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solving a near-field inverse

acoustic scattering problem

C.E. Athanasiadis1, E.S. Athanasiadou2 and I. Arkoudis3

Abstract

The scattering problem of time-harmonic acoustic plane waves by
a two-layered object consisting of a penetrable triaxial ellipsoid with a
soft confocal ellipsoidal core is considered. A low-frequency formulation
of the direct scattering problem as well as a Rayleigh approximation is
described. Considering near-field data, an inverse acoustic scattering
problem is formulated and studied. A finite number of measurements of
the leading order term of the scattered field in low-frequency approxima-
tion leads to specify the semi-axes of the ellipsoids. The orientation of
the ellipsoids is obtained by using the Euler angles. Solving a near-field
inverse acoustic scattering problem for the ellipsoids gives results that
can also be used for spheroids, spheres, needles and discs, considering
them as geometrically degenerate cases of the ellipsoid for appropriate
values of the physical and geometrical parameters.
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1 Introduction

The inverse scattering theory is of great importance since it has many

applications in medical imaging, detection of buried and underwater objects

and geological studies. An ellipsoid can be considered as a good approximation

of many objects such as spheres, needles and spheroids. Therefore, the study

of inverse scattering problems for ellipsoids is significant. In these problems

all we need to specify are the three semi-axes as well as the three Euler angles

that fix the position of the principal axes of the ellipsoid.

The case of scattering by a triaxial ellipsoid was studied by Rayleigh in

[14]. The inverse scattering problem for an acoustically soft ellipsoid was first

studied by Dassios [7] using far-field data. In particular, in this method the size

and the orientation of the ellipsoids may be obtained from a finite number of

measurements of the leading order term in the low-frequency expansion of the

far-field pattern. Later, the cases of the rigid [13] and the penetrable ellipsoid

[11] for acoustic scattering problems as well as the ellipsoidal perfect conductor

[12] and the dielectric ellipsoid [3] for electromagnetic scattering problems were

also studied.

In the present paper, we extend this method for the case of a penetrable tri-

axial ellipsoid with an acoustically soft confocal ellipsoidal core using near-field

data. In near-field inverse scattering problems we use the scattered field and

therefore we can avoid the computations of the far-field pattern. Specifically,

in this paper, we use the zeroth and the first low-frequency approximations of

the low-frequency expansion of the scattered field [6] to specify the orientation

and the size of such an ellipsoid.

In section 2 we formulate the direct scattering problem for a penetrable el-

lipsoid with an acoustically soft confocal core. In section 3 we study the inverse

scattering problem by constructing a measurement matrix whose elements are

given in terms of measurements taken at four different points for three dif-

ferent directions of propagation and whose eigenvalues and eigenvectors hold

information about the orientation and the size of the ellipsoid. In section 4 we

study a modified method in the case that the semi-focal distances are known.
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In section 5 we study a physically degenerate form of this problem which is

the acoustically soft ellipsoid. Finally, in section 6 we study the sphere and

the needle as geometrically degenerate forms of the ellipsoid.

2 The direct problem

The layered ellipsoid consists of many surfaces of confocal ellipsoids. In

this paper we shall describe the proposal method for the case of a two-layered

ellipsoid. The same steps are followed for the case of many layers. In particular,

we consider the acoustically penetrable ellipsoid with a soft confocal ellipsoid

which is the core of the scatterer (Figure 1).

Figure 1:

The surface of the penetrable ellipsoid centered at the origin with principal

semi-axes αn along the axes xn has the equation:

S0 :
3∑

n=1

x2
n

α2
n

= 1 , (1)

where α1 > α2 > α3 > 0. The surface of the ellipsoidal acoustically soft core

centered at the origin with principal semi-axes βn along the axes xn has the
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equation:

S1 :
3∑

n=1

x2
n

β2
n

= 1 , (2)

where β1 > β2 > β3 > 0 with αn > βn for n = 1, 2, 3. The semi-interfocal

distances h1, h2, h3 satisfy the following relations:

h2
1 = α2

2 − α2
3 = β2

2 − β2
3 ,

h2
2 = α2

1 − α2
3 = β2

1 − β2
3 ,

h2
3 = α2

1 − α2
2 = β2

1 − β2
2 .

(3)

The ellipsoidal coordinates (ρ, µ, ν) are related to the cartesian coordinates

(x1, x2, x3) by the relations:

x1 =
h1

h1h2h3

ρµν ,

x2 =
h2

h1h2h3

[(
ρ2 − h2

3

) (
µ2 − h2

3

) (
h2

3 − ν2
)]1/2

,

x3 =
h3

h1h2h3

[(
ρ2 − h2

2

) (
h2

2 − µ2
) (

h2
2 − ν2

)]1/2
,

(4)

where

−h3 ≤ ν ≤ h3 ≤ µ ≤ h2 ≤ ρ < +∞ . (5)

In the ellipsoidal coordinate system, the surface S0 is defined by ρ = α1 and

the surface S1 by ρ = β1. The region D0 (exterior of S0) is defined by ρ > α1

and the region D1 (between the surfaces S0 and S1) by β1 < ρ < α1.

A time-harmonic acoustic plane wave

ui(r; d̂) = eik0d̂·r , (6)

is incident upon the layered ellipsoid. The unitary vector d̂ is the direction of

propagation, r is the observation vector and k0 is the wave number in D0.

The total fields u0 in D0 and u1 in D1 satisfy the Helmholtz equation:

∆u0 + k2
0u

0 = 0 in D0 , (7)

∆u1 + k2
1u

1 = 0 in D1 . (8)

We note that k1 = ηk0 is the wave number in D1 with η the relative index

of refraction. On the surface S0 the following transmission conditions are
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satisfied:

u0 = u1 on S0,

∂u0

∂n
=

ρ0

ρ1

∂u1

∂n
on S0. (9)

where ρj the mass densities in Dj for j = 0, 1 and n̂ the outward unit normal

vector on S0.

Also, on the surface of the soft core the following boundary condition is

satisfied:

u1 = 0 on S1. (10)

The total exterior field satisfy:

u0 = ui + us in D0, (11)

where the scattered field us is assumed to satisfy the Sommerfeld radiation

condition:

lim
r−→∞

r

(
∂us

∂r
− ik0u

s

)
= 0, (12)

with r = |r|. Let the vector r as well as the unitary vectors r̂ and d̂ as follows:

r =
3∑

n=1

xnx̂n = (x1, x2, x3) , r̂ =
3∑

n=1

onx̂n = (o1, o2, o3) , d̂ =
3∑

n=1

inx̂n = (i1, i2, i3)

(13)

The low-frequency expansions of the incident and total fields are given by:

ui(r) =
∞∑

n=0

(ik)n

n!
(d̂ · r)n , (14)

u0(r) =
∞∑

n=0

(ik)n

n!
u0

n(r) in D0, (15)

u1(r) =
∞∑

n=0

(ik)n

n!
u1

n(r) in D1, (16)

where k = k0. In D1 the relative index of refraction η is absorbed in the low-

frequency coefficient u1
n (independent of k).

Replacing the fields u0 and u1 with their low- frequency expansions in the
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Helmholtz equation and the boundary conditions that each of them respec-

tively satisfy in our problem, we obtain the following sequence of mixed bound-

ary value problems for the low-frequency coefficients:

∆u0
n (r) = n(n− 1)u0

n−2 (r) , r ∈ D0

∆u1
n (r) = n(n− 1)η2u1

n−2 (r) , r ∈ D1

u0
n (r) = u1

n (r) , r ∈ S0

∂u0
n (r)

∂n
=

ρ0

ρ1

∂u1
n (r)

∂n
, r ∈ S0

u1
n (r) = 0 , r ∈ S1

, (17)

Similarly, the low-frequency expansion of the scattered field has the form:

us(r) =
∞∑

n=0

(ik)n

n!
us

n(r) = us
0(r) + ikus

1(r) + O(k2) , (18)

with us
n the low-frequency coefficients. The first two coefficients are [6]:

us
0(r) = − ζ

H0
I0(ρ) , (19)

us
1(r; d̂) =

ζ

H0

(
ζ

H0
I0(ρ)− 1

)
+

3∑
n=1

[
I1
n(ρ)

I1
n(α1)

(
I1
n(α1)− I1

n(β1)

H1
n

− 1

)]
inxn ,

(20)

where

H0 = I0(β1) + (ζ − 1)I0(α1) ,

H1
n = (ζ − 1)α1α2α3I

1
n(α1)

[
I1
n(α1)− I1

n(β1)
]
−
[
(ζ − 1)I1

n(α1) + I1
n(β1)

]
,

with ζ = ρ0/ρ1 , I0 the elliptic integral of degree 0 and I1
n the elliptic integral

of degree 1 and order n = 1, 2, 3, given by

I0(ρ) =

∫ ∞

ρ

du

[(u2 − h2
2) (u2 − h2

3)]
1/2

,

I1
n(ρ) =

∫ ∞

ρ

du

(u2 − α2
1 + α2

n) [(u2 − h2
2) (u2 − h2

3)]
1/2

.

The relation (20) can be written in the form:

us
1(r; d̂) = τ +

3∑
n=1

inWnxn = τ + d̂T Wr (21)
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where

W = diag(Wn) , Wn =
I1
n(ρ)

I1
n(α1)

(
I1
n(α1)− I1

n(β1)

H1
n

− 1

)
,

τ =
ζ

H0

(
ζ

H0
I0(ρ)− 1

)
(22)

3 The inverse problem

For the inverse problem we will use the zeroth and first low-frequency

coefficients of the scattered field us. We consider two cartesian systems with

the same origin and their corresponding orthonormal bases {x̂1, x̂2, x̂3} and

{x̂′1, x̂′2, x̂′3}. The system {x̂1, x̂2, x̂3} coincides with the principal directions

of the unknown ellipsoids while the system {x̂′1, x̂′2, x̂′3} is a known reference

system. In order to specify the orientation and the size of the ellipsoid we

will transform the system {x̂′1, x̂′2, x̂′3} to the {x̂1, x̂1, x̂3}. To achieve this

transformation we will use the orthogonal rotation matrix P whose elements

are given in terms of the Euler angles (α, β, γ) (Figure 2) as follows [16]:

P =

 cosα cosγ − cosβ cosα sinγ sinα cosγ + cosβ cosα sinγ sinβ sinγ

−cosα sinγ − cosβ sinα cosγ −sinα sinγ + cosβ cosα cosγ sinβ cosγ

sinβ sinα −sinβ cosα cosβ


(23)

Figure 2:
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Therefore vectors r, d̂ satisfy the following rotation relations:

r = (x1, x2, x3) = P (x′1, x
′
2, x

′
3) = Pr′ ,

d̂ = (i1, i2, i3) = P (i′1, i
′
2, i

′
3) = P d̂′ .

(24)

Applying rotation (24) to (21) we obtain the following:

us
1(r

′; d̂′) = τ + d̂′T P T WPr′ . (25)

Our method starts by taking a point r′1 = (x′1, x
′
2, x

′
3) with ellipsoidal coordi-

nates (ρ0, µ0, ν0), ρ0 > α1, x′n 6= 0, n = 1, 2, 3. Also we consider the points:

r′2 = (x′1,−x′2,−x′3) , r′3 = (−x′1, x
′
2,−x′3) , r′4 = (−x′1,−x′2, x

′
3) ,

(26)

which belong on the surface of the ellipsoid ρ = ρ0 since they are symmetric

to r′1 over the principal axes of the reference system ([16] p. 9). We take

measurements at r′1, r
′
2, r

′
3, r

′
4 for the directions of propagation:

d̂′1 = x̂′1 , d̂′2 = x̂′2 , d̂′3 = x̂′3 . (27)

Specifically, we take five measurements at r′1, one for the zeroth coefficient

of the low-frequency expansion of the scattered field and four for the first

coefficient, one for each of the directions of propagation d̂′1, d̂
′
2, d̂

′
3,−d̂′1. Next

we take for the first coefficient three measurements at r′2 for the directions of

propagation d̂′1, d̂
′
2, d̂

′
3, two measurements at r′3 for d̂′2, d̂

′
3 and one at r′4 for

d̂′3. Therefore the measurements are:

m0 = us
0 (r′1) = − ζ

H0
I0(ρ0) ,

m1 = us
1(r

′
1; d̂

′
1) = τ + x′1P

T
1 WP1 + x′2P

T
1 WP2 + x′3P

T
1 WP3 ,

m2 = us
1(r

′
1; d̂

′
2) = τ + x′1P

T
2 WP1 + x′2P

T
2 WP2 + x′3P

T
2 WP3 ,

m3 = us
1(r

′
1; d̂

′
3) = τ + x′1P

T
3 WP1 + x′2P

T
3 WP2 + x′3P

T
3 WP3 ,

m4 = us
1(r

′
2; d̂

′
1) = τ + x′1P

T
1 WP1 − x′2P

T
1 WP2 − x′3P

T
1 WP3 ,

m5 = us
1(r

′
2; d̂

′
2) = τ + x′1P

T
2 WP1 − x′2P

T
2 WP2 − x′3P

T
2 WP3 ,

m6 = us
1(r

′
2; d̂

′
3) = τ + x′1P

T
3 WP1 − x′2P

T
3 WP2 − x′3P

T
3 WP3 ,

m7 = us
1(r

′
3; d̂

′
2) = τ − x′1P

T
2 WP1 + x′2P

T
2 WP2 − x′3P

T
2 WP3 ,

m8 = us
1(r

′
3; d̂

′
3) = τ − x′1P

T
3 WP1 + x′2P

T
3 WP2 − x′3P

T
3 WP3 ,

m9 = us
1(r

′
4; d̂

′
3) = τ − x′1P

T
3 WP1 − x′2P

T
3 WP2 + x′3P

T
3 WP3 ,

m10 = us
1(r

′
1;−d̂′1) = τ − x′1P

T
1 WP1 − x′2P

T
1 WP2 − x′3P

T
1 WP3 ,

(28)
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where Pi = P x̂i is the ith column of matrix P and PT
i = (P x̂i)

T the ith row

of P T for i = 1, 2, 3.

We note that τ = τ(ρ0) =
m1 + m10

2
. Since W is diagonal we obtain the

following relation:

PT
i WPj = PT

j WPi , 1 ≤ i, j ≤ 3 (29)

Next we construct the measurement matrix M whose elements are Mij =

PT
i WPj and from (28)-(29) can be written in terms of the measurements ml

for l = 1, ..., 10 as follows:

M =


m1+m4−(m1+m10)

2x′
1

m2+m5−(m1+m10)
2x′

1

m3+m6−(m1+m10)
2x′

1

m2+m5−(m1+m10)
2x′

1

m2+m7−(m1+m10)
2x′

2

m3+m8−(m1+m10)
2x′

2

m3+m6−(m1+m10)
2x′

1

m3+m8−(m1+m10)
2x′

2

m3+m9−(m1+m10)
2x′

3

 .

From the set of equations and matrices (28)-(29) it is concluded:

P T WP = M (31)

Since the matrix P is orthogonal:

W = PMP T , (32)

which is an orthogonal similarity relation between the measurement matrix M

and the diagonal matrix W .

The measurement matrix M is real and symmetric, it has three real eigen-

values λ1, λ2, λ3 and three corresponding orthogonal eigenvectors v1,v2,v3.

Therefore based on the orthogonal similarity relation, we conclude that for

n = 1, 2, 3:

λn = Wn ,

vn = (Pn1, Pn2, Pn3) ,
(33)

where Pn1, Pn2, Pn3 are the elements of the nth row of matrix P . From the

three orthogonal eigenvectors v1,v2,v3 we can specify the Euler angles from

the elements of the rotation matrix P by using the following relations [16] :

α = sin−1

(√
1− P 2

33

)
, β = sin−1

(
P13√

1− P 2
33

)
, γ = sin−1

(
P31√

1− P 2
33

)
.

(34)
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These angles show the orientation of the ellipsoid.

From the system of equations (32) that connect the eigenvalues λn with the

elements Wn for n = 1, 2, 3 we obtain:

λn =
I1
n(ρ0)

I1
n(α1)

(
I1
n(α1)− I1

n(β1)

H1
n

− 1

)
. (35)

Also we have the following relations for our system:

m0 = us
0 (r′1) = − ζ

H0
I0(ρ0) ,

m1 + m10

2
= τ(ρ0) =

ζ

H0

(
ζ

H0
I0(ρ0)− 1

)
.

(36)

Based on relation (3) we only need to determine four out of the six semi-axes

αn, βn and ρ0 as an unknown ellipsoidal component. Therefore the system

(34)-(35) contains information for the semi-axes as well as for ρ0.

Summarizing this near-field method consists of the following steps:

(i) Assuming that the center of the ellipsoid is known, rotate the known ref-

erence system to the system which coincides with the principal axes of the

unknown ellipsoid.

(ii) Consider an arbitrary point r′1 = (x′1, x
′
2, x

′
3) in the exterior region with

unknown ellipsoidal coordinates (ρ0, µ0, ν0), where ρ0 > α1 and x′n 6= 0, n =

1, 2, 3.

(iii) Take three points r′2 = (x′1,−x′2,−x′3), r
′
3 = (−x′1, x

′
2,−x′3), r

′
4 = (−x′1,−x′2, x

′
3)

which are symmetric to r′1 over the three principal axes x′1,x
′
2,x

′
3.

(iv) Assuming that we can isolate the coefficients us
0 and us

1 of the low-frequency

expansion of the scattered field (18) take a measurement at one of these four

points for an arbitrary direction of propagation for the zeroth coefficient of the

scattered field.

(v) Take measurements at the four points for the first coefficient of the scat-

tered field. In particular, take three measurements at each of the points r′1 and

r′2 for directions of propagation d̂′1, d̂
′
2, d̂

′
3 along the three principal axes of the

reference system, two measurements at r′3 for d̂′2, d̂
′
3 and one measurement at

r′4 for d̂′3. We note that we could also use other combinations of points and

directions.

(vi) Take a measurement at one of these four points for a backward direction

of propagation along one of the axes.
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(vii) Construct a measurement matrix using the previous measurements and

calculate its eigenvalues and its eigenvectors.

(viii) Use the eigenvectors to determine the orientation of the ellipsoid via the

Euler angles.

(ix) Use the eigenvalues to determine the semi-axes and if it is needed the

measurement of the zeroth coefficient.

4 A Modified Method

In the special case that the semi-focal distances h2, h3 are known, the pre-

vious method can be modified in the following one which can give additionally

information for material properties contained in ζ. We could also use step by

step the method of section 3 but we simplify it in order to reduce the amount

of measurements.

On the reference system we take an auxiliary ellipsoid of measurements big

enough so that it contains the unknown ellipsoid. The surface of this ellipsoid

is:

S2 :
3∑

n=1

x′2n
γ2

n

= 1 , (37)

where γ1 > γ2 > γ3 its semi-axes and γn > αn for n = 1, 2, 3.

We take six measurements for the first coefficient of the low-frequency expan-

sion of the scattered field on the surface S2 at the following points:

r′1 = (γ1, 0, 0) , r′2 = (0, γ2, 0) , r′3 = (0, 0, γ3) , (38)

for three different directions of propagation:

d̂′1 = x̂′1 , d̂′2 = x̂′2 , d̂′3 = x̂′3 . (39)

Specifically, we take three measurements at r′1 for directions of propagation

d̂′1, d̂
′
2, d̂

′
3, two measurements at r′2 for directions of propagation d̂′2, d̂

′
3 and

one measurement at r′3 for direction of propagation d̂′3.

Also, we take a measurement at r′1 for the zeroth coefficient as well a mea-

surement at r′1 for direction of propagation −d̂′1 for the first coefficient. Since

the points r′1, r
′
2, r

′
3 are on surface S2, their corresponding ellipsoidal coordi-

nates will all have ρ = γ1 which can also be verified from (4). Therefore the
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measurements will be:

m0 = us
0 (r′1) = − ζ

H0
I0(γ1) ,

m1 = us
1(r

′
1; d̂

′
1) = τ + γ1P

T
1 WP1 ,

m2 = us
1(r

′
2; d̂

′
2) = τ + γ2P

T
2 WP2 ,

m3 = us
1(r

′
3; d̂

′
3) = τ + γ3P

T
3 WP3 ,

m4 = us
1(r

′
1; d̂

′
2) = τ + γ1P

T
2 WP1 ,

m5 = us
1(r

′
1; d̂

′
3) = τ + γ1P

T
3 WP1 ,

m6 = us
1(r

′
2; d̂

′
3) = τ + γ2P

T
3 WP2 ,

m7 = us
1(r

′
1;−d̂′1) = τ − γ1P

T
1 WP1 .

(40)

We note that τ = τ(γ1) =
m1 + m7

2
. Next we construct the measurement

matrix M whose elements are Mij = PT
i WPj and can be written in terms of

the measurements ml for l = 1, ..., 7 as follows:

M =


m1−m7

2γ1

2m4−(m1+m7)
2γ1

2m5−(m1+m7)
2γ1

2m4−(m1+m7)
2γ1

2m2−(m1+m7)
2γ2

2m6−(m1+m7)
2γ2

2m5−(m1+m7)
2γ1

2m6−(m1+m7)
2γ2

2m3−(m1+m7)
2γ3

 .

We note here that we can avoid taking the measurement m7 since τ =
m0

I0(γ1)
(m0 + 1) and the corresponding measurement matrix is:

M =



m1I
0(γ1)−m0(m0 + 1)

γ1I0(γ1)

m4I
0(γ1)−m0(m0 + 1)

γ1I0(γ1)

m5I
0(γ1)−m0(m0 + 1)

γ1I0(γ1)

m4I
0(γ1)−m0(m0 + 1)

γ1I0(γ1)

m2I
0(γ1)−m0(m0 + 1)

γ2I0(γ1)

m6I
0(γ1)−m0(m0 + 1)

γ2I0(γ1)

m5I
0(γ1)−m0(m0 + 1)

γ1I0(γ1)

m6I
0(γ1)−m0(m0 + 1)

γ2I0(γ1)

m3I
0(γ1)−m0(m0 + 1)

γ3I0(γ1)


.

The measurement matrix M can also be constructed from other combina-

tions of points and directions.

From the previous set of equations and matrices it is concluded:

P T WP = M (43)

Since the matrix P is orthogonal:

W = PMP T , (44)
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which is an orthogonal similarity relation between the measurement matrix M

and the diagonal matrix W .

The measurement matrix M is real and symmetric, it has three real eigen-

values λ1, λ2, λ3 and three corresponding orthogonal eigenvectors v1,v2,v3.

Therefore based on the orthogonal similarity relation, we have the system of

equations (32). From the three orthogonal eigenvectors v1,v2,v3 we can spec-

ify the Euler angles as elements of the rotation matrix P by using the relations

(33). These angles show the orientation of the ellipsoid.

From the system of equations that connect the eigenvalues λn with the ele-

ments Wn for n = 1, 2, 3 we obtain:

λn =
I1
n(γ1)

I1
n(α1)

(
I1
n(α1)− I1

n(β1)

H1
n

− 1

)
. (45)

Based on (3) we only need to determine one of the semi-axes αn and one

of the semi-axes βn, n = 1, 2, 3. From system of equations (42) we can

obtain information regarding these semi-axes as well as the material properties

contained in ζ.

To calculate the elliptic integrals I0(γ1), I
1
n(γ1) for the known γ1 we use the

following relations connecting them to the incomplete elliptic integrals of the

first (F (φ, α)) and second kind (E(φ, α)) [1]:

I1
0 (γ1) =

1

h2

F (φ, α) ,

I1
1 (γ1) =

1

h2h2
3

(F (φ, α)− E(φ, α)) ,

I1
2 (γ1) =

h2

h2
1h

2
3

E(φ, α)− 1

h2h2
3

F (φ, α)− 1

h2
1

√
γ2

1 − h2
2

γ1

√
γ2

1 − h2
3

,

I1
3 (γ1) = − 1

h2
1h2

E(φ, α) +
1

h2
1

√
γ2

1 − h2
3

γ1

√
γ2

1 − h2
2

,

(46)

where φ = sin−1h2

γ1

the amplitude and α = sin−1h3

h2

the modular angle.

The measurements m0 and m7 were only used for the calculation of τ , oth-

erwise the system would be much more complicated. We note that in case we

know the orientation and the material properties of the unknown ellipsoid then

we only need to take two measurements, one for the low-frequency coefficient

us
0 and one for us

1, at an arbitrary point of the surface S2 for an arbitrary direc-

tion of propagation, in order to determine the size of the penetrable ellipsoid

and its acoustically soft confocal ellipsoidal core.
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5 Physically Degenerate form

If the regions D0 and D1 have the same mass densities ρ0 = ρ1 and the

same mean compresibilities we have no scattering on the surface S0 and the

problem is reduced to the acoustically soft triaxial ellipsoid of surface S1 and

semi-axes β1 > β2 > β3 > 0 [15],[6]. Replacing ζ = 1 to (19)-(22), we obtain

the following:

us
0(r) = − I0(ρ)

I0(β1)
, us

1(r) = τ + dTWr , (47)

where

W = diag(Wn) , Wn = − I1
n(ρ)

I1
n(β1)

, τ = − 1

I0(β1)

(
I0(ρ)

I0(β1)
− 1

)
, (48)

Applying step by step the method formulated in section 3 for this case, we

construct the measurement matrix M . The eigenvectors will determine the

Euler angles and therefore the orientation of the ellipsoid and the eigenvalues

will give information about the semi-axes. Specifically based on (32), the

system of equations which gives information about the semi-axes is:

λn = −I1
n(ρ0)

I1
n(β1)

n = 1, 2, 3 ,

m0 = −I0(ρ0)

I0(β1)
.

(49)

These results cover the near-field solution that corresponds to the inverse

acoustic scattering problem for the soft ellipsoid. [7] For this case the backward

measurement is only used for the construction of the measurement matrix.

6 Geometrically Degenerate forms

The sphere is a special case of the ellipsoid when α1 = α2 = α3 = R1 >

β1 = β2 = β3 = R2, with R1 the radius of the penetrable sphere and R2 the

radius of the soft concentric spherical core. Then h1 = h2 = h3 = µ = ν = 0.

Thus, for this case the elliptic integrals are [6]

I0(ρ) =
1

ρ
, I1

n(ρ) =
1

3ρ3
. (50)
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The zeroth and first coefficients of the low-frequency expansion of the scattered

field are:

us
0(r; d̂) = − ζR1R2

[R1 + (ζ − 1)R2]

1

r
,

us
1(r; d̂) =

ζR1R2

[R1 + (ζ − 1)R2]

[
ζR1R2

[R1 + (ζ − 1)R2]

1

r
− 1

]
+

3∑
n=1

R3
1

r3

[
(R3

2 −R3
1)

1
3
(ζ − 1)(R3

2 −R3
1)− [R3

2(ζ − 1) + R3
1]
− 1

]
inxn .

(51)

The first low-frequency coefficient of the scattered field takes the following

form:

us
1(r; d̂) = τs + d̂T Iwsr = τs + wsd̂

T r . (52)

Applying (24) to (29) we obtain:

us
1(r

′; d̂′) = τs + wsd̂
′T P T Pr′ = τs + wsd̂

′T r′ , (53)

with

ws =
R3

1

r3

[
(R3

2 −R3
1)

1
3
(ζ − 1)(R3

2 −R3
1)− [R3

2(ζ − 1) + R3
1]
− 1

]
,

τs =
ζR1R2

[R1 + (ζ − 1)R2]

[
ζR1R2

[R1 + (ζ − 1)R2]

1

r
− 1

]
.

(54)

Because of the symmetry of the sphere we do not need to determine the

rotation matrix P and the previous method degenerates into a much simpler

method. In particular, we only need to determine the size of the sphere and

its spherical core, specifying the radii R1, R2. We will take a measurement at

a point r′1 = Rr̂′1 of the reference system for direction of propagation d̂′1 for

r̂′1 = d̂′1 and R > R1 > R2 .

Therefore the measurements will be:

m0 = us
0 (r′1) = − ζR1R2

[R1 + (ζ − 1)R2]

1

R
,

m1 = us
1(r

′
1; d̂

′
1) = τs + wsR .

(55)
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The system which gives information about R1, R2 is the following:

m0 = − ζR1R2

[R1 + (ζ − 1)R2]

1

R
,

m1 =
ζR1R2

[R1 + (ζ − 1)R2]

[
ζR1R2

[R1 + (ζ − 1)R2]

1

R
− 1

]
+

R3
1

R2

[
(R3

2 −R3
1)

1
3
(ζ − 1)(R3

2 −R3
1)− [R3

2(ζ − 1) + R3
1]
− 1

]
.

(56)

The needle is a special case of the ellipsoid when α1 >> α2 = α3 and

β1 >> β2 = β3.

For this case the elliptic integrals are [6]

I0(ρ) =
1

2h3

ln

(
ρ + h3

ρ− h3

)
,

I1
1 (ρ) =

1

h2
3

(
I0(ρ)− 1

ρ

)
, I1

2 (ρ) = I1
3 (ρ) = − 1

2h2
3

(
I0(ρ)− ρ

ρ2 − h3
2

)
.

(57)

Also,

I0(α1) ∼
ln (2σα)

α1

for σα →∞ , I0(β1) ∼
ln (2σβ)

β1

for σβ →∞ ,

(58)

where σa = α1/α2 and σβ = β1/β2.

Similarly with the case of the ellipsoid we construct the measurement matrix

whose eigenvalues and eigenvectors can determine the sizze and the orientation

of the ellipsoid.
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