Theoretical Mathematics & Applications, vol.3, no.2, 2013, 29-37 ISSN: 1792-9687 (print), 1792-9709 (online) Scienpress Ltd, 2013

On α-uniformly close-to-convex and quasi-convex functions with negative coefficients

Irina Dorca¹

Abstract

In this paper we study a class of α -uniformly starlike functions with negative coefficients, a class of α -uniformly convex functions with negative coefficients, a class of α -uniformly close-to-convex functions with negative coefficients and a class of quasi-convex functions with negative coefficients.

Mathematics Subject Classification: 30C45

Keywords: α -uniformly starlike functions, α -uniformly convex functions, α uniformly close-to-convex functions, quasi-convex functions, negative coefficients.

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U,

$$A = \{ f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0 \}$$
(1)

¹University of Piteşti. Romania.

Article Info: Received : April 22, 2013. Revised : May 30, 2013 Published online : June 25, 2013 and $S = \{ f \in A : f \text{ is univalent in } U \}.$

In [3] the subfamily T of S consisting of functions f of the form

$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j, \ a_j \ge 0, j = 2, 3, ..., \ z \in U$$
(2)

was introduced.

Let T(n, p) denote the class of functions of the form

$$f(z) = z^p - \sum_{p=j}^{\infty} a_p + p z^{l+p}, \ , a_{l+p} \ge 0, \ p, j \in \mathbb{N} = \{1, 2, ...\},$$
(3)

which are analytic in U. We have T(1,1) = T.

The purpose of this paper is to define a class of α -uniformly close-to-convex and quasi-convex functions with negative coefficients. For this, we make use of the following well known results, which are taken from literature.

2 Preliminary Results

We begin with the assertions concerning the starlike functions with negative coefficients (e.g. Theorem 2.1), we continue with the operator $I_{c+\delta}$ (see (4)) and we end by recalling some known results from [5] and [6] that we use forward in our study. The methods used to prove our results are taken from literature.

Theorem 2.1. [2] If $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$ then the next assertions are equivalent:

(i)
$$\sum_{j=2}^{\infty} j a_j \le 1$$

(ii) $f \in T$

(iii) $f \in T^*$, where $T^* = T \bigcap S^*$ and S^* is the well-known class of starlike functions.

Definition 2.1. [2] Let $\alpha \in [0, 1)$ and $n \in \mathbb{N}$, then

$$S_n(\alpha) = \left\{ f \in A : Re \frac{D^{n+1}f(z)}{D^n f(z)} > \alpha, z \in U \right\}$$

30

Irina Dorca

is the set of n-starlike functions of order α . Also, we denote $T_n(\alpha) = T \bigcap S_n(\alpha)$.

In [1] is defined the integral operator:

 $I_{c+\delta}: A \to A, \ c < u \leq 1, \ 1 \leq \delta < \infty, \ 0 < c < \infty$, with

$$f(z) = I_{c+\delta}(F(z)) = (c+\delta) \int_{0}^{1} u^{c+\delta-2} F(uz) du.$$
(4)

Remark 2.1. If $F(z) = z + \sum_{j=2}^{\infty} c_j z^j$, the $f(z) = I_{c+\delta}(F(z)) = z + \sum_{j=2}^{\infty} \frac{c+\delta}{c+j+\delta-1} a_j z^j.$

Also we notice that $0 < \frac{c+\delta}{c+j+\delta-1} < 1$, where $c \in (0,\infty), j \ge 2$, $\delta \in [1,\infty)$.

Remark 2.2. It is easy to prove that for $F(z) \in T$ and $f(z) = I_{c+\delta}(F(z))$ we have $f(z) \in T$, where $I_{c+\delta}$ is the integral operator defined by (4).

In [5] are presented the following classes of analytic functions:

Definition 2.2. [5] Let C_S^* denote the class of functions in S satisfying the following inequality:

$$Re\left\{\frac{(zf'(z))'}{f'(z) + f'(-z)}\right\} > 0, \ (z \in U).$$
(5)

Definition 2.3. [5] Let $UST^{(k)}(\alpha, \beta)$ denote the class of functions in T satisfying the following inequality:

$$Re\left\{\frac{zf'(z)}{f_k(z)}\right\} > \alpha \left|\frac{zf'(z)}{f_k(z)} - 1\right| + \beta, \ (z \in U),\tag{6}$$

where $\alpha \ge 0$, $0 \le \beta < 1$, $k \ge 1$ is a fixed positive integer and $f_k(z)$ are defined by the following equality:

$$f_k(z) = \frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon^{-\nu} f(\varepsilon^{\nu} z), \ (\varepsilon^k = 1, \ z \in U).$$
(7)

If k = 1, then the class $UST^{(k)}(\alpha, \beta)$ reduces to the class of α -uniformly starlike functions of order β . If k = 2, $\alpha = 0$ and $\beta = 0$, then the class $UST^{(k)}(\alpha, \beta)$ reduces to the class S_S^* of starlike functions with respect to symmetric points.

From [4] we know that if $f(z) \in S$,

$$Re\left\{\frac{zf'(z)}{f(z) - f(-z)}\right\} > 0, \ z \in U.$$
(8)

Definition 2.4. [5] Let $UCV^{(k)}(\alpha, \beta)$ denote the class of functions in T satisfying the following inequality:

$$Re\left\{\frac{(zf'(z))'}{f'_{k}(z)}\right\} > \alpha \left|\frac{(zf'(z))'}{f'_{k}(z)} - 1\right| + \beta, \ (z \in U),$$
(9)

where $\alpha \ge 0, \ 0 \le \beta < 1, \ k \ge 1$ is a fixed positive integer and $f_k(z)$ are defined by (7).

If k = 1, then the class $UCV^{(k)}(\alpha, \beta)$ reduces to the class of α -uniformly convex functions of order β . If k = 2, $\alpha = 0$ and $\beta = 0$, then the class $UCV^{(k)}(\alpha, \beta)$ reduces to the class C_S^* .

Theorem 2.2. [5] Let $\alpha \ge 0$, $0 \le \beta < 1$, $k \ge 1$ be a fixed positive integer and $f(z) \in T$. Then $f(z) \in UST^{(k)}(\alpha, \beta)$ iff

$$\sum_{j=1}^{\infty} [(1+\alpha)(jk+1) - (\alpha+\beta)] \cdot a_{jk+1} +$$

$$\sum_{j=2, \ j \neq lk+1}^{\infty} (1+\alpha)ja_j < 1-\beta.$$
(10)

Theorem 2.3. [6] Let $\alpha \geq 0$, $0 \leq \beta < 1$, $k \geq 1$ be a fixed positive integer and $f(z) \in T$. Then $f(z) \in UCV^{(k)}(\alpha, \beta)$ if and only if

$$\sum_{j=1}^{\infty} (jk+1)[(1+\alpha)(jk+1) - (\alpha+\beta)] \cdot a_{jk+1} +$$
(11)
$$\sum_{j=2, \ j \neq lk+1}^{\infty} (1+\alpha)j^2 a_j < 1-\beta.$$

Irina Dorca

Definition 2.5. [6] Let $C^{(k)}(\lambda, \alpha)$ denote the class of functions in A satisfying the following inequality:

$$Re\left\{\frac{zf'(z) + \lambda z^2 f''(z)}{(1-\lambda)f_k(z) + \lambda z f'_k(z)}\right\} > \alpha, \ (z \in U),$$

$$(12)$$

where $0 \leq \alpha < 1, 0 \leq \lambda \leq 1, k \geq 2$ is a fixed positive integer and $f_k(z)$ is defined by equality (7).

Definition 2.6. [6] Let $QC^{(k)}(\lambda, \alpha)$ denote the class of functions in A satisfying the following inequality:

$$Re\left\{z \cdot \frac{\lambda z^2 f'''(z) + (2\lambda + 1)z f''(z) + f'(z)}{\lambda z^2 f''_k(z) + z f'_k(z)}\right\} > \alpha, \ (z \in U),$$
(13)

where $0 \leq \alpha < 1, 0 \leq \lambda \leq 1, k \geq 2$ is a fixed positive integer and $f_k(z)$ is defined by equality (7).

For convenience we write $C^{(k)}(\lambda, \alpha) \cap T$ as $C_T^{(k)}(\lambda, \alpha)$ and $QC^{(k)}(\lambda, \alpha) \cap T$ as $QC_T^{(k)}(\lambda, \alpha)$.

Theorem 2.4. [6] Let $0 \le \alpha < 1$, $0 \le \lambda < 1$, $k \ge 2$ be a fixed positive integer and $f(z) \in T$, then $f(z) \in C_T^{(k)}(\lambda, \alpha)$ iff

$$\sum_{j=1}^{\infty} (1+\lambda jk)(jk+1-\alpha) \cdot a_{jk+1} +$$

$$\sum_{j=2, \ j \neq lk+1}^{\infty} [1+\lambda(j-1)] \cdot ja_j \le 1-\alpha.$$
(14)

Theorem 2.5. [6] Let $0 \le \alpha < 1$, $0 \le \lambda < 1$, $k \ge 2$ be a fixed positive integer and $f(z) \in T$, then $f(z) \in QC_T^{(k)}(\lambda, \alpha)$ if and only if

$$\sum_{j=1}^{\infty} (jk+1)(1+\lambda jk)(jk+1-\alpha) \cdot |a_{jk+1}| +$$
(15)
$$\sum_{j=2, \ j \neq lk+1}^{\infty} [1+\lambda(j-1)] \cdot j^2 |a_j| \le 1-\alpha.$$

3 Main results

We firstly apply the operator $I_{c+\delta}$ (see (4)) on a α -uniformly starlike function of order β with negative coefficients and we prove that the resulting function conserves in the same class of α -uniformly starlike functions of order β with negative coefficients.

Theorem 3.1. Let $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j \ge 2$, $F(z) \in UST^{(k)}(\alpha, \beta)$, $\alpha \ge 0$, $0 \le \beta < 1$, $k \ge 1$ be a fixed positive integer. Then $f(z) = I_{c+\delta}(F(z)) \in UST^{(k)}(\alpha, \beta)$, where $I_{c+\delta}$ is the integral operator defined by (4).

Proof. From Remark 2.2 we obtain $f(z) = I_{c+\delta}(F(z)) \in T$. From Remark 2.1 we have: $f(z) = z - \sum_{j=2}^{\infty} \frac{c+\delta}{c+j+\delta-1} \cdot a_j z^j$, where $0 < c < \infty$, $j \ge 2$, $1 \le \delta < \infty$.

From $F(z) \in UST^{(k)}(\alpha, \beta)$, by using Theorem 2.2, we have:

$$\sum_{j=1}^{\infty} [(1+\alpha)(jk+1) - (\alpha+\beta)] \cdot a_{jk+1} +$$
(16)
$$\sum_{j=2, \ j \neq lk+1}^{\infty} (1+\alpha)ja_j < 1-\beta.$$

Using again Theorem 2.2 we observe that it is sufficient to prove that:

$$\sum_{j=1}^{\infty} [(1+\alpha)(jk+1) - (\alpha+\beta)] \cdot \frac{c+\delta}{c+jk+\delta} +$$

$$\sum_{j=2, \ j \neq lk+1}^{\infty} (1+\alpha)j \cdot \frac{c+\delta}{c+j+\delta-1} < 1-\beta.$$
(17)

From hypothesis we have

$$0 < \frac{c+\delta}{c+jk+\delta} < 1 \quad and \quad 0 < \frac{c+\delta}{c+j+\delta-1} < 1.$$
(18)

Thus, we see that, by using (16) and (18), the condition (17) holds. This means that $f(z) \in UST^{(k)}(\alpha, \beta)$.

Using a similar method as in Theorem 3.1, we apply the operator $I_{c+\delta}$ (see (4)) on a α -uniformly convex function of order β with negative coefficients and

Irina Dorca

we prove that the resulting function conserves in the same class of α -uniformly convex functions of order β with negative coefficients.

Theorem 3.2. Let $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j \ge 2$, $F(z) \in UCV^{(k)}(\alpha, \beta)$, $\alpha \ge 0$, $0 \le \beta < 1$, $k \ge 1$ be a fixed positive integer. Then $f(z) = I_{c+\delta}(F(z)) \in UCV^{(k)}(\alpha, \beta)$, where $I_{c+\delta}$ is the integral operator defined by (4).

Next, we apply the operator $I_{c+\delta}$ (see (4)) on a α -uniformly close to convex function of order β with negative coefficients and we prove that the resulting function conserves in the same class of α -uniformly close to convex functions of order β with negative coefficients.

Theorem 3.3. Let $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j \ge 2$, $F(z) \in C_T^{(k)}(\alpha, \beta)$, $\alpha \ge 0$, $0 \le \beta < 1$, $k \ge 1$ be a fixed positive integer. Then $f(z) = I_{c+\delta}(F(z)) \in C_T^{(k)}(\alpha, \beta)$, where $I_{c+\delta}$ is the integral operator defined by (4).

Proof. From Remark 2.2 we have $f(z) = I_{c+\delta}(F(z)) \in T$. From Remark 2.1 we have: $f(z) = z - \sum_{j=2}^{\infty} \frac{c+\delta}{c+j+\delta-1} \cdot a_j z^j$, where $0 < c < \infty, j \ge 2$, $1 \le \delta < \infty$.

From $F(z) \in C_T^{(k)}(\alpha, \beta)$, by using Theorem 2.4, we have:

$$\sum_{j=1}^{\infty} (1+\lambda jk)(jk+1-\alpha) \cdot a_{jk+1} +$$

$$\sum_{j=2, \ j \neq lk+1}^{\infty} [1+\lambda(j-1)]ja_j \le 1-\alpha.$$
(19)

Using again Theorem 2.4 we notice that it is sufficient to prove that:

$$\sum_{j=1}^{\infty} (1+\lambda jk)(jk+1-\alpha) \cdot \frac{c+\delta}{c+jk+\delta} +$$

$$\sum_{j=2, \ j\neq lk+1}^{\infty} [1+\lambda(j-1)]j \cdot \frac{c+\delta}{c+j+\delta-1} \le 1-\alpha.$$
(20)

From hypothesis we have

$$0 < \frac{c+\delta}{c+jk+\delta} < 1 \quad and \quad 0 < \frac{c+\delta}{c+j+\delta-1} < 1.$$

$$(21)$$

Thus, we obtain, by using (19) and (21), that the condition (20) holds. This means that $f(z) \in C_T^{(k)}(\alpha, \beta)$.

We end our research by taking into account a similar method as in Theorem 3.3, where we apply the operator $I_{c+\delta}$ (see (4)) on a quasi-convex function of order β with negative coefficients and we prove that the resulting function conserves in the same class of quasi-convex functions of order β with negative coefficients.

Theorem 3.4. Let $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j \ge 2$, $F(z) \in QC_T^{(k)}(\alpha, \beta)$, $\alpha \ge 0$, $0 \le \beta < 1$, $k \ge 1$ be a fixed positive integer. Then $f(z) = I_{c+\delta}(F(z)) \in QC_T^{(k)}(\alpha, \beta)$, where $I_{c+\delta}$ is the integral operator defined by (4).

ACKNOWLEDGEMENTS. This work was partially supported by the strategic project POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the European Social Fund-Investing in People.

References

- M. Acu and S. Owa, Note on a class of starlike functions, Proceeding of the International Short Joint Work on Study on Calculus Operators in Univalent Function Theory, Kyoto, (2006), 1-10.
- [2] G.S. Sălăgean, Geometria Planului Complex, Ed. Promedia Plus, Cluj -Napoca, 1999.
- [3] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 5, (1975), 109-116.

- [4] K. Sakaguchi, In certain univalent mapping, J.M. Soc. Japan, 11, (1959), 72-75.
- [5] Wang Zhigang, On Subclasses of Close-to-convex and Quasi-convex Functions With Respect to k-symmetric Points, Advances In Mathematics, 38(1), (2009), 44-56.
- [6] Zhi-Gang Wang, Chun-Y Gao, Halit Orfan and Sezgin Akbulut, Some subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, *General Mathematics*, 15(4), (2007), 107-119.