, for distribution 4, given a sample of size 

𝑛 = 25 , the conventional moment-based estimates (𝑔3  and 𝑔4 ) generated in the 

simulation were, on average, 29.85% and 0.51% of their corresponding parameters (𝛾3  

and 𝛾4). On the other hand, for the same distribution, the 𝐿-moment-based estimates (𝓉3 

and 𝓉4) generated in the simulation were, on average, 90.49% and 93.44% of their 

corresponding parameters (𝜏3 and 𝜏4). Thus, the relative biases of the estimators based 

on 𝐿-moments are essentially negligible compared to those associated with the estimators 

based on conventional moments. Furthermore, it can be verified that the (relative) 

standard errors associated with the estimates 𝓉3 and 𝓉4 are relatively much smaller and 

more stable than the (relative) standard errors associated with the estimates 𝑔3  and 𝑔4 . 

  

3.2 Distribution Fitting 

3.2.1 Theoretical distributions 

Given in Figure 3 are the pdfs of log-logistic (10, 5) and Pareto (4, 5) distributions 

superimposed by the pdfs (dashed curves) of Dagum distributions in both (a) conventional 

moment- and (b) 𝐿-moment-based systems. The conventional moment-based parameters 

of standard deviation  𝜍 , skew  𝛾3 , and kurtosis  𝛾4  associated with log-logistic (10, 

5) and Pareto (4, 5) distributions—given in Table 4—were computed by using equations 

(A.3)−(A.5) in the Appendix. The values of the shape and scale parameters (𝑝, 𝑎, and 𝑏) 
were determined by solving equations (A.7)—(A.9) from the Appendix using moment 
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matching technique. The solved values of 𝑝, 𝑎, and 𝑏 were used in (3) to superimpose 

the conventional moment-based Dagum distribution as shown in Figure 3 (a).  

The 𝐿-moment-based parameters of  𝐿-scale  𝜆2 , 𝐿-skew  𝜏3 , and 𝐿-kurtosis  𝜏4  
associated with the two distributions in Figure 3, given in Table 5, were obtained in three 

steps as: (a) compute the values of PWMs (𝛽𝑟=0,1,2,3) using (4), (b) substitute these 

PWMs into (5)−(8) to obtain the values of the first four 𝐿-moments, and (c) compute the 

values of 𝜏3 and 𝜏4 using 𝜏3 = 𝜆3 𝜆2  and 𝜏4 = 𝜆4 𝜆2 . The values of shape and scale 

parameters (𝑝, 𝑎, and 𝑏) given in Table 5 were determined by solving the systems of 

equations (15)−(17). These values of 𝑝, 𝑎, and 𝑏 were used in (3) to superimpose the 

𝐿-moment-based Dagum distributions as shown in Figure 3 (b). 

To superimpose the Dagum distribution the quantile function 𝑞 𝑢  in (2) was 

transformed as: (a)  𝑋 𝜍 − 𝜇𝑆 + 𝑆𝑞 𝑢   𝜍,  and (b)  ℓ1𝜆2 − 𝜆1ℓ2 + ℓ2𝑞 𝑢  𝜆2 , 

respectively, where (𝑋 , 𝑆) and (𝜇, 𝜍) are the values of (mean, standard deviation), 

whereas (ℓ1, ℓ2) and (𝜆1, 𝜆2) are the values of (𝐿-mean, 𝐿-scale) obtained from the 
original distribution and the Dagum distribution, respectively. 

Inspection of the graphs in Figure 3 (a) and (b) indicate that the 𝐿-moment-based Dagum 

pdfs provide a more accurate approximation of the two distributions than those based on 
conventional moment theory.  

 

3.2.2  Empirical distributions 

Figure 4 gives the conventional moment- and the 𝐿 -moment-based Dagum pdf s 
superimposed on the histogram of poverty rate of 5- to 17-year olds data obtained from 

𝑛 = 533  school districts with more than 15,000 students 

(http://nces.ed.gov/programs/digest/d11/tables/dt11_096.asp) in the U.S.  

The conventional moment-based estimates (𝑆, 𝑔3 , and 𝑔4) of standard deviation, skew, 

and kurtosis (𝜍, 𝛾3, and 𝛾4)   and the 𝐿 -moment-based estimates (ℓ2, 𝓉3, and 𝓉4)  of 

𝐿-scale,  𝐿-skew, and 𝐿-kurtosis (𝜆2, 𝜏3, and 𝜏4) were computed for the sample of size 

𝑛 =  533. The estimates of 𝜍, 𝛾3 , and 𝛾4 were computed based on Fisher’s 𝑘-statistics 

formulae [16, pp. 47-48], whereas the estimates of 𝜆2, 𝜏3, and 𝜏4 were computed using 

(5)−(8) and (10), respectively. These sample estimates were then used to solve for the 

values of shape and scale parameters (𝑝, 𝑎, and 𝑏) using (a) equations (A.7)−(A.9) in the 

Appendix and (b) equations (15) − (17). The solved values of 𝑝, 𝑎, and 𝑏  were 

subsequently used in (3) to superimpose the pdfs of the Dagum distributions as shown in 

Figure 4 (a) and (b). 

Inspection of the two panels in Figure 4 demonstrates that the 𝐿-moment-based Dagum 

pdf provides a better fit to the sample data. The chi-square goodness of fit statistics along 

with their corresponding 𝑝 -values given in Table 3 provide evidence that the 

conventional moment-based Dagum distribution does not provide a good fit to the actual 

data, whereas, the 𝐿-moment-based Dagum distribution fits very well. Note that the 

degrees of freedom for the chi-square goodness of fit tests were computed as 𝑑𝑓 = 8 = 12 

(class intervals) – 3 (parameter estimates) – 1 (sample size). 

 

http://nces.ed.gov/programs/digest/d11/tables/dt11_096.asp
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Conventional moment-based Dagum 

distribution superimposed on the histogram 

of the Poverty rate of 5- to 17-year olds data 

𝐿-moment-based Dagum distribution 
superimposed on the histogram of the 

Poverty rate of 5- to 17-year olds data  
Estimates Shape parameters 

𝑋 = 17.7105 𝑝 = 0.103878 

𝑆 = 0.0108 𝑎 = 7.225442 

𝑔3 = 0.7979 𝑏 = 0.838858 

𝑔4 = 0.7262  
 

Estimates Shape parameters 

ℓ1 = 17.7105 𝑝 = 0.229529 

ℓ2 = 4.8776 𝑎 = 5.443231 

𝓉3 = 0.1333 𝑏 = 0.788525 

𝓉4 = 0.1205  
 

(a) (b) 

Figure 4: Histograms of the Poverty rate of 5- to 17-year olds (𝑛 =  533) data 

superimposed by (a) conventional moment- and (b) 𝐿-moment-based Dagum 
distributions. To superimpose the Dagum distribution (curves), the quantile function 

𝑞 𝑢  from (2) was transformed as (a)  𝑋 𝜍 − 𝜇𝑆 + 𝑆𝑞 𝑢   𝜍, and (b) 

 ℓ1𝜆2 − 𝜆1ℓ2 + ℓ2𝑞 𝑢  𝜆2 , respectively, where (𝑋 , 𝑆) and (𝜇, 𝜍) are the values of 

(mean, standard deviation), whereas (ℓ1, ℓ2) and (𝜆1, 𝜆2) are the values of (𝐿-mean, 

𝐿-scale) obtained from the actual data and the Dagum distributions, respectively. 

 

Table 3: Chi-square goodness of fit statistics for the conventional (𝐶) moment- and 

𝐿-moment- (𝐿) based Dagum approximations for the Poverty rate of 5- to 17-year olds 

data (𝑛 = 533) in Figure 3. 

% Exp. Obs. (𝐶) Obs. (𝐿) Poverty rate (𝐶) Poverty rate (𝐿) 

5 26.65 42 29 < 6.6399 < 5.5054 

10 26.65 12 21 6.6399 − 7.3568 5.5054 − 7.0613 

20 53.30 39 64 7.3568 − 9.1622 7.0613 − 9.7721 

30 53.30 48 48 9.1622 − 11.3074 9.7721 − 12.2194 

40 53.30 53 49 11.3074 − 13.7083 12.2194 − 14.5284 

50 53.30 58 54 13.7083 − 16.3206 14.5284 − 16.7800 

60 53.30 66 52 16.3206 − 19.1232 16.7800 − 19.0649 

70 53.30 73 65 19.1232 − 22.1331 19.0649 − 21.5265 

80 53.30 52 49 22.1331 − 25.4843 21.5265 − 24.4704 

90 53.30 38 44 25.4843 − 29.8106 24.4704 − 28.8924 

95 26.65 19 24 29.8106 − 33.3668 28.8924 − 33.1684 

100 26.65 33 34 33.3668 or more 33.1684 or more 

    𝜒2 = 40.11 
𝑝 < 0.001 

𝜒2 = 11.30 

𝑝 = 0.185 
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Table 4: Conventional moment-based parameters of mean  𝜇 , standard deviation (𝜍), 

skew  𝛾3 , and kurtosis  𝛾4  along with their corresponding values of shape and scale 

parameters (𝑝, 𝑎, and 𝑏) for the two distributions (dashed curves) in Figure 2 (a). 

Dist. 𝜇 𝜍 𝛾3  𝛾4  𝑝 𝑎 𝑏 

1 1.665666 0.940757 0.936674 3.510210 0.234928 6.021672 2.378523 

2 0.511138 1.290994 4.647580 70.8 0.021685 4.351457 5.388546 

 

 

Table 5: 𝐿-moment based parameters of 𝐿-mean  𝜆1 , 𝐿-scale  𝜆2 , 𝐿-skew  𝜏3 , and 

𝐿-kurtosis  𝜏4  along with their corresponding values of shape and scale parameters (𝑝, 

𝑎, and 𝑏) for the two distributions (dashed curves) in Figure 2 (b). 

Dist. 𝜆1 𝜆2 𝜏3 𝜏4 𝑝 𝑎 𝑏 

1 3.230377 0.508320 0.1 0.1750 0.677402 7.264128 3.413678 

2 0.953430 0.555556 0.428571 0.248120 0.224958 2.596406 1.810060 

 

 

Table 6: Skew (𝛾3) and Kurtosis (𝛾4) results for the Conventional moment procedure. 

Dist. Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝑛 =  25 

1 𝛾3 = −0.5 𝑔3 = −0.3618 −0.3695,−0.3541 0.00391 −27.64 
 𝛾4 = 1.5 𝑔4 = 0.4887 0.4725, 0.5062 0.00856 −67.42 
      

2 𝛾3 = −1.0 𝑔3 = −0.6842 −0.6922,−0.6761 0.00414 −31.58 
 𝛾4 = 2.5 𝑔4 = 0.7952 0.7721, 0.8165 0.01132 −68.19 
      

3 𝛾3 = 3.0 𝑔3 = 1.054 1.0437, 1.0641 0.00521 −64.97 
 𝛾4 = 60 𝑔4 = 1.7 1.6631, 1.7381 0.01919 −97.17 
      
4 𝛾3 = 4.0 𝑔3 = 1.194 1.1835, 1.2050 0.00547 −70.15 
 𝛾4 = 400 𝑔4 = 2.059 2.0170, 2.0990 0.02090 −99.49 

𝑛 = 1000 

1 𝛾3 = −0.5 𝑔3 = −0.4963 −0.4982,−0.4944 0.00948 −0.13 
 𝛾4 = 1.5 𝑔4 = 1.465 1.4583, 1.4723 0.00354 −2.33 
      

2 𝛾3 = −1.0 𝑔3 = −0.9893 −0.9916,−0.9873 0.00108 −2.38 
 𝛾4 = 2.5 𝑔4 = 2.421 2.4076, 2.4338 0.00662 −3.16 
      

3 𝛾3 = 3.0 𝑔3 = 2.444 2.4261, 2.4604 0.00867 −18.53 
 𝛾4 = 60 𝑔4 = 16.78 16.4370, 17.1737 0.18740 −72.03 
      
4 𝛾3 = 4.0 𝑔3 = 2.969 2.9484, 2.9921 0.01111 −25.78 
 𝛾4 = 400 𝑔4 = 23.58 23.0814, 24.1082 0.2598 −94.11 
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Table 7: 𝐿-skew (𝜏3) and 𝐿-kurtosis (𝜏4) results for the 𝐿-moment procedure. 
Dist. Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝑛 = 25 

1 𝜏3 = −0.0751 𝓉3 = −0.0719 −0.0733,−0.0705 0.00071 −4.26 
 𝜏4 = 0.1727 𝓉4 = 0.1710 0.1700, 0.1720 0.00051 −0.98 
      
2 𝜏3 = −0.1424 𝓉3 = −0.1361 −0.1375,−0.1347 0.00071 −4.42 
 𝜏4 = 0.1788 𝓉4 = 0.1768 0.1758, 0.1779 0.00054 −1.12 
      
3 𝜏3 = 0.2112 𝓉3 = 0.1918 0.1899, 0.1932 0.00080 −9.19 

 𝜏4 = 0.2036 𝓉4 = 0.1924 0.1911, 0.1937 0.00066 −5.50 
      
4 𝜏3 = 0.2439 𝓉3 = 0.2207 0.2191, 0.2223 0.00082 −9.51 
 𝜏4 = 0.2163 𝓉4 = 0.2021 0.2008, 0.2036 0.00070 −6.56 

𝑛 = 1000 

1 𝜏3 = −0.0751 𝓉3 = −0.0749 −0.0752,−0.0747 0.00011 ----- 

 𝜏4 = 0.1727 𝓉4 = 0.1726 0.1724, 0.1727 0.00007 ----- 

      
2 𝜏3 = −0.1424 𝓉3 = −0.1419 −0.1421,−0.1417 0.00011 −0.35 

 𝜏4 = 0.1788 𝓉4 = 0.1787 0.1785, 0.1788 0.00008 ----- 

      
3 𝜏3 = 0.2112 𝓉3 = 0.2104 0.2102, 0.2107 0.00014 −0.38 
 𝜏4 = 0.2036 𝓉4 = 0.2031 0.2029, 0.2033 0.00012 −0.25 
      
4 𝜏3 = 0.2439 𝓉3 = 0.2432 0.2430, 0.2435 0.00015 −0.29 
 𝜏4 = 0.2163 𝓉4 = 0.2159 0.2157, 0.2162 0.00013 −0.18 

 

 

4  𝑳-Correlations for the Dagum Distributions 

Let 𝑌𝑗  and 𝑌𝑘  be random variables with cdfs 𝐹(𝑌𝑗 )  and 𝐹(𝑌𝑘)  respectively. The 

second 𝐿-moments of 𝑌𝑗  and 𝑌𝑘  can alternatively be defined as [19] 

𝜆2 𝑌𝑗 = 2𝐶𝑜𝑣  𝑌𝑗 , 𝐹 𝑌𝑗                                                             (19) 

𝜆2 𝑌𝑘 = 2𝐶𝑜𝑣 𝑌𝑘 , 𝐹 𝑌𝑘                                                 (20) 

 

The second 𝐿-comoment of 𝑌𝑗  toward 𝑌𝑘  and 𝑌𝑘  toward 𝑌𝑗  are given as  

 

𝜆2 𝑌𝑗 , 𝑌𝑘 = 2𝐶𝑜𝑣  𝑌𝑗 , 𝐹 𝑌𝑘                                                         (21) 

𝜆2 𝑌𝑘 , 𝑌𝑗 = 2𝐶𝑜𝑣  𝑌𝑘 , 𝐹 𝑌𝑗                                              (22) 

 

The 𝐿-correlations of 𝑌𝑗  toward 𝑌𝑘  and 𝑌𝑘  toward 𝑌𝑗  are subsequently defined as: 

𝜂𝑗𝑘 =
𝜆2 𝑌𝑗 ,𝑌𝑘 

𝜆2 𝑌𝑗 
                                                                       (23) 

 

𝜂𝑘𝑗 =
𝜆2 𝑌𝑘 ,𝑌𝑗 

𝜆2 𝑌𝑘 
                                                         (24) 

 

The 𝐿-correlation given in (23) (or, 24) is bounded in the interval −1 ≤ 𝜂𝑗𝑘 ≤ 1. A 



30                                       Mohan D. Pant and Todd C. Headrick 

value of 𝜂𝑗𝑘 = 1  𝜂𝑗𝑘 = −1  implies that 𝑌𝑗  and 𝑌𝑘  have a strictly and monotonically 

increasing (decreasing) relationship. See Serfling and Xiao [19] for further details on the 

topics related to the 𝐿-correlation.  

The extension of the Dagum distributions to multivariate data generation can be achieved 

by specifying 𝑇 quantile functions as given in (2) with a specified 𝐿-correlation structure. 

Specifically, let 𝑍1, … , 𝑍𝑇 denote standard normal variables with cdfs and the joint pdf 
associated with 𝑍𝑗  and 𝑍𝑘  given by the following expressions: 

 

Φ 𝑍𝑗 =   2𝜋 −1 2 exp −𝑣𝑗
2 2  

𝑧𝑗
−∞

𝑑𝑣𝑗                                              (25) 

 

Φ 𝑍𝑘 =   2𝜋 −1 2 𝑧𝑘
−∞

exp −𝑣𝑘
2 2   𝑑𝑣𝑘                                    (26) 

 

𝑓𝑗𝑘 =  2𝜋 1 − 𝑟𝑗𝑘
2  

1 2 
 
−1

exp  − 2 1 − 𝑟𝑗𝑘
2   

−1
 𝑧𝑗

2 + 𝑧𝑘
2 − 2𝑟𝑗𝑘 𝑧𝑗 𝑧𝑘  .         (27) 

 

where 𝑟𝑗𝑘  in (27) is the intermediate Pearson correlation  IC  between 𝑍𝑗  and 𝑍𝑘 . 

Using the cdfs in (25) and (26) as zero-one uniform deviates, i.e., Φ 𝑍𝑗 ,Φ 𝑍𝑘 ~𝑈(0, 1), 

the quantile function defined in (2) can be expressed as a function of Φ 𝑍𝑗 , or Φ 𝑍𝑘  

 e. g., 𝑞𝑗  Φ 𝑍𝑗  or 𝑞𝑘 Φ 𝑍𝑘   . Thus, the 𝐿-correlation of 𝑌𝑗 = 𝑞𝑗  Φ 𝑍𝑗   toward 

𝑌𝑘 = 𝑞𝑘 Φ 𝑍𝑘   can be determined using (23) with the denominator standardized to 

𝜆2 𝑌𝑗 = 1  𝜋  for the standard normal distribution as 

 

𝜂𝑗𝑘 = 2 𝜋   𝑥𝑗  𝑞𝑗  Φ 𝑍𝑗   
∞

−∞

∞

−∞
Φ 𝑧𝑘  𝑓𝑗𝑘  𝑑𝑧𝑗𝑑𝑧𝑘 .                              (28) 

 

The variable 𝑥𝑗  𝑞𝑗  Φ 𝑍𝑗    in (28) is the standardized quantile function of (2) such 

that it has a mean of zero and 𝐿-scale equal to 𝜆2 = 1  𝜋 . That is, the quantile function 

𝑌𝑗 = 𝑞𝑗  Φ 𝑍𝑗   is standardized by a linear transformation as: 

 

𝑥𝑗  𝑞𝑗  Φ 𝑍𝑗   = 𝛿  𝑞𝑗  Φ 𝑍𝑗  − 𝜆1                                              (29) 

 

where 𝜆1 is the mean from (14) and 𝛿 is a constant that scales 𝜆2 in (15) and in the 

denominator of (23) to 1  𝜋 . Specifically, the constant 𝛿 for the Dagum family of 

distributions can be expressed as: 

 

𝛿 =
−Γ[𝑝]Γ[2𝑝]

𝑏 𝜋 Γ[1−1 𝑎 ] Γ 2𝑝 Γ 𝑝+1 𝑎  −Γ[𝑝]Γ[2𝑝+1 𝑎 ]  
.                                       (30) 

 

The next step is to use (28) to solve for the values of the 𝑇 𝑇 − 1 /2  ICs  𝑟𝑗𝑘   such 

that the 𝑇 specified Dagum distributions have their specified 𝐿-correlation structure. 

Analogously, the 𝐿-correlation of 𝑌𝑘 = 𝑞𝑘 Φ 𝑍𝑘   toward 𝑌𝑗 = 𝑞𝑗  Φ 𝑍𝑗   is given as: 

 



An 𝐿-Moment Based Characterization of the Family of Dagum Distributions        31 

𝜂𝑘𝑗 = 2 𝜋   𝑥𝑘  𝑞𝑘 Φ 𝑍𝑘   
∞

−∞

∞

−∞
Φ 𝑧𝑗   𝑓𝑗𝑘  𝑑𝑧𝑘𝑑𝑧𝑗 .                              (31) 

 

Note that in general, the 𝐿-correlation of 𝑌𝑗 = 𝑞𝑗  Φ 𝑍𝑗   toward 𝑌𝑘 = 𝑞𝑘 Φ 𝑍𝑘   in 

(28) is not equal to the 𝐿-correlation of 𝑌𝑘 = 𝑞𝑘 Φ 𝑍𝑘   toward 𝑌𝑗 = 𝑞𝑗  Φ 𝑍𝑗   in 

(31). These 𝐿-correlations are equal only when the values of shape and scale parameters 

𝑝,  𝑎, and 𝑏 associated with 𝑞𝑗  Φ 𝑍𝑗   and 𝑞𝑘 Φ 𝑍𝑘   are equal (i.e., when the two 

distributions are the same). Provided in Algorithm 1 is a source code written in 

Mathematica [21], which shows an example for computing ICs   𝑟𝑗𝑘   for the 

𝐿-correlation procedure. The steps for simulating correlated Dagum distributions with 

specified values of 𝐿-skew  𝜏3 , 𝐿-kurtosis  𝜏4 , and with specified 𝐿-correlation 

structure are given in Section 5. 

 

 

5  Monte Carlo Simulation with an Example 

The procedure for simulating Dagum distributions with specified 𝐿 -moments and 

𝐿-correlations can be summarized in the following six steps: 

1. Specify the 𝐿 -moments for 𝑇  transformations of the form in (2), i.e., 

𝑞1(Φ(𝑧1))  , … , 𝑞𝑇(Φ(𝑧𝑇))  and obtain the solutions for the shape and scale 

parameters 𝑝 ,  𝑎 , and 𝑏  by simultaneously solving the systems of equations 

(15)−(17) for the specified values of 𝐿-scale (𝜆2), 𝐿-skew (𝜏3), and 𝐿-kurtosis (𝜏4) 

for each distribution. Specify a 𝑇 × 𝑇 matrix of 𝐿-correlations (𝜂𝑗𝑘 ) for 𝑞𝑗  Φ(𝑧𝑗 )  

toward 𝑞𝑘 Φ 𝑍𝑘  , where 𝑗 < 𝑘 ∈  1, 2, … , 𝑇 . 

2. Compute the values of intermediate (Pearson) correlations (ICs), 𝑟𝑗𝑘 , by substituting 

the value of specified 𝐿-correlation (𝜂𝑗𝑘 ) and the solved values of 𝑝,  𝑎, and 𝑏 

from Step 1 into the left- and the right-hand sides of (28), respectively, and then 

numerically integrating (28) to solve for 𝑟𝑗𝑘 . See Algorithm 1 for an example. Repeat 

this step separately for all 𝑇 𝑇 − 1 2  pairwise combinations of ICs. 

3. Assemble the ICs computed in Step 2 into a 𝑇 × 𝑇 matrix and then decompose this 

matrix using Cholesky factorization. Note that this step requires the IC matrix to be 

positive definite.  
4. Use elements of the matrix resulting from Cholesky factorization of Step 3 to generate 

𝑇 standard normal variables (𝑍1, … , 𝑍𝑇) correlated at the IC levels as follows: 

 

𝑍1 = 𝑎11𝑉1    
 

𝑍2 = 𝑎12𝑉1 + 𝑎22𝑉2      

⋮ 
𝑍𝑗 = 𝑎1𝑗𝑉1 + 𝑎2𝑗𝑉2 + ⋯+ 𝑎𝑖𝑗𝑉𝑖 + ⋯+ 𝑎𝑗𝑗 𝑉𝑗       

⋮ 
𝑍𝑇 = 𝑎1𝑇𝑉1 + 𝑎2𝑇𝑉2 + ⋯+ 𝑎𝑖𝑇𝑉𝑖 + ⋯+ 𝑎𝑗𝑇𝑉𝑇 + ⋯+ 𝑎𝑇𝑇𝑉𝑇                  (32)         

 

where 𝑉1, … , 𝑉𝑇  are independent standard normal random variables and where 𝑎𝑖𝑗  is the 

element in the 𝑖 -th row and 𝑗 -th column of the matrix resulting from Cholesky 
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factorization of Step 3. 

5. Substitute 𝑍1, … , 𝑍𝑇 from Step 4 into the following Taylor series-based expansion for 

computing the cdf, Φ 𝑍𝑗  , of standard normal distribution [17]: 

 

Φ 𝑍𝑗 =  
1

2
 + 𝜙 𝑍𝑗  𝑍𝑗 +

𝑍𝑗
3

3
+

𝑍𝑗
5

 3∙5 
+

𝑍𝑗
7

 3∙5∙7 
+ ⋯                                   (33) 

 

where 𝜙 𝑍𝑗  is the pdf of standard normal distribution and the absolute error associated 

with (33) is less than 8 × 10−16 .  

6. Substitute the uniform (0, 1) variables, Φ 𝑍𝑗 , generated in Step 5 into the 𝑇 

equations of the form 𝑞𝑗  Φ(𝑧𝑗 )  in (2) to generate the Dagum distributions with 

specified values of 𝐿-skew  𝜏3 , 𝐿-kurtosis  𝜏4 , and with specified 𝐿-correlation 

structure. 
 

For the purpose of evaluating the proposed methodology and demonstrating the steps 

above, an example is subsequently provided to compare the 𝐿 -correlation-based 

procedure with the conventional product moment-based (Pearson) correlation procedure. 
Specifically, the distributions in Figure 2 are used as a basis for a comparison using the 

specified correlation matrix in Table 8. Let the four distributions in Figure 2 be 

𝑌1 = 𝑞1 Φ 𝑍1  , 𝑌2 = 𝑞2 Φ 𝑍2  , 𝑌3 = 𝑞3 Φ 𝑍3  ,  and 𝑌4 =  𝑞4 Φ 𝑍4  , obtained 

from the quantile functions from (2). Presented in Tables 9 and 10 are the intermediate 

correlations ( IC s) obtained for the conventional product moment-based (Pearson) 

correlation and 𝐿 -moment-based 𝐿 -correlation procedures, respectively, for the 

distributions in Figure 2. Provided in Algorithm 2 is a source code written in Mathematica 

[21], which shows an example for computing ICs  𝑟𝑗𝑘   for the conventional product 

moment-based (Pearson) correlation procedure. Provided in Tables 11 and 12 are the 

results of Cholesky factorization on the IC matrices in Tables 9 and 10, respectively. The 

elements of matrices in Tables 11 and 12 are used to generate 𝑍1, … , 𝑍4 correlated at the 

IC levels by making use of the formulae (32) in Step 4 with 𝑇 =  4. The values of  

𝑍1, … , 𝑍4 are then used in (33) to obtain the Taylor series-based approximations of the 

cdfs Φ 𝑍1 , Φ 𝑍2 , Φ 𝑍3 , and Φ 𝑍4 , which are treated as uniform (0, 1) variables. 

These uniform variables are used in (2) to obtain the quantile functions 𝑞1 Φ 𝑍1  ,

𝑞2 Φ 𝑍2  ,  𝑞3 Φ 𝑍3  , and  𝑞4 Φ 𝑍4   to generate the four distributions in Figure 2 

that are correlated at the specified correlation level of Table 8.  

For the Monte Carlo simulation, a Fortran [18] algorithm was written for both procedures 

to generate 25,000 independent sample estimates for the specified parameters of (a) 

conventional product moment-based (Pearson) correlation ( 𝜌𝑗𝑘 ), and (b) 

𝐿-moment-based 𝐿-correlation (𝜂𝑗𝑘 ) based on samples of sizes 𝑛 =  25  and 𝑛 =

 1000. The estimate for 𝜌𝑗𝑘  was based on the usual formula for the Pearson correlation 

statistic. The estimate of  𝜂𝑗𝑘  was computed by substituting (19) and (21) into (23), 

where the empirical forms of the cdfs were used in (19) and (21). The sample estimates 

𝜌𝑗𝑘  and 𝜂𝑗𝑘  were both transformed using Fisher’s 𝑧′  transformations. Bias-corrected 

accelerated bootstrapped average estimates (Estimate), 95% bootstrap confidence 

intervals (95% Bootstrap C. I.), and standard errors (St. Error) were obtained for the 

estimates associated with the parameters  𝑧 𝜌𝑗𝑘  
′   and 𝑧 𝜂𝑗𝑘  

′   using 10,000 resamples via 
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the commercial software package Spotfire S+ [20]. The bootstrap results associated with 

the estimates of  𝑧 𝜌𝑗𝑘  
′  and  𝑧 𝜂𝑗𝑘  

′  were transformed back to their original metrics. 

Further, if a parameter was outside its associated 95% bootstrap C.I., then the percentage 
of relative bias (RB%) was computed for the estimate as in (18). The results of this 

simulation are presented in Tables 13 and 14, and are discussed in Section 6.  

  
 

Table 8: Specified correlation matrix for the conventional moment- and 𝐿-moment-based 

procedures for the four distributions in Figure 2. 

Dist. 1 2 3 4 

1 1.00    

2 0.85 1.00   

3 0.80 0.75 1.00  

4 0.70 0.70 0.75 1.00 

 
 

Table 9: Intermediate correlation matrix for the conventional moment-based procedure for 

the four distributions in Figure 2. 

Dist. 1 2 3 4 

1 1.00    

2 0.858484 1.00   

3 0.891443 0.873067 1.00  

4 0.802731 0.841130 0.791261 1.00 

 

 

Table 10: Intermediate correlation matrix for the 𝐿-moment-based procedure for the four 
distributions in Figure 2. 

Dist. 1 2 3 4 

1 1.00    

2 0.844768 1.00   

3 0.793668 0.742009 1.00  

4 0.692277 0.691379 0.737035 1.00 
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Table 11: Matrix obtained from Cholesky factorization of the intermediate correlation 

matrix in Table 9. 

𝑎11 = 1.00 𝑎12 = 0.858484 𝑎13 = 0.891443 𝑎14 = 0.802731 

𝑎21 = 0.00 𝑎22 = 0.512841 𝑎23 = 0.210157 𝑎24 = 0.296384 

𝑎31 = 0.00 𝑎32 = 0.00 𝑎33 = 0.401451 𝑎34 = 0.033341 

𝑎41 = 0.00 𝑎42 = 0.00 𝑎43 = 0.00 𝑎44 = 0.516398 

 

 

 

Table 12: Matrix obtained from Cholesky factorization of the intermediate correlation 
matrix in Table 10. 

𝑎11 = 1.00 𝑎12 = 0.844768 𝑎13 = 0.793668 𝑎14 = 0.692277 

𝑎21 = 0.00 𝑎22 = 0.535133 𝑎23 = 0.133693 𝑎24 = 0.199139 

𝑎31 = 0.00 𝑎32 = 0.00 𝑎33 = 0.593479 𝑎34 = 0.271237 

𝑎41 = 0.00 𝑎42 = 0.00 𝑎43 = 0.00 𝑎44 = 0.638378 

 

  

6  Discussion and Conclusion 

One of the advantages that 𝐿 -moments have over conventional moments can be 

expressed in the context of estimation. The 𝐿-moment-based estimators of 𝐿-skew and 

𝐿-kurtosis can be far less biased than the conventional moment-based estimators of skew 

and kurtosis when samples are drawn from the distributions with more severe departures 
from normality [3, 4-7, 9-11, 15, 19]. Inspection of the simulation results in Tables 6 and 

7 clearly indicates that this is the case for the Dagum distributions. That is, the superiority 

that estimates of 𝐿 -moment ratios ( 𝜏3  and 𝜏4 ) have over their corresponding 

conventional moment-based estimates of skew and kurtosis (𝛾3  and 𝛾4) is obvious. For 

example, for samples of size 𝑛 =  25, the estimates of 𝛾3  and 𝛾4  for distribution 4 

were, on average, 29.85% and 0.51% of their associated parameters, whereas the 

estimates of 𝜏3 and 𝜏4 were 90.49% and 93.44% of their associated parameters. This 

advantage of 𝐿-moment-based estimates can also be expressed by comparing their 

relative standard errors (RSEs), where RSE = {(St. Error/Estimate) × 100}. Comparing 

Tables 6 and 7, it is evident that the estimates of 𝜏3 and 𝜏4 are more efficient as their 

RSEs are considerably smaller than the RSEs associated with the conventional 

moment-based estimates of 𝛾3  and 𝛾4 . For example, in terms of distribution 4 in Figure 

2, inspection of Tables 6 and 7 (for 𝑛 =  1000), indicates that RSE measures of: 

RSE  𝓉3 = 0.061% and RSE  𝓉4 = 0.060% are considerably smaller than the RSE 

measures of: RSE  𝑔3 = 0.374% and RSE  𝑔4 = 1.102%. This demonstrates that the 

estimates of 𝐿-skew and 𝐿-kurtosis have more precision because they have less variance 

around their bootstrapped estimates.  

Another advantage of 𝐿-moments can be highlighted in the context of distribution fitting. 



An 𝐿-Moment Based Characterization of the Family of Dagum Distributions        35 

Comparison of the two distributions in Figure 3 (a) and (b) clearly indicates that 

𝐿-moment-based Dagum distributions provide a better fit to the theoretical distributions 
compared with their conventional moment-based counterparts. In the context of fitting 

real-world data, the 𝐿-moment-based Dagum distribution in Figure 4 (b) provides a better 

fit to the Poverty rate of 5- to 17-year olds (𝑛 =  533) data than the conventional 

moment-based Dagum distribution in Figure 4 (a). 
Presented in Tables 13 and 14 are the simulation results of conventional product 

moment-based (Pearson) correlations and 𝐿-moment-based 𝐿-correlations, respectively. 

Overall inspection of these tables indicates that the 𝐿-correlation is superior to Pearson 

correlation in terms of relative bias. For example, for 𝑛 =  25, the percentage of relative 

bias for the two distributions, distribution 2 and distribution 4, in Figure 2 was  9.10% 

for the Pearson correlation compared with only 1.12% for the 𝐿-correlation. It is also 

noted that the variability associated with bootstrapped estimates of 𝐿-correlation appears 
to be more stable than that of the bootstrapped estimates of Pearson correlation both 

within and across different conditions.  

In summary, the new 𝐿-moment-based procedure is an attractive alternative to the more 

traditional conventional moment-based procedure in the context of Dagum distributions. 

In particular, the 𝐿-moment-based procedure has distinct advantages when distributions 

with large departures from normality are used. Finally, we note that Mathematica [21] 

source codes are available from the authors for implementing both the conventional 

moment- and 𝐿-moment-based procedures. 

 

Table 13: Correlation results for the Conventional moment procedure 

A. 𝑛 = 25 

Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝜌12 = 0.85 0.8578 (0.8571, 0.8586) 0.00141 0.92 

𝜌13 = 0.80 0.8440 (0.8433, 0.8446) 0.00111 5.50 

𝜌14 = 0.70 0.7531 (0.7521, 0.7541) 0.00115 7.59 

𝜌23 = 0.75 0.8037 (0.8031, 0.8046) 0.00104 7.16 

𝜌24 = 0.70 0.7637 (0.7629, 0.7647) 0.00105 9.10 

𝜌34 = 0.75 0.7849 (0.7837, 0.7863) 0.00174 4.65 

B. 𝑛 = 1000 

Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝜌12 = 0.85 0.8500 (0.8499, 0.8502) 0.00022 ----- 

𝜌13 = 0.80 0.8055 (0.8052, 0.8058) 0.00038 0.69 

𝜌14 = 0.70 0.7073 (0.7070, 0.7076) 0.00034 1.04 

𝜌23 = 0.75 0.7559 (0.7556, 0.7562) 0.00034 0.79 

𝜌24 = 0.70 0.7081 (0.7077, 0.7085) 0.00037 1.16 

𝜌34 = 0.75 0.7551 (0.7547, 0.7555) 0.00043 0.68 
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Table 14: Correlation results for the 𝐿-moment procedure. 

A. 𝑛 = 25 

Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝜂12 = 0.85 0.8565 (0.8556, 0.8572) 0.00149 0.76 

𝜂13 = 0.80 0.8072 (0.8061, 0.8081) 0.00147 0.90 

𝜂14 = 0.70 0.7087 (0.7072, 0.7101) 0.00147 1.24 

𝜂23 = 0.75 0.7584 (0.7572, 0.7596) 0.00148 1.12 

𝜂24 = 0.70 0.7078 (0.7064, 0.7093) 0.00148 1.12 

𝜂34 = 0.75 0.7560 (0.7547, 0.7573) 0.00152 0.80 

B. 𝑛 = 1000 

Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝜂12 = 0.85 0.8500 (0.8499, 0.8501) 0.00021 ----- 

𝜂13 = 0.80 0.8001 (0.7999, 0.8002) 0.00021 ----- 

𝜂14 = 0.70 0.7002 (0.6999, 0.7004) 0.00021 ----- 

𝜂23 = 0.75 0.7500 (0.7498, 0.7502) 0.00021 ----- 

𝜂24 = 0.70 0.7001 (0.6998, 0.7003) 0.00022 ----- 

𝜂34 = 0.75 0.7500 (0.7498, 0.7502) 0.00023 ----- 

 

(* Intermediate Correlation *) 

𝑟12 = 0.844768; 

 

Needs[―MultivariateStatistics`‖] 

𝑓12 = PDF[MultinormalDistribution[{0, 0}, {{1, 𝑟12}, {𝑟12 , 1}}], {𝑍1, 𝑍2}]; 

Φ1 = CDF[NormalDistribution[0, 1], 𝑍1]; 

Φ2 = CDF[NormalDistribution[0, 1], 𝑍2]; 

 
(* Parameters for distribution 1 in Figure 2 *) 

𝑝1= 0.520053; 

𝑎1= 42.352031; 

𝑏1= 5.136684; 
 

𝜆1 = 4.991085; 
𝛿1 = 3.571456; 
 
(* Quantile function from equation (2) *) 

𝑦1 = 𝑏1 ∗  Φ1
 −1 𝑝1  − 1 

 −1 𝑎1  
; 

 

(* Standardizing constants 𝜆1 and 𝛿1 were obtained, respectively, from equations (14) 

and (30) *) 

𝑥1 = 𝛿1 ∗ (𝑦1 − 𝜆1); 

 

(* Compute the specified 𝐿-correlation *) 

𝜂12 = 2 𝜋 ∗ NIntegrate[ 𝑥1 ∗ Φ2 ∗ 𝑓12 , { 𝑍1 , − 8, 8},  { 𝑍2 , − 8, 8}, Method → 

―MultiDimensionalRule‖]  

 

0.85 



An 𝐿-Moment Based Characterization of the Family of Dagum Distributions        37 

Algorithm 1: Mathematica source code for computing intermediate correlations for 

specified 𝐿-correlations. The example is for distribution 𝑗 = 1 toward distribution 𝑘 = 2 

(𝜂12 ). See distributions 1 and 2 in Figure 2, specified correlation in Table 8, and 
intermediate correlation in Table 10. 

 

(* Intermediate Correlation *) 

𝑟12 = 0.858484; 

 
Needs[―MultivariateStatistics`‖] 

𝑓12 = PDF[MultinormalDistribution[{0, 0}, {{1, 𝑟12}, {𝑟12 , 1}}], {𝑍1, 𝑍2}]; 

Φ1 = CDF[NormalDistribution[0, 1], 𝑍1]; 

Φ2 = CDF[NormalDistribution[0, 1], 𝑍2]; 

 

(* Parameters for distributions 1 and 2 in Figure 2 *) 

𝑝1 = 0.520053; 

𝑎1 = 42.352031; 

𝑏1 = 5.136684; 

 

𝑝2 = 0.392499; 

𝑎2 = 118.294929; 

𝑏2 = 11.632513; 

 
(* Quantile functions from equation (2) *) 

𝑦1 = 𝑏1 ∗  Φ1
 −1 𝑝1  − 1 

 −1 𝑎1  
 

𝑦2 = 𝑏2 ∗  Φ2
 −1 𝑝2  − 1 

 −1 𝑎2  
; 

(* Standardizing constants 𝜇1  and 𝜇2  are obtained from equation (A.6) from the 

Appendix and 𝜍 = 1  12  *) 

𝑥1 = (𝑦1 − 𝜇1)/𝜍; 

𝑥2 = (𝑦2 − 𝜇2)/𝜍; 

 

(* Compute the specified conventional product moment-based (Pearson) correlation *) 

𝜌12 =  NIntegrate[ 𝑥1 ∗ 𝑥2 ∗ 𝑓12 , { 𝑍1 , − 8, 8}, { 𝑍2 , − 8, 8}, Method → 

―MultiDimensionalRule‖] 

 

0.85 
Algorithm 2: Mathematica source code for computing intermediate correlations for 

specified conventional product moment-based (Pearson) correlations. The example is for 

distribution 𝑗 = 1 and distribution 𝑘 = 2 (𝜌12 ). See distributions 1 and 2 in Figure 2, 

specified correlation in Table 8, and intermediate correlation in Table 9. 
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Appendix 
Conventional Moment-Based System of Equations for Dagum Distributions 
 

The conventional (product) moments associated with Dagum distributions can be obtained 

from: 

 

𝜇𝑟 =  𝑥𝑟𝑓 𝑥 𝑑𝑥 =
𝑏𝑟Γ 1 − 𝑟 𝑎  Γ 𝑝 + 𝑟 𝑎  

Γ 𝑝 

∞

0

 
(A.1) 

 

The mean  𝜇 , standard deviation  𝜍 , skew  𝛾3 , and kurtosis  𝛾4  are defined as in [8] 
  

𝜇 = 𝜇1 (A.2) 

𝜍 =  𝜇2 − 𝜇1
2  

(A.3) 

𝛾3 =  𝜇3 − 3𝜇2𝜇1 + 2𝜇1
3 𝜍3  (A.4) 

𝛾4 =  𝜇4 − 4𝜇3𝜇1 − 3𝜇2
2 + 12𝜇2𝜇1

2 − 6𝜇1
4 𝜍4 . (A.5) 

 

In terms of conventional moments, the 𝑟-th moment exists only if 𝑎 > 𝑟. Suppose that the 

first four  𝑟 = 4  moments exist, then the conventional moment-based mean  𝜇 , 

standard deviation  𝜍 , skew  𝛾3 , and kurtosis  𝛾4  for the Dagum distribution are 

obtained using equations (A.1)-(A.5) as: 

 

𝜇 =  𝑏Γ 1 − 1 𝑎  Γ 𝑝 + 1 𝑎   Γ 𝑝   (A.6) 

𝜍 =
𝑏  Γ 𝑝 Γ 1 − 2 𝑎  Γ 𝑝 + 2 𝑎  − Γ 1 − 1 𝑎  2Γ 𝑝 + 1 𝑎  2 

Γ 𝑝 
  

(A.7) 

𝛾3 =  2Γ 1 − 1 𝑎  3  Γ 𝑝 + 1 𝑎  3 + Γ 𝑝 2Γ 1 − 3 𝑎  Γ 𝑝 + 3 𝑎  − 
             3Γ 𝑝 Γ 1 − 1 𝑎  Γ 𝑝 + 1 𝑎  Γ 1 − 2 𝑎  Γ 𝑝 + 2 𝑎   / 

             Γ 𝑝 Γ 1 − 2 𝑎  Γ 𝑝 + 2 𝑎  − Γ 1 − 1 𝑎  2Γ 𝑝 + 1 𝑎  2 3 2  

(A.8) 

𝛾4 = {Γ 𝑝 2 Γ 𝑝 Γ 1 − 4 𝑎  Γ 𝑝 + 4 𝑎  − 3Γ 1 − 2 𝑎  2Γ 𝑝 + 2 𝑎  2 − 

           4Γ 𝑝 2Γ 1 − 1 𝑎  Γ 𝑝 + 1 𝑎  Γ 1 − 3 𝑎  Γ 𝑝 + 3 𝑎  + 

           12Γ 𝑝 Γ 1 − 2 𝑎  Γ 𝑝 + 2 𝑎  Γ 1 − 1 𝑎  2Γ 𝑝 + 1 𝑎  2 − 

           6Γ 1 − 1 𝑎  4Γ 𝑝 + 1 𝑎  4}/ 

            Γ 𝑝 Γ 1 − 2 𝑎  Γ 𝑝 + 2 𝑎  − Γ 1 − 1 𝑎  2Γ 𝑝 + 1 𝑎  2 2. 

(A.9) 

 

Thus, for given values of standard deviation  𝜍 , skew  𝛾3 , and kurtosis  𝛾4  associated 

with Dagum distribution, equations (A.7)-(A.9) can be used to simultaneously solve for the 

values of parameters 𝑝 , 𝑎 , and 𝑏 . The solved values of 𝑝 , 𝑎 , and 𝑏  can then be 

substituted into equation (A.6) to determine the value of mean.    


