On α-uniformly close-to-convex and quasi-convex functions with negative coefficients

Irina Dorca ${ }^{1}$

Abstract

In this paper we study a class of α-uniformly starlike functions with negative coefficients, a class of α-uniformly convex functions with negative coefficients, a class of α-uniformly close-to-convex functions with negative coefficients and a class of quasi-convex functions with negative coefficients.

Mathematics Subject Classification: 30C45
Keywords: α-uniformly starlike functions, α-uniformly convex functions, α uniformly close-to-convex functions, quasi-convex functions, negative coefficients.

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U,

$$
\begin{equation*}
A=\left\{f \in \mathcal{H}(U): f(0)=f^{\prime}(0)-1=0\right\} \tag{1}
\end{equation*}
$$

[^0]and $S=\{f \in A: f$ is univalent in $U\}$.
In [3] the subfamily T of S consisting of functions f of the form
\[

$$
\begin{equation*}
f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots, z \in U \tag{2}
\end{equation*}
$$

\]

was introduced.
Let $T(n, p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}-\sum_{p=j}^{\infty} a_{p}+p z^{l+p},, a_{l+p} \geq 0, p, j \in \mathbb{N}=\{1,2, \ldots\} \tag{3}
\end{equation*}
$$

which are analytic in U. We have $T(1,1)=T$.
The purpose of this paper is to define a class of α-uniformly close-to-convex and quasi-convex functions with negative coefficients. For this, we make use of the following well known results, which are taken from literature.

2 Preliminary Results

We begin with the assertions concerning the starlike functions with negative coefficients (e.g. Theorem 2.1), we continue with the operator $I_{c+\delta}$ (see (4)) and we end by recalling some known results from [5] and [6] that we use forward in our study. The methods used to prove our results are taken from literature.

Theorem 2.1. [2] If $f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots, z \in U$ then the next assertions are equivalent:
(i) $\sum_{j=2}^{\infty} j a_{j} \leq 1$
(ii) $f \in T$
(iii) $f \in T^{*}$, where $T^{*}=T \bigcap S^{*}$ and S^{*} is the well-known class of starlike functions.

Definition 2.1. [2] Let $\alpha \in[0,1)$ and $n \in \mathbb{N}$, then

$$
S_{n}(\alpha)=\left\{f \in A: R e \frac{D^{n+1} f(z)}{D^{n} f(z)}>\alpha, z \in U\right\}
$$

is the set of n-starlike functions of order α. Also, we denote $T_{n}(\alpha)=T \bigcap S_{n}(\alpha)$.

In [1] is defined the integral operator:
$I_{c+\delta}: A \rightarrow A, c<u \leq 1,1 \leq \delta<\infty, 0<c<\infty$, with

$$
\begin{equation*}
f(z)=I_{c+\delta}(F(z))=(c+\delta) \int_{0}^{1} u^{c+\delta-2} F(u z) d u \tag{4}
\end{equation*}
$$

Remark 2.1. If $F(z)=z+\sum_{j=2}^{\infty} c_{j} z^{j}$, the

$$
f(z)=I_{c+\delta}(F(z))=z+\sum_{j=2}^{\infty} \frac{c+\delta}{c+j+\delta-1} a_{j} z^{j}
$$

Also we notice that $0<\frac{c+\delta}{c+j+\delta-1}<1$, where $c \in(0, \infty), j \geq 2$, $\delta \in[1, \infty)$.

Remark 2.2. It is easy to prove that for $F(z) \in T$ and $f(z)=I_{c+\delta}(F(z))$ we have $f(z) \in T$, where $I_{c+\delta}$ is the integral operator defined by (4).

In [5] are presented the following classes of analytic functions:

Definition 2.2. [5] Let C_{S}^{*} denote the class of functions in S satisfying the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)+f^{\prime}(-z)}\right\}>0, \quad(z \in U) \tag{5}
\end{equation*}
$$

Definition 2.3. [5] Let $U S T^{(k)}(\alpha, \beta)$ denote the class of functions in T satisfying the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f_{k}(z)}\right\}>\alpha\left|\frac{z f^{\prime}(z)}{f_{k}(z)}-1\right|+\beta, \quad(z \in U) \tag{6}
\end{equation*}
$$

where $\alpha \geq 0,0 \leq \beta<1, k \geq 1$ is a fixed positive integer and $f_{k}(z)$ are defined by the following equality:

$$
\begin{equation*}
f_{k}(z)=\frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon^{-\nu} f\left(\varepsilon^{\nu} z\right), \quad\left(\varepsilon^{k}=1, z \in U\right) \tag{7}
\end{equation*}
$$

If $k=1$, then the class $U S T^{(k)}(\alpha, \beta)$ reduces to the class of α-uniformly starlike functions of order β. If $k=2, \alpha=0$ and $\beta=0$, then the class $U S T^{(k)}(\alpha, \beta)$ reduces to the class S_{S}^{*} of starlike functions with respect to symmetric points.

From [4] we know that if $f(z) \in S$,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right\}>0, z \in U \tag{8}
\end{equation*}
$$

Definition 2.4. [5] Let $U C V^{(k)}(\alpha, \beta)$ denote the class of functions in T satisfying the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f_{k}^{\prime}(z)}\right\}>\alpha\left|\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f_{k}^{\prime}(z)}-1\right|+\beta, \quad(z \in U) \tag{9}
\end{equation*}
$$

where $\alpha \geq 0,0 \leq \beta<1, k \geq 1$ is a fixed positive integer and $f_{k}(z)$ are defined by (7).

If $k=1$, then the class $U C V^{(k)}(\alpha, \beta)$ reduces to the class of α-uniformly convex functions of order β. If $k=2, \alpha=0$ and $\beta=0$, then the class $U C V^{(k)}(\alpha, \beta)$ reduces to the class C_{S}^{*}.

Theorem 2.2. [5] Let $\alpha \geq 0,0 \leq \beta<1, k \geq 1$ be a fixed positive integer and $f(z) \in T$. Then $f(z) \in U S T^{(k)}(\alpha, \beta)$ iff

$$
\begin{gather*}
\sum_{j=1}^{\infty}[(1+\alpha)(j k+1)-(\alpha+\beta)] \cdot a_{j k+1}+ \tag{10}\\
\sum_{j=2, j \neq l k+1}^{\infty}(1+\alpha) j a_{j}<1-\beta
\end{gather*}
$$

Theorem 2.3. [6] Let $\alpha \geq 0,0 \leq \beta<1, k \geq 1$ be a fixed positive integer and $f(z) \in T$. Then $f(z) \in U C V^{(k)}(\alpha, \beta)$ if and only if

$$
\begin{gather*}
\sum_{j=1}^{\infty}(j k+1)[(1+\alpha)(j k+1)-(\alpha+\beta)] \cdot a_{j k+1}+ \tag{11}\\
\sum_{j=2, j \neq l k+1}^{\infty}(1+\alpha) j^{2} a_{j}<1-\beta
\end{gather*}
$$

Irina Dorca

Definition 2.5. [6] $\operatorname{Let} C^{(k)}(\lambda, \alpha)$ denote the class of functions in A satisfying the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda) f_{k}(z)+\lambda z f_{k}^{\prime}(z)}\right\}>\alpha, \quad(z \in U) \tag{12}
\end{equation*}
$$

where $0 \leq \alpha<1,0 \leq \lambda \leq 1, k \geq 2$ is a fixed positive integer and $f_{k}(z)$ is defined by equality (7).

Definition 2.6. [6] Let $Q C^{(k)}(\lambda, \alpha)$ denote the class of functions in A satisfying the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{z \cdot \frac{\lambda z^{2} f^{\prime \prime \prime}(z)+(2 \lambda+1) z f^{\prime \prime}(z)+f^{\prime}(z)}{\lambda z^{2} f_{k}^{\prime \prime}(z)+z f_{k}^{\prime}(z)}\right\}>\alpha, \quad(z \in U) \tag{13}
\end{equation*}
$$

where $0 \leq \alpha<1,0 \leq \lambda \leq 1, k \geq 2$ is a fixed positive integer and $f_{k}(z)$ is defined by equality (7).

For convenience we write $C^{(k)}(\lambda, \alpha) \cap T$ as $C_{T}^{(k)}(\lambda, \alpha)$ and $Q C^{(k)}(\lambda, \alpha) \cap T$ as $Q C_{T}^{(k)}(\lambda, \alpha)$.

Theorem 2.4. [6] Let $0 \leq \alpha<1,0 \leq \lambda<1, k \geq 2$ be a fixed positive integer and $f(z) \in T$, then $f(z) \in C_{T}^{(k)}(\lambda, \alpha)$ iff

$$
\begin{align*}
& \sum_{j=1}^{\infty}(1+\lambda j k)(j k+1-\alpha) \cdot a_{j k+1}+ \tag{14}\\
& \sum_{j=2, j \neq l k+1}^{\infty}[1+\lambda(j-1)] \cdot j a_{j} \leq 1-\alpha
\end{align*}
$$

Theorem 2.5. [6] Let $0 \leq \alpha<1,0 \leq \lambda<1, k \geq 2$ be a fixed positive integer and $f(z) \in T$, then $f(z) \in Q C_{T}^{(k)}(\lambda, \alpha)$ if and only if

$$
\begin{gather*}
\sum_{j=1}^{\infty}(j k+1)(1+\lambda j k)(j k+1-\alpha) \cdot\left|a_{j k+1}\right|+ \tag{15}\\
\sum_{j=2, j \neq l k+1}^{\infty}[1+\lambda(j-1)] \cdot j^{2}\left|a_{j}\right| \leq 1-\alpha
\end{gather*}
$$

3 Main results

We firstly apply the operator $I_{c+\delta}$ (see (4)) on a α-uniformly starlike function of order β with negative coefficients and we prove that the resulting function conserves in the same class of α-uniformly starlike functions of order β with negative coefficients.

Theorem 3.1. Let $F(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j \geq 2, F(z) \in U S T^{(k)}(\alpha, \beta)$, $\alpha \geq 0,0 \leq \beta<1, k \geq 1$ be a fixed positive integer. Then $f(z)=I_{c+\delta}(F(z)) \in$ $U S T^{(k)}(\alpha, \beta)$, where $I_{c+\delta}$ is the integral operator defined by (4).

Proof. From Remark 2.2 we obtain $f(z)=I_{c+\delta}(F(z)) \in T$. From Remark 2.1 we have: $f(z)=z-\sum_{j=2}^{\infty} \frac{c+\delta}{c+j+\delta-1} \cdot a_{j} z^{j}$, where $0<c<\infty, j \geq 2$, $1 \leq \delta<\infty$.
From $F(z) \in U S T^{(k)}(\alpha, \beta)$, by using Theorem 2.2, we have:

$$
\begin{gather*}
\sum_{j=1}^{\infty}[(1+\alpha)(j k+1)-(\alpha+\beta)] \cdot a_{j k+1}+ \tag{16}\\
\sum_{j=2, j \neq l k+1}^{\infty}(1+\alpha) j a_{j}<1-\beta
\end{gather*}
$$

Using again Theorem 2.2 we observe that it is sufficient to prove that:

$$
\begin{gather*}
\sum_{j=1}^{\infty}[(1+\alpha)(j k+1)-(\alpha+\beta)] \cdot \frac{c+\delta}{c+j k+\delta}+ \tag{17}\\
\sum_{j=2, j \neq l k+1}^{\infty}(1+\alpha) j \cdot \frac{c+\delta}{c+j+\delta-1}<1-\beta
\end{gather*}
$$

From hypothesis we have

$$
\begin{equation*}
0<\frac{c+\delta}{c+j k+\delta}<1 \quad \text { and } \quad 0<\frac{c+\delta}{c+j+\delta-1}<1 \tag{18}
\end{equation*}
$$

Thus, we see that, by using (16) and (18), the condition (17) holds. This means that $f(z) \in U S T^{(k)}(\alpha, \beta)$.

Using a similar method as in Theorem 3.1, we apply the operator $I_{c+\delta}$ (see (4)) on a α-uniformly convex function of order β with negative coefficients and
we prove that the resulting function conserves in the same class of α-uniformly convex functions of order β with negative coefficients.

Theorem 3.2. Let $F(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j \geq 2, F(z) \in U C V^{(k)}(\alpha, \beta)$, $\alpha \geq 0,0 \leq \beta<1, k \geq 1$ be a fixed positive integer. Then $f(z)=I_{c+\delta}(F(z)) \in$ $U C V^{(k)}(\alpha, \beta)$, where $I_{c+\delta}$ is the integral operator defined by (4).

Next, we apply the operator $I_{c+\delta}$ (see (4)) on a α-uniformly close to convex function of order β with negative coefficients and we prove that the resulting function conserves in the same class of α-uniformly close to convex functions of order β with negative coefficients.

Theorem 3.3. Let $F(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j \geq 2, F(z) \in C_{T}^{(k)}(\alpha, \beta)$, $\alpha \geq 0,0 \leq \beta<1, k \geq 1$ be a fixed positive integer. Then $f(z)=I_{c+\delta}(F(z)) \in$ $C_{T}^{(k)}(\alpha, \beta)$, where $I_{c+\delta}$ is the integral operator defined by (4).

Proof. From Remark 2.2 we have $f(z)=I_{c+\delta}(F(z)) \in T$. From Remark 2.1 we have: $f(z)=z-\sum_{j=2}^{\infty} \frac{c+\delta}{c+j+\delta-1} \cdot a_{j} z^{j}$, where $0<c<\infty, j \geq 2$, $1 \leq \delta<\infty$.
From $F(z) \in C_{T}^{(k)}(\alpha, \beta)$, by using Theorem 2.4, we have:

$$
\begin{align*}
& \sum_{j=1}^{\infty}(1+\lambda j k)(j k+1-\alpha) \cdot a_{j k+1}+ \tag{19}\\
& \sum_{j=2, j \neq l k+1}^{\infty}[1+\lambda(j-1)] j a_{j} \leq 1-\alpha
\end{align*}
$$

Using again Theorem 2.4 we notice that it is sufficient to prove that:

$$
\begin{gather*}
\sum_{j=1}^{\infty}(1+\lambda j k)(j k+1-\alpha) \cdot \frac{c+\delta}{c+j k+\delta}+ \tag{20}\\
\sum_{j=2, j \neq l k+1}^{\infty}[1+\lambda(j-1)] j \cdot \frac{c+\delta}{c+j+\delta-1} \leq 1-\alpha
\end{gather*}
$$

From hypothesis we have

$$
\begin{equation*}
0<\frac{c+\delta}{c+j k+\delta}<1 \quad \text { and } \quad 0<\frac{c+\delta}{c+j+\delta-1}<1 \tag{21}
\end{equation*}
$$

Thus, we obtain, by using (19) and (21), that the condition (20) holds. This means that $f(z) \in C_{T}^{(k)}(\alpha, \beta)$.

We end our research by taking into account a similar method as in Theorem 3.3, where we apply the operator $I_{c+\delta}$ (see (4)) on a quasi-convex function of order β with negative coefficients and we prove that the resulting function conserves in the same class of quasi-convex functions of order β with negative coefficients.

Theorem 3.4. Let $F(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j \geq 2, F(z) \in Q C_{T}^{(k)}(\alpha, \beta)$, $\alpha \geq 0,0 \leq \beta<1, k \geq 1$ be a fixed positive integer. Then $f(z)=I_{c+\delta}(F(z)) \in$ $Q C_{T}^{(k)}(\alpha, \beta)$, where $I_{c+\delta}$ is the integral operator defined by (4).

ACKNOWLEDGEMENTS. This work was partially supported by the strategic project POSDRU 107/1.5/S/77265, inside POSDRU Romania 20072013 co-financed by the European Social Fund-Investing in People.

References

[1] M. Acu and S. Owa, Note on a class of starlike functions, Proceeding of the International Short Joint Work on Study on Calculus Operators in Univalent Function Theory, Kyoto, (2006), 1-10.
[2] G.S. Sălăgean, Geometria Planului Complex, Ed. Promedia Plus, Cluj Napoca, 1999.
[3] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 5, (1975), 109-116.
[4] K. Sakaguchi, In certain univalent mapping, J.M. Soc. Japan, 11, (1959), 72-75.
[5] Wang Zhigang, On Subclasses of Close-to-convex and Quasi-convex Functions With Respect to k-symmetric Points, Advances In Mathematics, 38(1), (2009), 44-56.
[6] Zhi-Gang Wang, Chun-Y Gao, Halit Orfan and Sezgin Akbulut, Some subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, General Mathematics, 15(4), (2007), 107-119.

[^0]: ${ }^{1}$ University of Piteşti. Romania.

 Article Info: Received: April 22, 2013. Revised : May 30, 2013
 Published online : June 25, 2013

