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Abstract 

To date in literature, GARCH model has been described not suitable for non-linear 

foreign exchange series and therefore this paper proposes an Augmented GARCH 

model that could capture both linear and non-linear behavior of data. The 

properties of this new model is derived and found to have a minimum variance 

compared with GARCH model. We employ the use of Brock-Dechert-

Scheinkman (BDS) test statistic to confirm the suitability of GARCH model on 

the data; the new methodology proposed is illustrated with foreign exchange rate 

data from Great Britain (Pound) and Botswana (Pula) against United States of 

America (Dollar).  
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1 Introduction 

The autoregressive conditional heteroscedasticity model (ARCH), 

introduced by Engle (1982) and its generalization GARCH, introduced by 

Bollerslev (1986) have been widely applied to model volatility in financial time 

series. These models have been useful because they are convenient representation 

of the persistence of variance over time despite the lack of statistical and 

economic theory justification (Hall et al., 1989). Several studies have investigated 

the adequacy of GARCH model in financial time series. Claudio and Jean (2011) 

used GARCH to model stock market indices and concluded that the model fails to 

capture the statistical structure of the market returns series for all the countries 

economies investigated. Lim et.al.(2005) employed the Hinich portmanteau 

bicorrelation test to determine the adequacy of GARCH model for eight Asian 

stock markets. They conclude that this model cannot provide an adequate 

characterization for the underlying market indices. Brooks and Hinich (1998), 

Liew, et.al.(2003) and Lim et.al (2004) have studied the behavior of exchange 

rates data using GARCH models, it was concluded that these models could not 

capture adequately the statistical properties of non-linearity present in the series. 

Besides these findings, political and financial instability that arises from period to 

period in most countries produces episodic non-linearities in the foreign exchange 

markets indices (Bonilla et.al. 2006 and Romero-Meza et.al. 2007), if the 

procedure utilized in the analysis of foreign exchange is not adequate it may 

jeopardize forecasting efficacy and lead to distortion of inference made. It 

therefore may be of interest to examine the statistical properties of modified 
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GARCH model and its suitability in the presence of non-linearities behavior of 

exchange rate data. 

This paper examines the statistical properties of augmented GARCH model; 

the augmentation is performed using Bi-linear function to capture the instability of 

the non-linearity in the data set. We analytically compare the new model with 

conventional GARCH model using the model variance. The Brock-Dechert-

Scheinkman test (BDS) is applied to test the adequacy of GARCH model on the 

series used. Guglieimo et.al (2005) have utilized this test statistic to determine the 

adequacy of GARCH models for capturing non-linearity in data set. The 

procedure involves subjecting the standardized residuals of the fitted GARCH 

models to BDS under the null hypothesis of GARCH sufficient characterization of 

the series. If the BDS test rejects the null hypothesis using appropriate critical 

values, then the fitted GARCH model is assumes to be inadequately characterized 

the data. Monthly data used in this paper covered the period of January 1975 to 

December 20011 (444 months). The behaviors of the series examined are as 

shown in figures 1a to 2b. Test for stationarity was carried out using Augmented 

Dickey-Fuller test and unit root test were performed. 

      The remaining part of this paper is organized as follows: section 2 

covers the specification  of augmented GARCH models, efficiency of AGM, 

estimation of the parameters of augmented GARCH model (AGM), properties of 

derived estimators of AGM, section 3, empirical illustration, identification of 

non-linearity status of the series with BDS test, identification of stationarity 

condition of series, estimation of classical GARCH and augmented GARCH 

models  section 4 empirical comparison of models and conclusion. 
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2  Specification of augmented GARCH models 

Literature has shown that financial time series data present volatility 

clustering effects, and this volatility occurs intermittently. To take care of this 

situation researchers make use of a conditional variance model, where the variance 

of the errors is allowed to change over time in an autoregressive conditional 

heteroskedasticity framework. Following Bollerslev (1986), the ( ),GARCH p q  

model can be represented in the following form: 

 Let ( ){ }ty  be the time series of an exchange rate return, then 

  ( ) t tty σ ε=  

  2 2 2
0 1

1 1

p q

t i t j t j
i j

yσ α α β σ− −
= =

= + +∑ ∑                                           (1)  
 

where 0 0, 0iα α> ≥  and innovation sequence { }i
ε ∞

=−∞
is independent and 

identically distributed ( )iid  with ( )0E ε =0 and ( )2
0E ε =1. The main idea is that

2
tσ , the conditional variance of ty  given information available up to time 1t −  has 

an autoregressive structure and is positively correlated to its own recent past and 

to recent values of the squared return, 2
ty . This captures the idea of volatility being 

“persistent”, large (small) values of 2
ty  are likely to be followed by large (small) 

values. The GARCH model formulation captures the fact that volatility is 

changing in time. The change corresponds to a weighted average among the long 

term average variance, the volatility in the previous period, and the fitted variance 

in the previous period as well. The model described in equation (1) is used to 

parameterize financial time series and in particular foreign exchange. An 

augmented GARCH model is an extension of the GARCH model as tool for 

modeling financial time series. It allows us to capture asymmetries in the 

conditional mean and variance of financial and economic time series by means of 

interactions between past shocks and volatilities. The bilinear GARCH models 
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take into account variations between the independent variables as well as co-

variations between the variables. This is very important in the study of financial 

market data where the covariance between independent variables may play a 

significant role in determining market volatility. We use AGM because we 

discovered that its modeling is data driven as we augment the model ty  to this 

error term and observe series. The inclusion of bilinear process to equation (1) will 

capture the non-linear behavior part of ty , bilinear takes into account the variation 

within independent variables as well as co-variations between the variable. On the 

other hand Augmented-GARCH models (AGM) allow us to capture asymmetries 

in the conditional variance of financial and economic-time series by means of 

interactions between past shocks and volatilities; thus we postulate an augmented 

GARCH  ( )AGM  as: 

 
1

p q

t t t ij t i t j
i j i

y yσ ε τ ε− −
= =

= +∑∑                         (2) 

To investigate the proportion of (2) we consider its mean and variance as 

follows:  mean of ty  is derived using 
1

( ) ( ) ( ) as
p q

t t t ij t i t j
i j i

E y E E yσ ε τ ε− −
= =

= +∑∑
 

         
{ } 2

1

0            i j

 ,  i=j
p

t
ij

i

E y
εσ τ

=

∀ ≠
=  ∀
∑

                                                                  (3)                                  

To derive the variance of  ty  from the conventional expression given as: 

                ( ) ( )( )22( )t t tVar y E y E y= −
             (4)

 

Consider an alternative representation  

 ( )2 2 2 2 1t t t t tZ y σ σ ε= − = −  

 2 2 ,t t ty Zσ= +  
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where tZ  is a martingale differences with mean zero  

 2 2
0 1

1 1

p q

i t j t j t
i j

y Zα α β σ− −
= =

= + + +∑ ∑  

            2 2
0 1

1 1 1

p p q

i t j t j j k j t
i j j

y Z Zα α β σ β− − −
= = =

= + + − +∑ ∑ ∑
        

 

If we denote ( )max ,p p q= , 0iα =  for 1 p>  and jβ = 0 for j q> , then the above 

can be written as: 
P

2 2
0 i i 1

i=1 1
 = + ( + )                       

q

t t j t j t
j

y y Z Zα α β β− −
=

− +∑ ∑  

In other words 2
ty  is an ARMA process with martingale difference 

innovations. Using stationarity,  i.e. ( )2
tE y  = ( )2

1tE y − , the unconditional variance 

is now easy to obtain 

( ) ( ) ( ) ( ) ( )2 2
0 1

1 1

p q

t i j t j t j t
i j

E y E y E Z E Zα α β β− −
= =

= + + − +∑ ∑
  

            
( ) ( )2

0
1

p

t i j
i

E yα α β
=

+ +∑ ,  

reduces to 

( )
( )

2 0

1
1

t p

i j
i

E y α

α β
=

=
− +∑

            (5a) 

Also using equation 2 we have 
2 2 2 2 2 2

1 1t t t I t ty yσ ε τ ε− −= +  

( ) ( ) ( )2 2 2 2 2
1t t t i tE y E E yσ ε τ −= +  

( ) ( )
( ) ( ) ( )

2
2 0

2
21 1 1

t
t

i
i j i

E
E y

σ α
τ α β τ

= =
 − − + − 
 

∑
          (5b) 
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Using (3) and (5a and 5b) in (4) gives 

                    
( )

( ) ( )

0
p

i
l=1

20
p

2
i

l=1

  i j
1

( )
 

1 1

i

t

i i

Var y

α

α β

α

α β τ

 ∀ ≠
 − +


= 
 −∆
  

− + − 
 

∑

∑

                                       (6) 

where ( )22 4 ,    i i jεσ τ∆ = ∀ =∑ .   

 

 

2.1 Efficiency of AGM 

To compare the efficiency of the AGM with GARCH, we relate the 

variances of AGM to that of classical GARCH as follows: 

The variance of AGM was derived as: 

Let 1T  and 2T  be two estimators of a parametric function ( ); nk Rθ θ ∈ ; is 

the Euclidian space. The efficiency of 1T  relative to 2T  is defined as:  

{ } { }
{ }

2
2 1 1

1

/
MSE T

e T T
MSE T

=  

If for all { }1 2 2, ,T 1,  e T Tθ ≤  is more efficient than 1T , otherwise 1T  is more 

efficient than 2T . If 1T  and 2T  are unbiased estimators of ( )k θ , the efficiency of 

1T  relative to 2T  is the ratio of  ( ) ( )1 2 to V T V T are unbiased estimators, Then the 

efficiency of AGM relative to GM using eguation (6) and (7) is as follows: 

( )( )
( )( )

( )( )

20

2
1

0 0

1

1 ( ) 1
1 1  

 
1 ( )

p

i i
t AGM i ii

t GM p

i i
i

Var y

Var y

α

α β α β
ξα α

α β

=

=

− ∆
− + ∆ − +

= = − = −

− +

∑ ∑

∑
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where 
( )( )2

0

1 i iα β
ξ

α
∆ − +

= ∑ .
 

It can be seen that if 1ξ > , then AGM is more efficient than GM; besides 

the 2∆  is positive and replaces the variance of AGM compared with that of GM. 

We shall look at empirical implications of these quantities later. 

 

 

2.2 Estimation of the parameters of augmented GARCH model  

      (AGM) 

To estimate the parameters of the models in equation (2), a two stage 

technique is suggested as follows. The reduced form of equation (2) is: 

                                     t ij ij ty z vτ= +∑∑            (7)  

In matrix form Y z vτ ′= + , where we assume ( )20,t jv N σ  and 

( )i jE 0  v v i j= ∀ ≠ .   

                                            Y z vτ ′= +                         (8) 

Now, at the first stage  we apply the method of MLE to obtain parameters of 

(1) and the second stage given  independence of the parameters in model (1), we 

apply OLS to the reduce form (8), thus we have:  

                                ( )ˆ Z Z Z Yτ −′ ′′=                         (9) 

                               [ ] ( ) 11 1 1ˆE E Z Z Z Z Vτ τ τ
−

−

  = + =    
 

and   

                 ( )( ) ( ) ( )( ) ( )1 1 1 1 2 1ˆ ˆ ˆ( )Var E E Z Z Z VV Z Z Z Z Zτ τ τ τ τ σ
′ ′− −′ ′= − − = =  

 

The estimates in (9) are unbiased and consistent and usual test of hypothesis can 

be undertaken to ascertain their significance. 
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2.3 Properties of derived estimators of AGM  

We evaluate the properties of the derived estimator of AGM in this section 

based on some basic properties of statistical estimator. 

 

2.3.1 Linearity and unbiased properties of least-squares estimators  

From equation (10), we have 

          
2

ˆ i i
i i

i

z Y
k Y

z
τ = =∑ ∑∑

                                                   (10) 

Such that 2
i

i
i

zk
z

=
∑

. This shows that τ̂  is a linear estimator because it is a linear 

function of Y ; actually it is a weighted average of iY  with ik  serving as the 

weights. The assumptions on weights ik , are  

(i)     iz  and ik  are assumed to be non-stochastic  

(ii)    0ik =∑   

(iii)  ( ) 12 2
i ik z

−
=∑ ∑ , and  

(iv)  1i ik z =∑ . 

These assumptions can be directly verified from the definition of ik ; for 

instance,  

2 2

1i
i i

i i

zk z
z z

 
= =  

 
∑ ∑ ∑∑ ∑

. 

Since for a given sample 2
iz∑  is known = 0, since iz∑ , sum deviation from the 

mean value, is always zero.  

Now substitute 1 2i i iY z uτ τ= + +  into (10) to obtain  

 
( )1 2 1 2

2

ˆ i i i i i i i i

i i

k z u k k z k u

k u

τ τ τ τ τ

τ

= + + = + +

= +
∑ ∑ ∑ ∑

∑                     (11) 
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Now taking the expectations of (11) on both sides and noting that ik , being 

non-stochastic, can be treated as constants, we obtain 

   ( ) ( )2 2ˆ  = .i iE k E uτ τ τ= +∑                 

Since ( ) 0iE u =  by OLS  assumption. Therefore, 2τ̂  is an unbiased estimator of 

2τ̂ . Likewise it can be proved that 1̂τ  is also an unbiased estimator of 1̂τ . 

 

2.3.2 Minimum-variance property of least-squares estimators of AGM 

It was shown that the least-squares  2τ̂  is linear as well as unbiased (this 

holds for 1̂τ  also). To show that these estimators also have minimum variance in 

the class of all linear unbiased estimators, consider the least squares estimator 2τ̂

giving as 

2ˆ i ik Yτ =∑   

where  
( )2 2

i i
i

ii

z z zk
zz z

−
= =

− ∑∑
. 

This shows that 2τ̂  is a weighted average of the ' ,Y s  with ik  serving as the 

weights. 

Let us define an alternative linear estimator of 2τ̂  as  

2 i iwYτ ∗ =∑  

where iw  are weights, not necessarily equal ik . Now, 

  ( ) ( ) ( )2 1 2 1 2 .i i i i i i iE w E Y w z w w zτ τ τ τ τ∗ = = + = +∑ ∑ ∑ ∑  

Therefore for 2τ̂  to be unbiased, we must have  

0iw =∑    and    1i iw z =∑ . 

Also we may write   

( ) ( )2 2 2
2 1var var vari i i i

wY w Y wτ σ∗ = = =∑ ∑ , 

where 
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( ) ( )

( )

2

2

2
2 2

2 2
2 2 2

22 2 22

2 2
2 2

var Y var u

2

1

i i

i i
i

i i

ii i i
i i

i i ii

i
i

i i

z zw
z z

zz z zw w
z z zz

zw
z z

σ

σ

σ σ σ

σ σ

= =

 
= − +  

 

    
= − + + −        

    

   
= − +      

   

∑ ∑ ∑
∑∑ ∑∑ ∑ ∑∑

∑ ∑ ∑

  

(12)

  

Equation (12) reduces to   

                                     ( )
2

2 22 ˆvar var
iz

στ τ∗ = =
∑

                     (13) 

By equations (10) through (13) we have shown that the derived model estimators 

of AGM parameters satisfy the conventional properties of estimators’ vis-à-vis 

unbiasedness, minimum variance and best linear unbiased estimators (BLUE). 

 

 

3 Empirical illustration 

The exchange rate data collected for Great Britain and Republic of 

Botswana taking United States of America as basis for comparism is utilized for 

the empirical illustration of our proposed methodology.  The statistical package 

for the data analysis in this paper is E-views. The analysis presented here focused 

on monthly exchange rate, of two economies, viz-a –viz developed economy 

represented by Great Britain and developing economy represented by Republic of 

Botswana, the currencies are denominated in British Pound and Botswana Pula 

against United States of America Dollar. 
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3.1 Identification of non-linearity status of the series with BDS test 

The currencies exchange rates were analyzed through the use of E-view and 

the hypothesis was accordingly set as follows: 

H0:  GARCH model is a sufficient characterization of series 

H1:  H0 is not true 

In Table 1 the null hypothesis that the GARCH model is a sufficient 

characterization of series are rejected, pointing to the fact that this result agreed 

with Claudo A.B and Jean S (2011), Chris B and Hinich M.J. (2011), Claudo A.B 

et.al (2008), Kiang-ping lim, et al (2005), Chris B and Hinich M.J (1999) just to 

mention the few that GARCH is not adequate for financial time series data. 

 

Table 1: BDS test statistic values 
      
            

Series BDS Statistic Std. Error z-Statistic Normal Prob. Bootstrap Prob. 

 Pound  0.525377  0.004723  111.2353  0.0000  0.0000 

 Pula  0.539863  0.004292  125.7829  0.0000  0.0000 

      
       

 

3.2 Identification of a stationary condition of the series 

The line graph of all the series (figures 1a and1b) indicates the non-

stationarity of the series, since volatile values are evident and these do not 

fluctuate around a constant mean. We thus examine the first differences of the 

series (Figures 2a and 2b) since it has no persistent trend and its values fluctuate 

around a constant mean of zero. 
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Figure 1a: Line graph of the leveled exchange rate of Dollar/pula 

 
Figure 1b: Line graph of the leveled exchange rate of Dollar/pula 

 

Figure 2a: Line graph of the first difference exchange rate of Dollar to Naira 

 
Figure 2b: Line graph of the first difference of exchange rate of Dollar/pula 
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The stationary condition of the series can be formally verified by using unit 

root test (URT) for the leveled and first differences of the series. We test for a unit 

root using the augmented Dickey-Fuller (ADF) statistic. At level all the series are 

not stationary but at first difference all series are stationary as shown in Tables 

(2a) and (2b) below. 

 

Table 2a: Unit Root Test Output for the leveled for the Series 

Series ADF-Test statistic Critical value 

(5%) 

Mackinnon prob•  

Pound -1.8826 -2.8678 0.3405 

Pula 0.2013 -2.8678 0.9725 

 

Table 2b: Unit Root Test Output for the first difference for the Series 

Series ADF-Test statistic Critical value 

(5%) 

Mackinnon prob•  

Pound -19.9106 -2.8678 0.0000 

Pula -21.6683 -2.8678 0.0000 

 

 

3.3 Estimation of classical GARCH model 

To generate parameter estimates for the GARCH model, we used E-view to 

analyzed differenced data for the study as follows: 

Each of the currency viz-a-viz Pound and Pula were individually  analysed.  

Based on tables 3a and 3b the estimated GARC(1,1) model are obtained for 

both Pound and Pula as follows: 

/ ( )POUND US t t ty σ ε=  

where tσ  and  tε  are obtainable from the fitted model:  
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                   / ( ) 10.995140POUND US t t ty y ε−= +   

and                                                                                                                        (14)             

                 2
tσ  = 0.168022 + 0.972189 2

1tε − - 0.000236 ( )2
1tσ −  

/ ( )PULA US t t ty σ ε=  

where tσ  and  tε  are obtainable from the fitted model:  

                / ( ) 11.00347PUKA US t t ty y ε−= +   

and                                                                                                                        (15) 

                 2
tσ  = 0.47613 + 1.90366 2

1tε − - 0.91061 ( )2
1tσ −    

The outputs of the result are as follows: 

 

Table 3a: GARCH model estimates for pound 
Dependent Variable: POUND   

Method: ML - ARCH (Marquardt) - Normal distribution 

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   

     
     DATE 0.000311 7.64E-07 407.4377 0.0000 

     
     Variance Equation    

     
     C 0.168022 4.84E-05 3.478943 0.0005 

RESID(-1)^2 0.972189 0.233697 4.160039 0.0000 

GARCH(-1) -0.000236 0.026571 -0.008892 0.9929 

     
     R-squared 0.738650     Mean dependent var 1.144981 

Adjusted R-squared 0.729948     S.D. dependent var 0.615260 

S.E. of regression 0.811269     Akaike info criterion -0.589523 

Sum squared resid 291.5639     Schwarz criterion -0.552623 

Log likelihood 134.8741     Hannan-Quinn criter. -0.574971 

Durbin-Watson stat 0.007310    
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Table 3b: GARCH model estimate for pula 

 

 

 

 
 

     

        

        

     

     

      

     

       

     
             

     
          

     
          

     
          

     

     

     
               

           

            

           

          

     
      

 

     

        

        

     

     

      

      

       

    
Dependent Variable: PULA   

Method: ML - ARCH (Marquardt) - Normal distribution 

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

     
      Coefficient Std. Error z-Statistic Prob. 

     
     DATE 0.001026 2.75E-05 37.32744 0.0000 

     
     Variance Equation    

     
     C 0.476132 0.100841 4.721592 0.0000 

RESID(-1)^2 1.903622 0.309589 6.148864 0.0000 

GARCH(-1) -0.910605 0.013670 -66.61453 0.0000 

     
     R-squared 0.311629 Mean dependent var 3.244710 

Adjusted R-squared 0.300503 S.D. dependent var 2.152726 

S.E. of regression 1.464380 Akaike info criterion 3.388455 

Sum squared resid 2672.195 Schwarz criterion 3.425355 

Log likelihood -748.2371 Durbin-Watson stat 0.003959 

     
      

 

3.4 Estimation of augmented GARCH model 

Estimation of parameters here was done here in two stages as the standard 

deviation obtained from classical GARCH was used to obtain the parameters of 

augmented GARCH models. The reduced form in equation (10) was estimated by 

making use of   Bilinear (1,1) the reason for the choice of bilinear (1,1) was due to 

the fact that few parameters make the models to be parsimonious;  from where sets 

of data were generated and OLS applied and the following results were obtained 

for the two series (Pound and Pula foreign exchange with respect to Dollar). 
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Table 4a: Augmented GARCH model for pound 

Dependent Variable: t t ty σ ε− =ACMINFIT(POUND)    

Method: Least Squares   

Date: 10/09/12   Time: 14:56   

Sample: 1975M01 2011M12   

Included observations: 444   

ACMINFIT =C(1)* 1 1 1t tyτ ε− −    

     
     
 Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 1.621385 0.011382 142.4496 0.0000 

     
     R-squared 0.963201     Mean dependent var 0.524809 

Adjusted R-squared 0.963201     S.D. dependent var 0.618151 

S.E. of regression 0.568581     Akaike info criterion -1.424188 

Sum squared resid 6.229243     Schwarz criterion -1.414963 

Log likelihood 317.1698     Hannan-Quinn criter. -1.420550 

Durbin-Watson stat 0.505874    

     
     

 

Table 4a: Augmented GARCH model for pula 

Method: Least Squares   

Date: 10/09/12   Time: 15:18   

Sample: 1 444   

Included observations: 444   

ACMINFIT =C(1)* 1 1 1t tyτ ε− −    

     
      Coefficient Std. Error t-Statistic Prob.   

     
     C(1) 0.486261 0.000736 660.2862 0.0000 

     
     R-squared 0.998666     Mean dependent var 1.199798 

Adjusted R-squared 0.998666     S.D. dependent var 2.142259 

S.E. of regression 1.078249     Akaike info criterion -2.255581 
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Sum squared resid 2.712477     Schwarz criterion -2.246356 

Log likelihood 501.7389     Durbin-Watson stat 0.479142 

     
      

 

     

By using the values generated in Table 4a the AGM fitted is 

( ) 1 10.11382
1.621385t t t t ty yσ ε ε− −= +  

with variance of the model 0.01406. Also using the values generated in 4b, the 

AGM fitted is   

( ) 1 10.000736
0.486261t t t t ty yσ ε ε− −= +  

with variance of the model 0.006123. 

 

 

4  Empirical comparison of models and  conclusion 

Table 5 summarized the results obtained for the variances of both classical 

GARCH models (GM) and augmented GARCH models (AGM), this will certainly 

enable us to appreciate the efficiency of the new model. The implication of this is 

that the augmented GARCH models (AGM) is more efficient than GARCH model 

(GM) and this actually assert the superiority of the new model. Forecasting 

exchange rate is traditionally implemented using GARCH model, the shortcoming 

of this model is that data analyzed often exhibit some non-linearity that this model 

cannot captured as shown when the BDS was used to analyze the data. For its 

inability to capture the non-linear components of the series, the model was 

augmented using Bi-linear and this produced a better result than the classical 

GARCH model in term of their variances. For instance, the variances of classical 

GARCH model for Pound and Pula are 0.6582 and 2.1444 respectively while 

Augmented-GARCH gave 0.3233 for pound and 1.1626 for Pula in that order. The 

superiority of this model lies on the variance reduction. The implication of this 

result is that Augmented-GARCH can be used to forecast foreign exchange in 
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these two countries more accurately and will give a desire result more than 

classical GARCH model.  

 

Table 5: Variances and relative efficiencies of GM and AGM 

SERIES G.M A.G.M R.E. 

POUND 0.6582 0.3233 0.49 

PULA 2.1444 1.1626 0.54 

 
From the fitted model we have the following table on the variance and relative 

efficiencies computed and the superiority of AGM over GM is evident. 
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