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The discontinuous oblique derivative problem

for quasilinear elliptic complex equations of

second order in multiply connected domains

Guo-chun Wen1

Abstract
In this article, we discuss the discontinuous oblique derivative bound-

ary value problem for quasilinear uniformly elliptic complex equation of
second order

wzz̄ =F (z, w, wz, wz, wzz, wzz) in D, (0.1)

with the discontinuous boundary conditions

Re[λj(t)wt + σ1(t)w(t) + τ1(t)] = 0,

Re[λ2(t)wt + σ2(t)w(t) + τ2(t)] = 0,
t ∈ Γ∗, (0.2)

in a multiply connected domain, the above boundary value problem
will be called Problem P. If the complex equation (0.1) satisfies the
conditions similar to Condition C of (1.1), and the boundary condition
(0.2) satisfies the conditions similar to (1.6) below, then we can obtain
some solvability results of Problem P. The discontinuous boundary
value problem possesses many applications in mechanics and physics
etc.
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1 Formulation of discontinuous oblique deriva-

tive problem for complex equations

In this article, we consider the quasilinear uniformly elliptic complex equa-

tion of second order{
wzz =F (z, w, wz, wz, wzz, wzz), F =Q1wzz+Q2wzz+A1wz+A2wz+A3w+A4,

Qj =Qj(z, w, wz, wz), j =1, 2, Aj =Aj(z, w, wz, wz), j =1, ..., 4,

(1.1)

in an N +1−connected domain D. Denote by Γ = ∪N
j=0Γj the boundary

contours of the domain D and let Γ ∈ C2
µ (0 < µ < 1). Without loss of

generality, we assume that D is a circular domain in |z| < 1, bounded by

the (N + 1)-circles Γj : |z − zj| = rj, j = 0, 1, ..., N and Γ0 = ΓN+1 : |z| =

1, z = 0 ∈ D. In this article, the notations are as the same in References [3-12].

Suppose that (1.1) satisfies the following conditions.

Condition C 1) Qj(z, w, wz, wz)(j = 1, 2), Aj(z, w, wz, wz)(j = 1, ..., 4)

are measurable in z ∈ D for all continuously differentiable functions w(z) in

D, and satisfy

Lp[Aj(z, w, wz, wz), D] ≤ kj−1, j = 1, ..., 4, (1.2)

in which p, p0 (2 < p0 ≤ p), kj(j = 0, 1, 2, 3) are non-negative constants.

2) The above functions are continuous in w, wz, wz ∈ C for almost every

point z ∈ D, and Qj = 0 (j = 1, 2), Aj = 0 (j = 1, ..., 4) for z ∈ C\D.

3) The complex equation (1.1) satisfies the following uniform ellipticity

condition, namely for any functions w(z) ∈ C1(D), the inequality

|Qj| ≤ qj, j = 1, 2, q1 + q2 < 1, (1.3)

holds for almost every point z ∈ D, where qj (j = 1, 2) are all non-negative

constants.

The discontinuous oblique derivative boundary value problem for the com-

plex equation (1.1) may be formulated as follows.

Problem P Find a continuously differentiable solution w(z) of complex

equation (1.1) in D∗ = D\Z satisfying the boundary conditions

Re[λ1(z)wz + σ1(z)w(z) + τ1(z)] = 0,

Re[λ2(z)wz + σ2(z)w(z) + τ2(z)] = 0,
z ∈ Γ ∗ = Γ\Z, (1.4)
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where λl(z) = al(z) + ibl(z), |λl(z)| = 1 on Γ (l = 1, 2), and Z = {t1, t2, ..., tm}
are the first kind of discontinuous points of λl(z) on Γ , Γ̂j is an arc from the

point tj−1 to tj on Γ̂ , Γ̂j (j = 1, 2, ..., m) does not include the end points; we

can assume that tj ∈ Γ0 (j = 1, ..., m0), tj ∈ Γ1 (j = m0 + 1, ..., m1), ..., tj ∈
ΓN (j = mN−1 + 1...,m) are all discontinuous points of λ(z) on Γ . Denote by

λl(tj − 0) and λl(tj + 0) the left limit and right limit of λl(z) as z → tj (j =

1, 2, ...,m, l = 1, 2) on Γ , and

eiφlj =
λl(tj−0)

λl(tj+0)
, γlj =

1

πi
ln

[
λl(tj−0)

λl(tj+0)

]
=

φlj

π
−Klj,

Klj =

[
φlj

π

]
+ Jlj, Jlj = 0 or 1, j = 1, ..., m, l=1, 2,

(1.5)

in which 0 ≤ γlj < 1 when Jlj = 0, and −1 < γlj < 0 when Jlj = 1, j =

1, ..., m, l = 1, 2. Set

Kl =
1

2π
∆Γ arg λl(z) =

m∑
j=1

Klj

2
, l = 1, 2,

and K = (K1, K2) is called the index of Problem P. Moreover, λl(z), σl(z), τl(z)

(l = 1, 2) satisfy the conditions

Cα[λl(z), Γ̂j] ≤ k0, Cα[|z−tj|βlj |z−tj−1|βlj−1σl(z), Γ̂j] ≤ εk0,

Cα[|z−tj|βlj |z−tj−1|βlj−1τl(z), Γ̂j] ≤ k4, l = 1, 2, j =1, ..., m,
(1.6)

in which α (1/2 < α < 1) is a constant, where ηj = max(ηij, η2j), γlj (j =

1, ..., m, l = 1, 2) are real constants as stated in (1.5), τ (≤ min(α, 1−2/p0), δ (≤
min[β11, β12, β21, β22, τ ]) are sufficiently small positive constants, such that βlj+

γlj < 1, j = 1, ...,m, l = 1, 2. We require that the solution w(z) possesses the

property

R(z)wz,R(z)wz̄ =Cδ(D), R(z)=
∏m

j=1 |z−tj|ηj/τ2
, ηj =max(η1j, η2j),

ηlj =

{
βlj + τ, for γlj≥ 0, and γlj < 0, βlj ≥ |γlj|,
|γlj|+τ, for γlj <0, βlj < |γlj|, j =1, ..., m, l=1, 2,

(1.7)

in the neighborhood(⊂D) of zj (j = 1, ..., m).

In general, Problem P may not be solvable. Hence we consider its modified

well posed-ness shown below.
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Problem Q Find a system of continuous solutions (U(z), V (z), w(z))

(w(z) ∈ C(D), R(z)U(z), R(z)V (z) ∈ W 1
p0

(D), 2 < p0 < p) of the first order

system of complex equations

Uz = F (z, w, U, V, Uz, Vz), F = Q1Uz + Q2V z

+A1U+A2V +A3w+A4w+A5, Vz =U z =ρ(z),
(1.8)

satisfying the boundary conditions

Re[λ1(z)U(z)+σ1(z)w(z)]=τ1(z)+h1(z)λ1(z)X1(z), z ∈ Γ∗,

Re[λ2(z)V (z)+σ1(z)w(z)]=τ2(z)+h2(z)λ2(z)X2(z), z∈Γ∗,

Im[λ1(aj)U(aj)+σ1(aj)w(aj)]=blj, j ∈ J,

Im[λ2(aj)V (aj)+σ2(aj)w(aj)]=b2j, j ∈ J,

j∈Jl =

{1, ..., 2Kl −N + 1, Kl ≥ N,

N−K ′
l +1, ..., N−K ′

l + [Kl]+1, 0 ≤ Kl <N,
l=1, 2,

(1.9)

in which [Kl] is denoted the integer part of the number Kl, K ′
l = [Kl+1/2] (l =

1, 2), Xl(z) (l = 1, 2) are as stated in (1.13) below; there is in no harm assuming

that the partial indexes Kl of λl(z) on Γk (k =0, 1, ..., N0 (≤N)) are integers,

and the partial indexes Kl of λ(z) on Γk (k = N0 + 1, ..., N) are no integers,

(if KN+1 of λl(z) on ΓN+1 is no an integer, then we can similarly discuss;)

aj ∈ Γk (k=1, ..., N0), aj ∈ Γ0 (j =N0 + 1, ..., 2Kl −N + 1, if Kl ≥ N, l=1, 2)

are distinct points; and when N−K ′
l + 1≤N0, aj+N−K′

l
∈ Γk (k =1, ..., N0 −

N + K ′
l), aj ∈ Γ0 (j = N0−N + K ′

l + 1, ..., [Kl] + 1, if 0 ≤ Kl <N), otherwise

aN−K′
l+j ∈ Γ0 (j =1, ..., [Kl]+1, if 0 ≤ Kl <N, l=1, 2) are distinct points; and

hl(z)=





0, z ∈ Γ, if Kl ≥ N,

hlj, z ∈ Γj, k = 1, ..., N −K ′
l ,

0, z∈Γj, j =N −K ′
l + 1+2, ..., N−K ′

l +[Kl]+1

}
if 0 ≤ Kl < N,

hlj, z ∈ Γj, j = 1, ..., N,

[1+(−1)2Kl ]hl0+Re

[|Kl|+1/2]−1∑
m=1

(h+
lm+ih−lm)zm, z∈Γ0

}
if Kl <0, l=1, 2,

(1.10)

where hlj (j = 0, 1, ..., N), h±lm (m = 1, ...,−Kl−1, Kl < 0, l = 1, 2) are un-
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known real constants to be determined appropriately, and the relation

w(z)=w0+

∫ z

a0

[U(z)dz+
N∑

m=1

dm

z − zm

dz + V (z)dz], (1.11)

in which Qj = Qj(z, w, U, V, Uz, Vz), j = 1, ..., 4, Aj = Aj(z, w, V, V ), j =

1, ..., 7, where a0 = 1, dm(m = 1, ..., N) are appropriate real constants such

that the function determined by the integral in (1.11) is single-valued in D,

|λl(t)| = 1, and Kl = 1
2π

∆Γλl(t) (l = 1, 2), and

Yl(z)=

m0∏
j=1

(z−tj)
γlj

N∏
s=1

(z−zs)
−[K̃ls]

m1∏
j=m0+1

(
z−tj
z−z1

)γlj

· · ·
mN0∏

j=mN0−1+1

(
z−tj

z−zN0

)γlj

×
mN0+1∏

j=mN0
+1

(
z − tj

z −zN0+1

)γlj
(

z−t′N0+1

z−zN0+1

)
· · ·

m∏
j=mN−1+1

(
z − tj
z−zN

)γlj
(

z−t′N
z−zN

)
, l=1, 2,

(1.12)

where K̃ls =
∑ms

j=ms−1+1 Klj (l = 1, 2) are denoted the partial indexes on

Γs (s = 1, ..., N); and t′j (∈ Γj, j = N0 + 1, ..., N) are fixed points, which

are not the discontinuous points at Z. Similarly to (1.7)-(1.12), Chapter V,

[5], we see that

λl(tj − 0)

λl(tj + 0)

[
Yl(tj − 0)

Yl(tj + 0)

]
=

λl(tj − 0)

λl(tj + 0)
e−iπγlj = ±1, l = 1, 2

it only needs to charge the symbol on some arcs on Γ, then λl(z)Yl(z)/|Yl(z)| (l =

1, 2) on Γ are continuous. In this case, its index

κl =
1

2π
∆Γ[λl(z)Yl(z)] = Kl − N −N0

2
, l = 1, 2

are an integer; and

Xl(z) =

{
z[κl]eiSl(z)Yl(z), z∈Γ0,

eiθljeiSl(z)Yl(z), z∈Γj, j =1, ..., N,
Im[λl(z)Xl(z)] = 0, z ∈ Γ,

ReSl(z)=Sl1(z)−θl(t), Sl1(z)=

{
arg λl(z)−[Kl] arg z−arg Yl(z), z ∈ Γ0,

arg λl(z)−arg Yl(z), z∈Γj, j =1, ..., N,

θl(z) =

{
0, z ∈ Γ0,

θlj, z ∈ Γj, j = 1, ..., N,
Im[Sl(1)] = 0, l = 1, 2,

(1.13)
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in which Sl(z) (l = 1, 2) are the solutions of the modified Dirichlet problem with

the above boundary condition for analytic functions, θlj (j = 1, ..., N, l = 1, 2)

are real constants. We assume that

|blj|≤k4, j∈Jl, l=1, 2, |w0| ≤ k4, (1.14)

where k4 is a real constant as before.

In this article, we first discuss the modified boundary value problem (Prob-

lem Q) for a system of first order complex equations, which corresponds to

Problem P for the complex equation (1.1). We establish then the integral ex-

pression and a priori estimates of solutions for Problem Q. By the estimates

and the Leray-Schauder theorem, we can prove the existence of a solution for

Problem Q, and so derive the results of the solvability for Problem P for the

system (1.1) with some conditions as follows.

Theorem 1.1. (The Main Theorem) Suppose that the second order quasi-

linear system (1.1) satisfy Condition C and (2.19) below. If the constants

q2, ε, k1, k2 in (1.2), (1.3), (1.6), (1.14) are all sufficiently small, then Problem

P for (1.1) possesses the following results on solvability:

(1) When the indices Kj = 1
2π

∆Γ arg λj(t) ≥ N (j = 1, 2), Problem P for

(1.1) has 2N solvability conditions, and the solution depends on 2(K1 + K2 −
N + 2) arbitrarily real constants.

(2) When the indices 0 ≤ Kj < N (j = 1, 2), the total number of the

solvability conditions for Problem P is not greater than 4N− [K1+1/2]− [K2+

1/2] and the solution depends on [K1] + [K2] + 4 arbitrarily real constants.

(3) When 0 ≤ K1 < N,K2 ≥ N (or K1 ≥ N, 0 ≤ K2 < N), the total

number of the solvability conditions for Problem P is not greater than 3N −
[K1 +1/2] (or 3N − [K2 +1/2]) and the solution depends on [K1]+ 2K2−N +

4 (or 2K1 + [K2]−N + 4) arbitrarily real constants.

(4) When K1 < 0, K2 ≥ N (or K1 ≥ N,K2 < 0), Problem P has 3N −
2K1− 1 (or 3N − 2K2− 1) solvability conditions, and the solution depends on

2K2 −N + 3 (or 2K1 −N + 3) arbitrarily real constants.

(5) When K1 < 0, 0 ≤ K2 < N (or 0 ≤ K1 < N, K2 < 0), Problem P has

4N−2K1− [K2 +1/2]−1 (or 4N− [K1 +1/2]−2K2−1) solvability conditions,

and the solution depends on [K2] + 3 (or [K1] + 3) arbitrarily real constants.
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(6) When K1 < 0, K2 < 0, Problem P has 4N − 2K1 − 2K2 − 2 solvability

conditions, and the solution depends on two arbitrarily real constants.

2 Estimates of solutions of discontinuous

oblique derivative problem

In this section, we first develop some estimates of solutions of Problem Q

for elliptic complex systems (1.8).

Theorem 2.1. Suppose that Condition C holds and the four constants

q2, ε, k1, k2 in (1.2), (1.3), (1.6) are small enough. Then any solution [U(z), V (z),

w(z)] of Problem Q for (1.8) satisfies the estimates

L1 =L1(U)=Cδ[R(z)U(z), D̄]+Lp0 [|RSUz̄|+|RSUz|, D]≤M1,

L2 =L2(V )=Cδ[R(z)V (z), D̄]+Lp0 [|RSVz̄|+|RSVz|), D]≤M1,
(2.1)

S0 =S0(w)=Cδ[w(z), D]+Cδ[R(z)wz, D]+Cδ[R(z)wz,D]≤M2, (2.2)

where

R(z)=
∏m

j=1 |z−tj|ηj/τ2
, S(z)=

∏m
j=1 |z−tj|1/τ2

,

ηj =max(η1j, ηl2), j =1, ..., m,

ηlj =

{
βlj + τ, for γlj≥ 0, and γlj < 0, βlj ≥ |γlj|,
|γlj|+τ, for γlj <0, βlj < |γlj|, j =1, ..., m, l=1, 2,

and δ (≤ min(β11, β12, β21, β22, τ), τ (≤ min(α, 1−2/p0)), p0 (2 < p0 ≤ p), M1

and M2 are positive constants, Mj = Mj(q0, p0, δ, k
∗, K, D), j = 1, 2, k∗ =

k∗(k0, k3, k4), and K =(K1, K2).

Proof. Let the solution [w(z), U(z), V (z)] of Problem Q be substituted

into the system (1.8), the boundary conditions (1.9), and the relation (1.11).

It is clear that (1.8) and (1.9) can be rewritten in the form

Uz̄−Q1Uz−A1U =A,A=Q2Vz+A2V +A3w+A4, Vz̄ =U z, (2.3)
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Re[λ1(z)U(z)]=r1(z)+h1(z)λ1(z)X1(z),

Re[λ2(z)V (z)]=r2(z)+h2(z)λ2(z)X2(z),

rl(z) = τl(z)− Re[σl(z)w(z)], z ∈ Γ, l = 1, 2,

(2.4)

where A and rl(l = 1, 2) satisfy the inequalities

Lp0 [RSA, D] ≤ q2Lp0 [RSVz, D] + Lp0 [A2, D]C[RV, D]

+Lp0 [A3, D]C[w, D] + Lp0 [A4, D] ≤ q2L2 + k1L2 + k2S1 + k3,
(2.5)

Cα[Rrl, Γ] ≤ Cα[Rσl, Γ]C[w, Γ] + Cα[Rτl, Γ] ≤ εk0S1 + k4, l=1, 2, (2.6)

in which S1 = C[w, D], we mention that the some items k2S1, k3 should be

replaced by k5k2S1, k5k3, where k5 = C[R(z), D], but for convenience we omit

them.

Moreover from (2.3) and (2.4), we can obtain

L1 ≤ M3[(q2 + k1)L2 + k2S1 + k3 + εk0S1 + 2k4]

= M3[(q2 + k1)L2 + (k2 + εk0)S1 + k3 + 2k4],
(2.7)

where M3 = M3(q0, p0, δ, k0, K,D). Noting that V (z) is a solution of the mod-

ified problem for Vz̄ = U z, we have

L2 ≤ M3[L1 + εk0S1 + 2k4]. (2.8)

In addition, from (1.11), we can derive

dm =
i

2π

∫

Γm

[U(z)dz + V (z)dz], m = 1, ..., N,

S1 = C[w, D]≤k4+M4[C(RU,D)+C(RV, D)]≤k4+M4(L1+L2),

(2.9)

where M4 = M4(D).

Combining (2.7)-(2.9), we can derive that

L2 ≤ M3{M3[(q2 + k1)L2 + (k2 + εk0)(k4 + M4(L1 + L2))

+k3 + 2k4] + εk0(k4 + M4(L1 + L2)) + 2k4}
≤ M3{(q2 + k1)M3L2 + (k2 + εk0)(1 + M3)M4(L1 + L2)

+k4(k2 + εk0)(1 + M3) + (k3 + 2k4)(1 + M3)}.

(2.10)

Provided that the constants q2, ε, k1, k2 are sufficiently small, for instance,

M3[(q2 + k1)M3 + (k2 + εk0)(1 + M3)M4] < 1/2, we must have

L2 ≤ 2M3[(k2 + εk0)(1 + M3)M4L1 + k4(k2 + εk0)(1 + M3)

+(k3 + 2k4)(1 + M3)] = M5L1 + M6,
(2.11)



Guo-chun Wen 63

where M5 = 2M3(k2 + εK0)(1 + M3)M4, M6 = 2M3[k4(k2 + εk0)(1 + M3)

+(k3 + 2k4)(1 + M3)]. Letting (2.11) and (2.9) be substituted into (2.7), we

can obtain

L1≤M3[(q2+k1)(M5L1+M6)+(k2+εk0)M4(L1+L2)+k4(k2+εk0)

+k3 + 2k4] ≤ M3{[(q2 + k1)M5 + (k2 + εk0)M4(1 + M5)]L1

+(q2 + k1)M6 + (k2 + εk0)M4M6+k4(k2 + εk0) + k3 + 2k4}.
(2.12)

Moreover if q2, ε, k1, k2 are small enough such that M3[(q2 + k1)M5 + (k2 +

εk0)(1 + M5)M4] < 1/2, then the estimates

L1 ≤ 2M3[(q2+k1)M6+(k2+εk0)M4M6+k4(k2+εk0)+k3+2k4] = M7 (2.13)

is concluded, and

L2 ≤ M5M7 + M6 ≤ M1 = max(M7,M5M7 + M6). (2.14)

Furthermore, from (1.11) it follows that (2.2) holds.

From Theorem 2.1, we can derive the following result.

Theorem 2.2. Under the same conditions in Theorem 2.1, any solution

[U(z), V (z), w(z)] of Problem Q for (1.8) satisfies the estimates

L1 = L1(U) ≤ M8k, L2 = L2(V ) ≤ M8k, (2.15)

S0 = S0(w) ≤ M9k, (2.16)

where Mj = Mj(q0, p0, δ, k0, K, D), j = 8, 9, and k = k3 + 2k4.

Proof. We substitute the solution [U(z), V (z), w(z)] of Problem Q into the

system (1.8), the boundary conditions (1.9) and the relation (1.11). Similarly

to the proof of Theorem 2.1, we can obtain the results as in (2.1) and (2.2),

namely

L1 = L1(U) ≤ M8k, L2 = L2(V ) ≤ M8k, (2.17)

S0 = S0(w) ≤ M9k, (2.18)

in which k = k3 + 2k4, Mj = Mj(q0, p0, δ, k0, K, D), j = 8, 9.

In order to prove the uniqueness of solutions of Problem Q for (1.8), we need

to add the following condition: For any continuously differentiable functions
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wj(z)(j = 1, 2) on D and any continuous functions U(z), V (z)(∈ W 1
p0

(D̃)(2 <

p0 ≤ p), D̃ is any closed subset), there is

F (z, w1, w1z, w1z, Uz, Vz)− F (z, w2, w2z, w2zUz, Vz)

= Q̃1Uz+Q̃2Vz+Ã1(w1z − w2z)+Ã2(w1z−w2z)+Ã3(w1−w2),
(2.19)

where |Q̃j| ≤ qj, j = 1, 2, Ãj ∈ Lp0(D), j = 1, 2, 3.

Theorem 2.3. If Condition C, (2.19) hold, and q2, ε, k1, k2 in (1.2), (1.3),

(1.6) are small enough, then the solution [w(z), U(z), V (z)] of Problem Q for

(1.8) is unique.

Proof. Denote by [wj(z), Uj(z), Vj(z)](j = 1, 2) two solutions of Prob-

lem Q for (1.8), and substitute them into (1.8),(1.9) and (1.11), we see that

[w, U, V ] = [w1(z) − w2(z), U1(z) − U2(z), V1(z) − V2(z)] is a solution of the

following homogeneous boundary value problem

Uz̄ =Q̃1Uz+Q̃2Vz+Ã1U+Ã2V +Ãw, Vz̄ =Uz, z ∈ D, (2.20)

{
Re[λ1(z)U(z) + σ1(z)w(z)]=h1(z)λ1(z)X1(z),

Re[λ2(z)V (z) + σ2(z)w(z)]=h2(z)λ2(z)X2(z),
z ∈ Γ, (2.21)

{
Im[λ1(z)U(z)+σ1(z)w(z)]|z=aj

=0, j ∈ J1,

Im[λ2(z)V (z)+σ2(z)w(z)]|z=aj
=0, j ∈ J2,

(2.22)

w(z)=w0−
∫ z

1

[U(z)dz−
N∑

m=1

dm

z − zm

]dz + V (z)dz in D, (2.23)

the coefficients of which satisfy same conditions of (1.8),(1.9) and (1.11), but

k3 = k4 = 0.

On the basis of Theorem 2.2, provided q2, k1, k2 and ε are sufficiently small,

we can derive that w(z) = U(z) = V (z) = 0 in D, i.e. w1(z) = w2(z), U1(z) =

U2(z), V1(z) = V2(z) in D.
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3 Solvability of discontinuous oblique deriva-

tive problem

In the following, we use the foregoing estimates of solutions and the Leray-

Schauder theorem to prove the solvability of Problem Q for the nonlinear

elliptic complex system (1.8).

Theorem 3.1. Suppose that the second order quasilinear system (1.1) sat-

isfy Condition C and (2.19). If the constants q2, ε, k1, k2 in (1.2), (1.3), (1.6)

are all sufficiently small, then Problem Q for (1.8) is solvable.

Proof. First of all, we assume that F (z, w, U, V, Uz, Vz) of (1.8) equal to

0 in the neighborhood D∗ of the boundary Γ. The equation is denoted by

Uz̄ = F ∗(z, w, U, V, Uz, Vz), Vz̄ = U z in D. (3.1)

Then we consider the system of first order equations with the parameter t ∈
[0, 1], namely

U∗
z̄ = t[F ∗(z, w, U, V, U∗

z , V ∗
z ), V ∗

z̄ = tU∗
z. (3.2)

Moreover we introduce the Banach space B = Ŵ 1
p0

(D)× Ŵ 1
p0

(D)× Ĉ1(D)(2 <

p0 ≤ p). Denote by BM the set of systems of continuous functions: ω =

[U(z), V (z), w(z)] satisfying the inequalities:

L1(U) = Cδ[RU,D] + Lp0 [|RSUz̄|+ |RSUz|, D] < M10, L2(V ) < M10,

Ĉ1[w(z), D] = C[w(z), D]+C[Rwz, D]+C[Rwz, D]<M10,

(3.3)

in which M10 = M1 + M2 + 1, δ, M1,M2 are non-negative constants as stated

in (2.1) and (2.2). It is evident that BM is a bounded open set in B.

Next, we only discuss Problem Q for (3.2) and arbitrarily select a system

of functions: ω = [U(z), V (z), w(z)] ∈ BM . Substitute it into the appropri-

ate positions of (3.2),(1.9) and (1.11), and then consider the boundary value

problem (Problem Q) with the parameter t ∈ [0, 1]:

U∗
z̄ = t[F ∗(z, w, U, V, Uz, Vz), V ∗

z̄ = tU z, z ∈ D, (3.4)
{

Re[λ1(z)U∗(z) + tσ1(z)w(z)] = τ1(z) + h1(z)λ1(z)X1(z),

Re[λ2(z)V ∗(z) + tσ2(z)w(z)] = τ2(z) + h2(z)λ2(z)X2(z),
z ∈ Γ, (3.5)
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{
Im[λ1(aj)U

∗(aj) + tσ1(aj)w(aj)] = blj, j ∈ J1,

Im[λ2(aj)V
∗(aj) + tσ2(aj)w(aj)] = b2j, j ∈ J2,

(3.6)

w∗(z)=w0+

∫ z

1

[U∗(z) +
N∑

m=1

dm

z − zm

]dz + V ∗(z)dz̄, z ∈ D, (3.7)

where U(z), V (z), w(z) are known functions as stated before.

Noting that Problem Q consists of two modified Riemann-Hilbert problems

for elliptic complex equations of first order and applying the method in the

proof of Theorem 6.6, Chapter V, [4] and Theorem 3.5.3, Chapter 3, [12], we

see that there exist the solutions U∗(z), V ∗(z) ∈ Ŵ 1
p0

(D)(2 < p0 ≤ p). From

(3.7), the single-valued function w∗(z) in D is determined.

Denote by ω∗ = [U∗(z), V ∗(z), w∗(z)] = T (ω, t)(0 ≤ t ≤ 1) the map-

ping from ω onto ω∗. According to Theorem 2.2, if ω = [U(z), V (z), w(z)] =

T (ω, t)(0 ≤ t ≤ 1), then ω = [U(z), V (z), w(z)] satisfies the estimates in

(2.1),(2.2), consequently ω ∈ BM . Setting B0 = BM × [0, 1], we shall verify

that the mapping ω∗ = T (ω, t)(0 ≤ t ≤ 1) satisfies the three conditions of the

Leray-Schauder theorem:

(1) When t = 0, by Theorem 2.2, it is evident that ω∗ = T (ω, 0) ∈ BM .

(2) As stated before, the solution ω = [U(z), V (z), w(z)] of the functional

equation ω = T (ω, t)(0 ≤ t ≤ 1) satisfies the estimates in (2.1),(2.2), which

shows that ω = T (ω, t)(0 ≤ t ≤ 1) does not have any solution ω = [U(z), V (z),

w(z)] on the boundary ∂BM = BM\BM .

(3) For every t ∈ [0, 1], ω∗ = T (ω, t) continuously maps the Banach space

B into itself, and is completely continuous in BM . Besides, for ω ∈ BM , T (ω, t)

is uniformly continuous with respect to t ∈ [0, 1].

In fact, let us choose any sequence ωn = [Un(z), Vn(z), wn(z)](n = 1, 2, ...),

which belongs to BM . By Theorem 2.1, it is not difficult to see that ω∗n =

[U∗
n, V ∗

n , w∗
n] = T (ωn, t)(0 ≤ t ≤ 1) satisfies the estimates

L1(U
∗
n) ≤ M12, L2(V

∗
n ) ≤ M12, S0(w

∗
n) ≤ M13, (3.8)

in which Mj = Mj(q0, p0, δ, k0, K, D,M), j = 12, 13, n = 1, 2, .... We can se-

lect subsequences of {U∗
n(z)}, {V ∗

n (z)}, {w∗
n(z)}, which uniformly converge to

U∗
0 (z), V ∗

0 (z), w∗
0(z) in D, and {U∗

nz}, {U∗
nz̄}, {V ∗

nz}, {V ∗
nz̄} in D weakly converge

to U∗
0z, U∗

0z̄, V ∗
0z, V

∗
0z̄, respectively.
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For convenience, the same notations will be used to denote the subse-

quences. From ω∗n = T (ωn, t) and ω∗0 = T (ω0, t)(0 ≤ t ≤ 1), we obtain

U∗
nz̄−U∗

0z̄ = t[F (z, wn, Un, Vn, U∗
nz, V

∗
nz)−F (z, wn, Un, Vn, U

∗
0z, V

∗
0z)+cn],

cn = F (z, wn, Un, Vn, U
∗
0z, V

∗
0z)−F (z, w0, U0, V0, U

∗
0z, V

∗
0z),

V ∗
nz̄ − V ∗

0z̄ = t[U∗
nz − U∗

0z], z ∈ D,

(3.9)

{
Re[λ1(z)(U∗

n − U∗
0 ) + tσ1(z)(wn−w0)] = h1(z)λ1(z)X1(z),

Re[λ2(z)(V ∗
n − V ∗

0 ) + tσ2(z)(wn−w0)] = h2(z)λ2(z)X2(z),
z ∈ Γ, (3.10)

{
Im[λ1(aj)[U

∗
n(aj)−U∗

0 (aj)]+tσ1(aj)[wn(aj)− w0(aj)]=0, j ∈ J1,

Im[λ2(aj)[V
∗
n (aj)−V ∗

0 (aj)]+tσ2(aj)[wn(aj)−w0(aj)]]=0, j ∈ J2,
(3.11)

w∗
n(z)−w∗

0(z)=

∫ z

1

[U∗
n(z)−U∗

0 (z)+
N∑

m=1

dm

z−zm

]dz+[V ∗
n (z)−V ∗

0 (z)]dz̄. (3.12)

By using the way in (1.2.53), Chapter 1, [11], we can prove that

Lp0 [RScn, D] → 0

for n → ∞, since when n → ∞, {cn} converges to 0 for almost every point

z ∈ D. Because of the completeness of the Banach space B, there exists a

system of functions ω0 = [U0(z), V0(z), w0(z)] ∈ B, such that

L1(Un − U0) → 0, L2(Vn − V0) → 0 and S(wn − w0) → 0 as m →∞.

This shows the complete continuity of ω∗ = T (ω, t)(0 ≤ t ≤ 1) on BM . By a

similar method, we can also prove that ω∗ = T (ω, t)(0 ≤ t ≤ 1) continuously

maps BM into B, and T (ω, t) is uniformly continuous with respect to t ∈ [0, 1]

for ω ∈ BM .

Hence by the Leray-Schauder theorem, we see that the functional equation

ω = T (ω, t)(0 ≤ t ≤ 1) with t = 1, i.e. Problem Q for (1.8) has a solution.

Finally we can cancel the assumption that F (z, w, U, V, Uz, Vz) of (1.8) equal

to 0 in the neighborhood D∗ of the boundary Γ by the method as stated in

the proof of Theorem 4.7, Chapter II, [3].

From the above theorem, the result in Theorem 1.1 can be derived.
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Proof of Theorem 1.1. We first discuss the case: 0 ≤ Kl < N (l = 1, 2).

Let the solution [w(z), U(z), V (z)] of Problem Q for the complex system (1.8)

be substituted into (1.9)–(1.11). The functions hl(z)(l = 1, 2) and the complex

constants dm (m = 1, ..., N) are then determined. If the functions and the

constants are equal to zero, namely the following equalities hold:

hl(z)=hlj =0, j =1, ..., N−[Kl+1/2], when 0≤Kl <N, l=1, 2, (3.13)

and

dm = Redm + iImdm = 0, m = 1, ..., N, (3.14)

then wz = U(z), wz = V (z), w(z) is a solution of Problem P for (1.1). Hence

when 0 ≤ Kl < N(l = 1, 2), Problem P for (1.1) has 4N−[K1+1/2]−[K2+1/2]

solvability conditions. In addition, the real constants blj (j = N −K ′
l + [Kl] +

1, ..., N + 1, l = 1, 2) in (1.9) and the complex constant w0 in (1.11) may be

arbitrary, this shows that the general solution of Problem P (0 ≤ Kl < N, l =

1, 2) is dependent on [K1] + [K2] + 4 arbitrary real constants. Thus (2) is

proved.

Similarly, other cases can be obtained.
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