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Performance Based Diversification
How To Create a Multistrategy hedge fund?

Donatien Tafin Djoko!

Abstract

This article investigated the implications of distribution free invest-
ment strategies on constructing portfolio of individual hedge funds.
The author proposes a dynamic, performance-adaptive asset allocation
model that allows to optimally diversify across multiple hedge funds
styles. The approach to be followed is related to the adaptive allocation
of resources between elementary concurrent from the perspective of the
theory of sequential investment strategies. The methodological frame
gives up the common global stationary hypothesis and approximates
locally, a nonstationary paradigm. The approach is then evaluated in a
multivariate basis, by examining the performances of several time evolv-
ing portfolio strategies in a sample of 16 funds. Empirical experiments
are conducted across 5 different hedge fund categories as classified by
the Hedge Funds Research and Barclay CTAs databases. We find that
the dynamic performance-adaptive allocation strategies amongst hedge
funds yield superior annualized average performances, compared to vari-
ous alternative benchmarks. These findings are robust to different hedge

fund restriction provisions such as, lockup and redemption periods.
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1 Introduction

This article reports a methodology for constructing portfolios of hedge
funds that drops the common assumption of global stationarity. Nonstation-
ary modeling has a long history in empirical financial analysis. The reader
may refer to [16], [24], and [23] for a more recent investigation. Working under
nonstationarity has always been motivated by the belief that financial market
microstructure is continuously changing, with direct direct consequences in
asset price dynamics.

To date, portfolio managers tend to use mean-variance (MV) optimization
techniques to construct optimal risk-return balanced asset allocation. How-
ever, to perform a MV allocation of resources, the manager has to provide the
next-period variance-covariance matrix. One easiest way is to use the historical
covariance matrix. A common extension of MV allocation is the construction
of volatility timing strategy using the dynamic conditional correlations (DCC)
model of [8]. In this regard, [26] focus on the case where an investor or funds
of funds manager is concerned with the volatility of a portfolio of hedge fund
indexes. Their work successfully extends the static MV asset allocation frame-
work to allow for time varying volatility of returns. However, like most of
the multivariate methodological frame for financial returns, the former model
assumes that the volatility is homogeneous and stationary. Additionally, the
standard MV portfolio construction involving hedge funds has been subject
to criticisms in the empirical financial literature. The most common criticism
is that MV analysis is suitable, exclusively for normally distributed returns,
which is far from being a hedge fund characteristic. Empirical analyzes of
hedge fund return series tend to exhibit asymmetry and excess kurtosis, which
imply theoretical issues to implement a proper MV portfolio construction.

Assuming a MV criterion directly implies that the data generating process
of returns is Gaussian, or at least that moments over the first and the second
are trivial for asset allocation. Early empirical study reveals that, the MV

criterion fails to approximate the expected utility in non-normality cases. In
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this vein, [14] express the view that systematic skewness (co-skewness with
the market return) yields economic value to investors. In a recent manuscript,
[17] examine the additional value of taking the complexity of time varying
higher moments into the underlying distribution of returns. [17] estimate the
model in a Bayesian configuration and show that higher moment investment
strategies (up to order four) significantly outperform the MV strategy.

MV portfolio modeling and extensions of it are dominated by stationary
long-memory, conditional framework. In this paper, [ advocate an approximate
nonstationary paradigm to construct a dynamic portfolio allocation of capital
across individual hedge funds. Due to the unregulated status of their business
model, hedge fund managers enjoy enormous flexibility in pursuing investment
returns. The industry investment philosophy is time varying and evolves ac-
cording to the structure of the market. Therefore, investing in hedge funds
through a stationary-constructed portfolio of individual hedge fund strategies
can bring to seriously underestimating the risk associated to the portfolio, with
potential drawback in terms of market timing ability and risk management.
The changing nature of the data generating process requires a consequent ad-
justment of the approximating stationary approach. The goal of the article is
to investigate the economic benefits of locally stationary versus global station-

ary (parametric) models.

The building block of our locally stationary model is to identifying periods
of time where market conditions are ‘similar’ to the current trading period.
This specification will provide intervals of homogeneity in which an optimal
allocation of resources can be decided. As a proxy of market conditions, the
author intends to capitalize on the vast literature on factor-based hedge fund
replication. I use an approximate version of [15]s six factors model, to identify
the variables that characterize the market at each trading period. The first
step of the method consists of identifying the instances where the state of the
market, i.e. the risk factor specification, was ‘similar’ to the current conditions.
Then, only the hedge fund return information from these instances are the

input to construct the current optimal allocation strategy.

The definition of the ‘distance’ between past and current market conditions
is, of course, a crucial aspect in applying the methodology. Since we do not
have a priori knowledge of the variables (market factors) that are instrumental

in defining the state of the market, a refinement of the methodology puts in
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competition a number of elementary strategies. Each one of them is character-
ized by a proxy for the market conditions, i.e. a given set of relevant variables
(and a depth of the history of these variables) whose values are used to define
‘similar’ or ‘close’ market conditions. For each one of the market condition
proxy, a portfolio is constructed, based on the time instances identified by the
proxy as ‘similar’ to those of the allocation moment. The final investment
decision follows then an adaptive, time varying allocation of resources between
different proxy portfolios based on their recent past performance. See Section
2 for further details.

Once homogeneous market proxies have been identified, I implemented
two types of locally stationary models: A fully nonparametric and an asymp-
totic MV. The later is an extension of [10] kernel-based, sequential investment
strategy in which the investor maximizes his wealth in the long run without
any assumption of the underlying probabilistic structure of the data. The
portfolio allocation is time evolving and distribution free. The former is a
Markowitz-type portfolio in which a risk-adverse investor carries each time a
mean-variance optimization, however without knowing the statistical charac-

terizations of the underlying process. See [12] additional information.

Research on investment strategies with minimal assumptions on the under-
lying distribution driving the available assets, has been addressed by various
authors such as [3], [2]. [11] has shown the existence of universal portfolios,
which can achieved asymptotically, the maximum rate of growth of capital
without any knowledge of the data generating process. Given the complex
structure of hedge fund investment vehicles, I work with minimal assumptions
on funds return’s distribution. In fact, the only assumption is that monthly
fund’s gain factor ((1+7;;), where 7 is the return of fund j at month ¢) forms
a locally stationary and ergodic process. In theory, this assumption allows
to the allocation strategy to reach in the long, the maximum rate of growth
of capital that can be obtained knowing completely the distribution of the

underlying process.

As the paper addresses the issue of dynamic portfolio allocation in a non-
stationary paradigm, a comparison with equally weighted constantly rebal-
anced and dynamic mean-variance portfolios is implemented. The parametric,
stationary dynamic MV optimization requires a statistical model to predict

subsequent volatility and the conditional expected returns. The dynamic con-



Donatien Tafin Djoko 275

ditional volatility forecast is carried out using the [27] generalized orthogonal
GARCH(1,1) model.

The main contribution of this article is directly related to the nonparamet-
ric structure of the analysis. Indeed, I move away from the parametric and
conditional perspective, to a nonstationary and distribution free paradigm.
This work is the first, at our knowledge, that clearly account for time variabil-
ity and nonparametric design in constructing portfolios of individual hedge
funds. Empirical studies are implemented in various hedge fund data sets,
including the Chicago-based HFR and Barclay CTAs databases. Our findings
suggest that unconditional models are able to uncover and exploit hidden past
dependence structures between funds’s gain factors. The model allows to in-
corporate time variation and is constantly out-of-sample. A clear advantage
of this model is that it is completely data driven and remains computationally
tractable even when several funds are incorporated.

The remainder of the paper is structured as follows. The methodology be-
hinds the portfolio construction strategy is documented in Section 2. Section
3 describes the data used in the empirical exercise and formulate our approach
for selecting a restricted basket of funds to construct portfolios of hedge funds.
In Section 4 the author discusses some implementation issues and a detailed
characterization of the proposed investment process. Empirical results are out-
lined in Section 5. The main characteristics of the portfolios constructed under
several alternative optimizers are outlined. Finally, I provide some robustness
assessment of core findings. A tentative conclusion is outlined in Section 6.

Additional information are formulated in Appendices 7.1 and 7.2.

2 Methodology

This section describes the nonparametric portfolio allocation methodology
to construct dynamic portfolios of hedge funds. The investment process con-
sists of a performance-adaptive allocation of resources between a finite set of
elementary strategies, from the perspective of the theory related to sequential
investment strategies. The analysis is distribution free and the only mathe-
matical assumption used is that the monthly fund’s relatives Net Asset Value

(NAV) form a locally stationary and ergodic process. Under this assumption,
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the asymptotic rate of growth of the constructed portfolio has a well-defined
maximum, which can be achieved without knowing the data generating pro-
cess. As in [10] and [12], I approximate a kernel-based allocation mechanism
in order to obtain an optimal and robust growth rate of the capital, in a finite

investment horizon.

2.1 Background

The goal here is to construct a multistrategy portfolio of hedge funds,
implementing a dynamic allocation algorithm that optimally diversifies and
maximizes in the long run the investor wealth over multiple hedge funds styles.
The portfolio predictions relied only on past market information.

To crystallize the context of the analysis, consider a hedge fund universe
of m managers, + = 1,...,m, spanning an heterogeneous range of investment
strategies. The vector X = (z), ..., 2(™) € R’ is the vector of m nonnegative
numbers representing fund’s relatives NAV at a given trading period, where
the jth component z7) > 0 of X represents the ratio between the current and
previous NAV of fund’s manager j (x(j) = NAVY NAVY) =1 + Tj,t)- Basi-
cally, ) is the coefficient by which capital allocated in fund j grows during the
trading period. We consider an investment setting where an investor or fund of
hedge funds (FOF) manager is allowed to allocate his capital at the beginning
of each trading period? according to a portfolio vector e = (oY, ..., al™).
The jth component o'¥) of o denotes the weight of the investor’s capital allo-
cated in fund j. Throughout the article, I assume the investment strategy is
self-financing (no borrowing) and the proceed is fully reinvested. This spec-
ification implies a long only portfolio selection strategy with o) > 0 and
Z;”:l al) =1,

Different hypothesis may be formulated on the path dependent process
behind a time varying portfolio selection. For a more general algorithm, the
a-portfolio vector depends on market history, characterized the sequences of
funds’s realized gain factors and factor model specification. The state of the
market is approximate by the [15]’s six factors model representation. Let

suppose that there are m risky, open for investment funds and their market

2We will further relax this assumption to account for hedge fund redemption restrictions
such as lockup period and redemption period.
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dynamic is well described by a sequence of market vector X;,X,,... € R,
where the jth component 29 of X, indicates the amount obtained, net of fee
after investing an unit of capital in the jth fund at the t;, trading period. The
factor model is described by a sequence of vector Y, Y, ... € RS. To ease
the notation, for i < ¢, X, denotes the array of market vectors (X;, ..., X,).

Therefore, at each trading period ¢ = 1,2,..., we want to perform an
optimal allocation of resources based on past market information Z;; ; =
(X141, Y141). Then, oy = a(Z; ;1) denotes the portfolio vector chosen by
the investor in the ¢, trading period, after observing the past behavior of the
market.

Because we are primarily interested in maximizing the long tern rate of
growth of investor’s capital, I describe the wealth accumulation dynamic.
Starting with an initial capital Cy, the end-of-period wealth of investment

strategy I, after ¢ trading periods is

t
: > log(e, X;)
Ct = CO H(ala X—’L> == CO eXp =1 = CO exptVVt(I)7
=1

where W;(I) indicates the average growth rate

1 t
i=1

Since it is rationally to assume that the objective of any investor is to maxi-
mize his wealth, it is straightforward that the maximization of C; = Cy(I) is
equivalent to the maximization of W, (I).

The present work moves away from the MV portfolio framework and con-
centrates on a hypothetical investor concerned to maximize his end of period
capital in a dynamic optimization setting. Following [10], I adopt a fully
nonparametric setting. We do not assume any parametric structure on the
distribution of the sequence of hedge fund’s relatives NAV. Under the mild
hypothesis, [3] show that the best possible choice of the sequential investment
problem is the so-called log-optimum portfolio I* = {a}(-)}. That is, in trading

period ¢ the optimal allocation «j(-) is such that,

E{los(e. X} | Zi-1) = maxBllog (@7, X) | Ty-1}
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No investment rule can have a faster rate of growth than the log-optimal
portfolio, where a full knowledge of the distribution of the process is required.
However, [2] shows that there exist strategies reaching a identical rate of growth
without knowing the distribution of the underlying stochastic process, the so-
called universal portfolio. Following Algoet’s scheme, [10] provided a more
practical and general version of the universal portfolio concept. For the scope

of our study, I implement the so-called kernel-based portfolio optimization.

2.2 Time varying kernel-based portfolio selection

Given our interest in constructing portfolios of hedge funds relying uniquely
on predictions based on past market conditions, I build a model that enables
us to collect the historical sequences of data that are informative to current
market states. This section introduces the kernel-based sequential investment
strategy, which exploits market condition proxies to estimate the optimal port-
folio weights of funds. We describe and implement the uniform kernel version.
The approach is closely related to [10], who form a nonparametric log-optimum
portfolio strategies.

Basically, the idea behind the kernel-based (I*) is quite simple and intu-
itive. Under a well defined set of parameters, the strategy develops a flexible
algorithm to individuate different sequences of data to estimate the optimal
portfolio weights by maximizing the investor wealth. The approach is com-
pletely data driven and consists firstly, to identify those months in the past
where the state of the market as described by a set of factors, was ‘similar’ to
the current conditions. Only the the hedge fund return information from the
time instances that follow are then used to determine the optimal allocation
of capital amongst funds.

Since we do not have a priori knowledge of the variables (risk factors) that
are instrumental in defining the state of the market, the methodology puts
in competition a number of elementary investment strategies. Each of these
elementary investment strategies is characterized by a given set of relevant
variables whose values are used to define ‘similar’ market conditions. Each
elementary strategy hence proposes its own allocation, based on the time in-
stances that it identified as ‘close’ to the current investment period. The final

investment decision follows then an adaptive, time varying allocation of re-
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sources between these ‘experts’. The allocation is based on their recent past
performance. What follows provides a detailed description of the methodology
that I implement in the sequel.

The working hypotheses motivating the kernel-based sequential algorithm
are rather intuitive: First I allow the state of the market (characterized by a
set of risk factors) to have an impact to the risk-return structure of hedge fund
and second, the dynamics of these impacts should be similar during periods
that are characterized by similar market conditions.

The I" investment strategy is constructed as follows. First I introduce
a data selection process which individuates periods characterized by similar
market conditions. The market is identified by an approximate version of [15]’s
six factors model. The similarity between market conditions characterizing two
time periods is measured by the Mahalanobis distance between the values of
all past approximate market vectors. Let Y;_; be the vector of market proxy
at time ¢ —1 and Yi ;1 = (Yj—, ..., Y1) the sequence of past k values of the

market condition variable. For a given d small, define?
S =k <i<t: || Yigior = Yiogeor |lu< d} (1)

the set of all past time instances, following those when the market conditions
as measured by the k past values of the variable Y were similar to the last
seen vector Y_j ;1.

If X, is the array of hedge fund gain factors that correspond to the instances

1€ St(k), then for each ¢t > k + 1, elementary portfolios are estimated as

a(S;) = argmax H (a, X;)

{ies"y
>, log{a, X;)
= argmax{iest’(k’l)}
A€l | ™) |

if S £ () and
Zlog(a ) XT,t—1>

a(X;,; 1) = argmax—
aEAm T

3|| - ||x in Equation (1) stands for the Mahalanobis distance. Also refers as the statistical
distance, it takes into account the correlation the correlation between variables when com-
puting distances. Lets & and ¢ two random vectors of identical distribution with covariance

matrix ¥, the Mahalanobis distance may be defined as d(&, 7)) = \/(Z — 7)) X2 ~1(Z — §).
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otherwise. That is, I use the past 7 length of data to estimate the portfolio
vector. In this work, 7 is fixed at 24 months and 4A,, is the simplex of all
m-dimensional vectors with nonnegative components summing up to one.

The second step consists in aggregating elementary sequential portfolios
yielded by the

e different choices of the parameter k£ that measure the similarity between

various market conditions as well as

e different distances d; for measuring the similarity of the market condi-

tions.

The aggregation is based on the past performance, in terms of cumulative
wealth of each elementary strategy to produce a final allocation portfolio. This
further refinement is of particular importance as it addresses the issue of the
choice amongst various market conditions. The sequential method puts in
competition concurrent proxies and follows a performance adaptive allocation
of capital based on their recent wealth. In what follows I provide a more formal
description of this additional step.

Given {gg,}, the probability distribution on the set of all pairs (k,[) of
positive integers such that for all £ and [, g,; > 0 and fixing the learning
parameter? 7, > 0, the weights are defined by:

W1t = Qg€" tog Cﬁ’p-
where C’t(f’ll) is the wealth accumulated by the pair (k,[) elementary strategy
up to time ¢t — 1 with initial investment C\y. Their normalized values are then

expressed as:

w
Uk,it = $ (3)

K,L
E W1t
k,l

Obviously, the weighing function vy, must satisfy the usual constraints
for combining elementary sequential strategies, namely 0 < v, < 1 and
Y k1t Ukt = 1 and each elementary strategies will receive a large weight if its

past performance was relatively good.

“Thorough this paper, I fixed the leaning parameter 7; as 1/v/t. For a deep discussion
on the best practical choice of 7, see [7].
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Finally, the combined portfolio &/ at time ¢ is then defined by weighting
the set of K x L predicted portfolios according to their past performances and
the positive distribution probability {g,} as follows:

K,L

o = Z Uk,l,ta(Xl,t—l)-

kel
Therefore, under the dynamic kernel-based strategy I, the investor’s cap-

ital accumulated at time ¢ can be expressed after some simplification as
K,L
kyl
Cy= ZQk,th( ), (4)
k,l

where C’t(k’l) is the final capital arose from the strategy associated to the pair
(k,1).

The key idea of combining several concurrent portfolios is simple: to im-
prove the final investment decision. Basically, the worse a portfolio performed
in the recent past, the less it will contribute to the final allocation. The fi-
nal prediction is constantly updated according to the recent performances of

competitors.

2.3 Markovitz-type kernel-based portfolio selection

As an alternative unconditional allocation model, I perform the [12] asymp-
totic MV kernel-based portfolio (MV*). The author extends the [22] MV
characterization in a multi-period setting. While the approach is as in the dy-
namic kernel-based strategy I*, it differs from the fact the investor is concerned
with a Markovitz-type utility function.

Just like before, for each pair (k,[) of positive integers, elementary portfo-
lios & are estimated as follows®:

6(X 1) =argmax [ (1-2)) Y ((or, X;) — 1)

CXEAW.

{iest™y
2
A
A D (o, X = 1P| Y (e, X)) (5)
. k | ta(k:l)| . k
{iest™y {ies™y

5In appendix B, I provide additional mathematical details on the kernel-based MV port-
folio selections.
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if S,gk) # (), and used otherwise the past 24 months of data, as it is the case in
Equation (2), to estimate the optimal portfolio weights. St(k) is the aforemen-
tioned similarity set outlined in Equation (1) and A measures the investor’s
coefficient of relative risk aversion.

Furthermore, MV% elementary portfolios are then aggregated as in the

(IX) strategy according to:

&M = O 6(Xpon).
k,l

where 0y, are derived as in Equation (3). Using the same representation as

in Equation (4), the wealth achieved by the MV strategy is given by

K,L
Ct = qu’lct(k,l).
k,l

2.4 Alternative Optimizers

The scope of this section is to illustrate alternative portfolio allocation
strategies for comparison purpose. We compare the dynamic kernel-based
strategy IX to three different optimizers.

Our initial benchmark strategy is the equally weighed constantly rebal-
anced portfolio (EWCRP). We consider an investor who equally allocated
her initial capital according to ap = (1/m,...,1/m) and at each trading pe-
riod, rebalanced her portfolio to respect this uniform allocation constraint.
This naive diversification strategy does not involve any optimization and esti-
mation errors related to the plug-in of sample means and variance-covariance
matrix.

Secondly, I implement the dynamic mean-variance portfolio selection tech-
nique. Under the standard mean-variance optimization, the investor selects oy

to maximize the quadratic objective function

’ A ’
Qay) = oy — §at2tat (7)

where p; is the conditional mean vector of the fund gain factors, ¥, is the

conditional variance-covariance matrix, A expresses the investor’s coefficient of
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relative risk aversion, and «; are nonnegative and sum up to one. To solve
the problem in Equation (7), I consider an investor who replaces the mean
and the covariance matrix by their sample counterparts ji and S, respectively.
The investor believes that the conditional expected return and covariance are
time-varying and will adjust his portfolio weights accordingly. Therefore, I use
an autoregressive of order one model (AR(1)) to estimate the fund expected
returns and the [27] generalized orthogonal GARCH(1,1) model to forecast
the time varying conditional covariance matrix under the assumption of a
joint normal distribution. In what follows, I refer to this investment strategy®
as GO-GARCH(1,1). The GO-GARCH(1,1) estimation method is based
on common eigenvectors of the observed data. It does not suffer of numerical
convergence problem’. The performance of the various strategies are compared
using several measures. The first measure is the wealth achieved by each
investment strategy and the annualized average yield (AAY). Then I compute
the so-called Sharpe ratio, in an annualized basis. I estimate this ratio using
the sample mean and variance of the excess returns for each strategy considered
over the monthly US treasury bill. T also report a relative performance measure
based on a modified version of the Sharpe ratio (mSR) introduced by [9], which
provides the measure of out-performance of a given investment strategy over

an alternative with different level of risk

mSR = % (11 — pa), (8)

Ok

where p, and oy, p, and o, are the annualized average yield and the annual-
ized volatility of the I investment strategy and those of the various alternative
strategies, respectively.

Considering the dynamic structure of our analysis, it is important to assess
the possible effect of transaction costs. Indeed, the gain of a dynamic invest-
ment strategy may be, partially or totally offset by transaction costs related

to portfolio turnover. However, there is no general consensus among academi-

6In appendix B, complementary details are outlined on the GO-GARCH(1,1) dynamic
MYV portfolio selections.
"A sample size around 1000 — 1500 is generally assumed to be the minimum for a precise

estimation of GARCH(1,1) model. In our multivariate case the limit is even higher. Given
the short history and low frequency of hedge fund data, a correct estimation of GARCH(1,1)
model is not guaranteed. The choice of generalized orthogonal GARCH(1,1) is motivated
by the limited sample size.
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cians about the right range of values in the financial industry. The issue is even
more complicated for non traditional asset classes like hedge funds. For these
reasons, to account for the transaction costs, I adopt the approach proposed by
[13]. Since in practice it is difficult to derive the realized transaction costs, the
author computes tc%, the break-even transaction cost. The break-even trans-
action cost measures the level of transaction costs that a given investor will be
indifferent to pay when selecting between the I investment strategy and the
alternative allocation decisions. The break-even transaction cost between the

two strategies is then defined as

=K =0
Tt =T

tcbe — p D ,
tvE — tye

A m
1 o1 Xy .
where tv = — ‘a- — L2702 g the monthly average of the value

traded in all individual hedge fund in the portfolio, r; is the average return
of the portfolio constructed from the strategy I, and T, is the average return
form one the alternative optimizers. If transaction costs are a fixed proportion
¢ of the value traded in the portfolio, the average transaction cost in each
strategy is then € x tv. Therefore, if an investor has transaction costs smaller
than tc%, she will prefer the I¥ investment strategy; otherwise, the investor
will be better off with one of the three alternatives. In other words, high
break-even costs is synonym to low portfolio turnover rates.

Finally, I calculate out-performance rate &, that is, the percentage of al-
location periods for which the I investment strategy performs better than
one of the various alternative strategies. This measure is an expression of the
kernel-based strategy ability to capture time-varying investment opportunities

by discovering significant patterns in the local structure of the data in the past.

3 Data

This section presents the data used in our empirical investigation. I be-
gin by discussing the individual hedge funds and commodity trading advisors
(CTAs) in the Hedge Fund Research (HFR) and Barclay CTAs databases.

Then, the section follows presenting the market risk factor specification.
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3.1 Funds and sample restrictions

A proper study of hedge fund returns requires accurately measured data.
Such a quality is a primary concern in the field since hedge fund managers
voluntarily provide information to databases and the industry lacks an uni-
form reporting standard. Despite these difficulties a number of commercial
databases are currently providing hedge fund information both at individual
fund level as well as at aggregated level (indexes).

To analyze the relevance of the proposed methodology in constructing port-
folio of hedge funds, I focus on live funds and use two main sources of hedge
fund data: the Hedge Fund Research (HFR), and Barclay Commodity Trad-
ing Advisors (CTAs) databases. The HFR consists of returns and basics in-
formation for individual funds and fund of hedge funds from January 1981
to September 2008, and the Barclay CTAs database contains CTAs returns
and fund specific comprehensive information from January 1980 to September
2008.

The HFR database is composed of returns reported on different frequencies
(mainly monthly) and additional qualitative/quantitative information such as
main strategy, sub-strategy, asset under management, etc. on 5230 individual
funds and 2720 Funds-of-Funds that are still active on September 30, 2008. The
data provider groups individual fund data in four main categories® depending
on their sub-strategies: Macro, Relative Value, Equity Hedge, and Event-
Driven. Out of the 5230 numbers of individual funds, 940 are classified as
Macro, 2796 as Equity Hedge, 961 are Relative Value, and 533 are grouped as
Event-Driven funds.

The Barclay CTAs data system is widely recognized by both practitioners
and academicians as the largest, most comprehensive, available Commodity
Trading Advisors sample. Generally, CTAs are funds primarily trading listed
commodity and financial futures contracts. The database consists of 981 re-
porting funds as of September 2008. CTAs, also denominated Managed futures
are by no means homogeneous investment vehicles. CTAs managers employ
a large range of strategies and asset classes. Combined, the two databases

provide a rather completed and detailed picture of the hedge funds universe.

For the scope of our empirical analysis, I impose a set of filters on both

8 The reader may refer to Appendix A for a description on HFR hedge fund classification
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databases. First I selected funds that reported in U.S. dollar net of fee on a
monthly basis. Then I required that each fund has at least 15 years of non-
missing reported returns. Additionally, for each strategy, I extract the group
of funds with the longest consecutive stretch of non-missing returns and keep
those funds having at least 10 years of reported assets under management
(AUM). I end up with a final sample of 429 funds, which consists of 356
funds in HFR and 73 in Barclay CTAs. All funds in the final sample are
opened for new investment. Since the author is interested in constructing
multistrategy portfolios of hedge funds, I finally constituted for each hedge
fund category, an heterogeneous basket of 16 funds based on their average first
year reported AUM. According to [19], in general Funds-of-Funds managers
hold a basket of underlying funds ranging between 15 to 50. However, [20]
extending the previous work of [4], shown that approximately 10 funds are
sufficient to construct a diversified portfolio of hedge funds. In line with this
approach and the fund of hedge funds industry practice, I choose to fix the
number of funds to sixteen and implement an asset-related selection process.
We ranked the funds per average AUM and for each category, selected the five
lowest and the top five, three funds directly below the median, the median
ranking fund, and two funds above the median. A detailed representation of
the data set is described in Panel A. of Table 1. Empirical experiments are
performed on 5 styles (Global Macro, Equity Hedge, Relative Value, Event-
Driven, and CTAs), excluding the Funds-of-Funds category. Naturally, this
data selection process creates an additional survivorship bias in the residual
time series of funds. I apply our empirical investigation on different structure
of the data set to provide some robustness checks of our main results. In
addition, since the purpose of our empirical study is to construct portfolios of
hedge funds that maximize in the long run the investor wealth, and to study
the portfolios relative performances under different allocation strategies, the

fund selection routine may not be a big issue.

Furthermore, for consistency, I examine the impact of hedge fund redemp-
tion restrictions on the performances of the dynamic portfolio allocation. In
general, the hedge fund industry uses what is commonly called share restriction

provisions® such as redemption, lockup, and advance notice periods. Various

9Hedge funds restrictions also contain provisions such side pockets, gates, redemption
suspension, ---. Some of those restrictions are not reported in the databases considered in
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authors have pointed the importance of redemption restrictions on hedge fund
business model. Conclusive results on the subject are mixed. Some studies
provide evidence that redemption restrictions are associated to excessive risk
taking with fund’s managers and potential costs on investors [5, 18]. Other
studies, however, suggests that share restrictions are linked to higher hedge
fund performance [21, 6, 1]. In general, these studies conclude that redemp-
tion restrictions affect various hedge fund characteristics such as fund flows,
returns, and risk. It is then important to analyze the evolution of our dynamic
allocation strategies under the complexity of hedge fund restriction provisions.
Panel B of Table 1 reports average value of several characteristics for the
sample of funds under investigation. along this panel, three variables cap-
ture restriction provisions: redemption period and notice period in days, and
lockup period in months. Inspection of Panel B reveals a strong heterogeneity
amongst hedge fund categories. Lockup periods are on average null for Bar-
clay CTAs and Global Macro funds, with a maximum value of 8.25 months
for Event-Driven. Redemption periods range between 3.75 and 170.83 days.
Notice period measures are between 0 to 14.83. Over our samples, Barclay
CTAs funds are far the least restrict.

3.2 Factor model specification

To define the variables that characterize the state of the market at ev-
ery trading month, we approximate the [15]’s six factors model. The authors
show that, this factor model specification has a significant explanatory power
amongst hedge fund strategies. They advocate the use of factors!’ that corre-

spond to the main drivers affecting the hedge fund’s risk-return tradeoft:
The equity market: the S&P 500 total return.

Currencies: the US Dollar major currencies index.

the present study. We refer the reader to Appendix A for a short variables definitions.
Data are downloaded from various sources: S&P 500 total return from DataStream;

Goldman Sachs commodity (GSCI) and the Volatility (VIX) indexes are from yahoo finance;
US three months treasury bill and Moody’s corporate Aa bond, Moody’s corporate Baa bond
and US Dollar major currencies indexes from the FED bank of St. Louis data library.
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The bond market: the month end-to-month end return on the Moody’s

corporate Aa bond index.

Credit: the monthly change in the Moody’s corporate Baa bond index

less the three months treasury bill (month end-to-month end).
Commodity: the Goldman Sachs commodity index total return.

Volatility: the first difference of the end-of-month value of the CBOE

volatility index.

3.3 Data summary statistics

We begin our analysis reporting some preliminary statistical characteristics
on the various fund categories under our study. The data are monthly, ranging
from July 1993 to December 2007 for Global Macro, December 1993 to August
2007 for Equity Hedge, December 1993 to January 2008 for Event-Driven,
September 1993 to December 2007 for Relative Value, and from October 1993
to June 2008 for the Barclay CTAs category. From Panels A to E of Table
2, except in few cases, average returns are in general positive and significant.
Through all categories, volatilities range between 18% and 0.1% per month.
The less volatile hedge fund strategy is the Relative Value group. The highly
volatile strategies are Global Macro and Barclay CTAs funds. The measure
of asymmetry (skewness) is heterogeneous across individual funds and main
strategies. Barclay CTAs and Macro funds are in general positively skewed,
indicating that booms occur more often than crashes in those categories. In
opposite, Relative Value and Event-Driven strategies are more often negatively
skewed. In all investment styles, kurtosis measures are larger than 3, which is
not consistent with the normality assumption. The hypothesis of normality in
fund’s return series is generally rejected by both the Jarque-Bera and Lilliefors
tests.

Regarding time dependency in individual hedge fund performances, the
natural way of testing it is the Ljung-Box statistic (p). We estimate the Ljung-
Box statistic for returns and squared returns to assess the presence of serial
correlation in the first and second moment, respectively. Taking apart Relative

Value and Event Driven funds, there is no strong evidence that the series are
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serially correlated. However, squared returns are more often serially correlated

at 95% confidence level, which indicates temporal correlation in volatilities.

4 Implementation details

In this section, we discuss some practical implementation issues. First, I
focus on the kernel-based portfolio selections, namely, the IX and the MV¥
optimizers. As described in Section 2, elementary strategies are constructed
for different proxy of market conditions, different number of past values of
the proxy used in measuring the similarity of market conditions (parameter
k) as well as for different values of the maximal distance between the values
of these proxies (parameter dj;). The choice of the last two parameters is
as follows: I initially define the two positive integers as [ = 1,---,L and
kE=1,.--- K, fixing L = 10 and varying K = 7. Additionally I use the
uniform probability distribution {gx;} = 1/(K x L) for the weighting scheme
of elementary strategies indexed over k£ and [. The maximal distance dj; is
defined by:

d, = exp((0.002 - k - m) + (0.02-m - 1)) + (k/2)

Then, for each k, we have [ = 10 different values of the radius d;; and an
array of 10 different elementary portfolios.

For all hedge fund categories, I fix the starting point of the dynamic portfo-
lio prediction algorithm after 12 months. The first year of the data is dedicated
to the initial parametrization. Therefore, the first data selection process de-
fined in Equation (1) uses this initial window to identify the similarity set.
However, this window increases in a monthly basis with the trading period.

The final maximized wealth at time ¢ is obtained by exponentially weighting
the K x L elementary sequential strategies according to their past performances
as described in Equations (4, 6).

The initial investment capital Cy is set equal to 1. The estimation of
the portfolio weights for MV dynamic strategies is implemented for different
choices of the investor’s relative risk aversion coefficient. That is, we set A
equal to 5, 10, and 15.
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To make the kernel-based portfolio construction implementable, some usual
hypothesis are assumed. In addition to the assumption of local stationarity
and ergodicity of the market, I assume that any fund is infinitively divisible
and that all funds are opened for new investment at each trading period. The
dynamic allocation problem is expressed here from the view of a long only agent
investing in US dollars, so the annualized average yields are expressed in US$.
Last, the I* and the MV (kernel-based and GO-GARCH(1,1)) investment
processes are solved using the R version of the [25] DONLP2 optimization

routines.

5 Empirical analysis

We now focus on the empirical analysis of the performance of the various
investment strategies illustrated in the present article. This section displays
some results of the nonparametric kernel-based portfolio selection, compared
to the three alternative investment strategies. We will provide evidence of
the benefit that results of switching from a dynamic mean-variance allocation
of resources to a kernel-based distribution free strategy. Table 4 documents
the statistics of the wealth achieved by the various trading strategies under
a month-to-month portfolio construction, while Table 5 reported the results
of the strategies under different set of market restrictions. The evolutions of
the accumulated capital for each strategy are displayed through Figures 1 to
10 (for a relative risk aversion of A = 5). We tested the investment strategies
on 5 distinct categories of hedge funds: HFR Global Macro, Equity Hedge,
Event-Driven, Relative Value and the Barclay CTAs. For each category we
constructed a heterogeneous panel of 16 individual hedge funds as described

in Section 3. This means that m = 16.

5.1 Performance analysis of the dynamic investment strate-
gies

The estimation of the optimal portfolio allocation is carried out each month

by maximizing the average rate of growth of capital. Table 4 reports the sample
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performance of the I, MVE GO-GARCH(1,1) and EWCRP strategies
for the 5 categories of hedge fund. The results for the two mean-variance
specifications (I, GO-GARCH(1,1)) are outlined for A = 5,10, 15. As the
panels reveal, the I investment strategy show superior annualized average
yield (AAY) across all styles. In the absence of transaction costs, the percent-
age values of AAY range from 40.80% for Barclay CTAs portfolio to 23.5% in
Event-Driven funds. These numbers are always significantly bigger than those
yield by the three alternative strategies. As expected, the ex-post annual-
ized standard deviations (ASD) are also bigger, which translate into a smaller
Sharpe ratios (SR), specially compared to the MV % portfolios (for all values
of \). Except for Barclay CTAs funds, the SR of the dynamic I¥ strategy
are bigger than one across all hedge fund styles and are equal magnitude to
GO-GARCH(1,1) and EWCRP strategy values.

On a relative basis, the success rate, S, that is, the proportion of months
for which the I¥ investment strategy has superior return than the alternative
optimizers, further illustrate the attractiveness of the former strategy. Over
the sample of hedge fund styles under scrutiny, the success rate is between
50% and 75.82%, a range that is consistent with an upgrade quality to capture
time varying investment opportunities. This evidence suggests that the out-
performance of the dynamic I¥ strategy is not due to some specific extreme
events. The modified Sharpe ratio measure, mSR, is the return that the I¥
strategy would have earned if it had the same risk as the alternative optimizer.
Across Panels A to E, mSR values are positive and bigger for the the GO-
GARCH(1,1) and EWCRP strategies than for the MV strategy.

When the investor considers the dynamic changes in the variance-covariance
matrix under the kernel-based framework (MVE strategy), the SR signifi-
cantly increase for all values of A and across the 5 hedge fund categories.
Indeed, the MVE strategy show superior SR values. For the same coefficient
of relative risk aversion, the MV strategy tends to exhibit higher average an-
nual yield and lower annualized volatility than the GO-GARCH(1,1) strat-
egy. Accordingly, their relative performance (mSR and S) to the I¥ strategy
are in favor of MV, As a consequence, in contrast to the dynamic GO-
GARCH(1,1) portfolios, the MV portfolios benefit from volatility timing.
However, one has to take with cautious the value added by MV strategies since

they are subjected to estimation risk (uncertainty regarding the estimation of
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fi and ).

The results documented above have been derived without transaction costs.
It is clear that if we take into account transactio costs, the above presented
performance will deteriorate. Table 4 also reveals the break-even transaction
costs, tc”, of the alternative three strategies for all levels of risk aversion.
The numbers are listed in the last column entry from Panel A to E and are
different across hedge fund categories and investment strategies. In general,
highest tc% suggests lower portfolio turnover rates for the strategy. For Global
Macro, Equity Hedge, and Event-Driven funds, GO-GARCH(1,1) strategies
show lower break-even costs than MV Y and EWCRP strategies. The results
are opposite for Barclay CTAs and Relative Value funds. For the later, the
tce are positive and higher with EWCRP strategies.

Last, but not least, Figures 1 to 10 depict the evolution of wealth accumu-
lated for each model specification over the allocation period. One can clearly
see that the I¥ strategy significantly dominates the others. Overall, these
results suggest that the time evolving kernel-based investment strategies pro-
vide significant performances for a risk-seeking investor who is willing to bear
the risk - in terms of higher volatility. Amongst kernel-based strategies, the
distribution free I” strategy out-performs the MV counterpart. The results
show the superiority of I and MV models, supporting the hypothesis that
modeling hedge fund returns in a nonstationary, unconditional paradigm yields

significant economic benefits.

5.2 Robustness assessment

To further evaluate the robustness of the analysis in constructing a mul-
tistrategy portfolio of hedge funds, we have implemented an additional set of
more restrictive empirical experiment, the principal results of which are pre-
sented in this section. These investigations are performed on the same data,
however with different specification.

In a first analysis, we assess the effect of hedge fund redemption provi-
sions on the portfolio performance characteristics. We adjusted the dynamic
allocation of resources to take into account average restriction provisions. We
focus on two variables. The lockup period in months, and the redemption pe-

riod which is the number of days between two consecutive redemption dates.
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They vary across funds, and categories. On average, in the portfolio of 16
funds under study, the lockup period is between 0 (HFR Global Macro and
Barclay CTAs) and 8.25 months (Event-Driven). Redemption period ranges
between 45.08 (HFR Macro) to 170.83 days (Event-Driven). For the portfolio
of HFR Global Macro and Barclay CTAs funds, with on average no lockup
period, we used the full sample average (per style) restriction provisions to
impose the time sequence of the investment routine. This yields 3 (2) months
redemption periods and 12 (6) months lockup periods for HFR Global Macro
(Barclay CTAs) category. For the three other hedge fund styles, we restrict
ourself to what is displayed in Panel B. of Table 1. Therefore, the experiment
is conducted in the following way: After our initial allocation of resources to
the portfolio, we block this investment for the time indicates by the average
lockup period. Next, the investment is dynamically re-allocated at each pre-
specified redemption dates as reported in Panel B. of Table 1. Table 5 reports
the absolute and relative performance for all strategies and level of risk aver-
sion. As is evident, the performances of the various strategies are just slightly
different from those obtained in the month-to-month portfolio construction.
By respecting the hedge fund industry restriction provisions, the Sharpe ratios
of I¥ strategies improve for HFR Global Macro and Equity Hedge styles and
are relatively unchanged for the rest. Once again, the success rate enhanced
the I investment strategy, with percentage values between 48% to 69%. The
risk-adjusted excess return (mSR) is always positif, with bigger values relative
to GO-GARCH(1,1) and EWCRP strategies.

Secondly, we performed a data driven model evaluation method to question
our fund selection process. The analysis intends to test whether different com-
peting choices of sample constituents would lead to equivalent performance
characteristics of the investment dynamics. The implemented test is an ap-
proximation of the procedure advised by Racine and Parameter (2009). The
experiment is flexible and allows to defeat the inconveniences associated on
relying on only one choice of data. In this article, we intend to construct the
distribution of the investment strategy’s true annualized average yield, by ran-
domly testing the strategies under various structures of the data. Therefore,
instead of using a fix sample of 16 funds selected according to their ranking
AUM as explained in Section 3, we draw randomly a basket of funds of size 16,

then perform our allocation strategies accordingly. This process is repeated 150
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times, each time reassessing the performances of our dynamic portfolios across
the four investment methodologies. The repeated investigation will produce
vectors of length 150 of annualized performance statistics for all models un-
der scrutiny. To discriminate between different allocation strategies, we use a
paired t-test of differences in sample mean and a the Mann-Whitney-Wilcoxon
test for differences in location. Some useful Boxplots are also represented to
highlight dominance relationships between alternative optimizers. For what
follows, we consider an application on HFR Equity hedge funds. The data
set, consists of 97 funds, obtained after imposing several filters as explained in
Section 3. The results are reported for the coefficient of relative risk aversion,
A = 5. Observing 6 reveals that the I¥ allocation specification is preferred to
all three alternative investment strategies on the AAY basis. Both the t-test
and the Mann-Whitney-Wilcoxon p-values are close to zero. From Figure 11,
the median value for the distribution free approach is equal to 26.2%, which is
of equal magnitude to what achieved by the sample of 16 funds ranked accord-
ing to their AUM. However, on the relative performance basis expressed by the
Sharpe ratio distributions in Figure 12, the GO-GARCH(1,1) and EWCRP
strategies performs better than the I¥ and MV¥ strategies. To summarize,
the IX allocation higher annualized yields, at the cost of an increase in the
annualized volatility.

Overall, the results of the present section are in line with Subsection 5.1.
The empirical robustness analysis confirms the dominance of the kernel-based
investment strategies. That is, this investment technique over-performs the two
alternative optimizers in terms of AAY and out-performance rate (S), while
these results are mixed on a risk-adjusted basis. Additionally, this dominance
relation is in general unaffected by different market and statistical restrictions.
These results suggest that, across our hedge fund category and investment
horizon, allocating capital on the basis of an unconditional, nonparametric

modeling is likely to provide sizeable benefits in the allocation process.

6 Conclusion

In this manuscript, the performance of various allocation strategies across

individual hedge funds is investigated. We particularly illustrated the time
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varying kernel-based approach to solve the optimal allocation of resources
within various hedge fund styles. An empirical study is performed on HFR and
Barclay CTAs databases. For the first, in our knowledge, this article analyzes
the risk-return characteristics of hedge fund portfolios when relaxing distribu-
tion hypothesis. Indeed, under the kernel-based framework, the hypothetical
investor is concerned by the long term maximization of his average capital
rate of growth in a time evolving optimization setting, without knowing the
underlying distribution generating the hedge fund’s NAV. I investigated the
benefits of approximating nonstationary data locally on a multivariate portfo-
lio of hedge funds.

I found that the distribution free investment strategy provides reliably re-
sults. Empirical findings suggest that there are distinct benefits in perfor-
mance improvement for portfolios constructed under the kernel-based invest-
ment strategy. On a relative basis, the proportion of months for which the
strategy outperforms alternative investment approaches is high. The annu-
alized risk-return profile, expressed by the Sharpe ratio, is sometimes under-
mined by the high volatility associated to dynamically investing in hedge funds.
Furthermore, this strategy ignores the volatility problem and it is particularly
constructed for an investor concerned by any parametric hypothesis on the
distribution. I further perform various experiments designed to assess the ro-
bustness of the results. Evidences suggest that our findings are solid, and
the magnitude of the performances compared to two conditional alternative

optimizers is invariant.

Several extensions to this paper may be considered. Future researches
might address the issue of how to incorporate a risk measure in the optimiza-
tion routine without distorting the completely nonparametric structure of the
methodology. Transaction costs are also ignored in this article. Additional
works are necessary to fully incorporated the cost related to the time-varying
allocation of capital across hedge funds. Furthermore, investors do allocate
resources to hedge funds in combination with different asset classes, in order
to achieve the desired performance profile. Therefore, it might be interesting
to assess the return pattern of an aggregate portfolio of hedge fund and several

traditional asset classes, under the kernel-based investment strategy.

Clearly, the core idea of this manuscript is that there exist a class of dis-

tribution free allocation strategies that are able to uncover and exploit hidden
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structure in the past of hedge funds data, to optimally allocate capital in a

multistrategy portfolio.
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7 Appendices

7.1 Appendix A: Hedge Fund Characteristics

7.1.1 Variable Definitions

NAV,: The month ¢ net asset value of a given hedge fund. As LH:04, we
assume that the NAV; has been adjusted to take into account all realized
and non-realized capital gains, accrued dividends and interest income, capital
distributions, splits and all the impacts of equalization and crystallization.

The gain factor or simple gross return at time ¢ 4+ 1, of a fund j is defined as:

NAV;t+1 .
Nav, = L+ 7).

Lockup Period: The minimum number of months that an investor has to

wait, after his initial investment, before he can withdraw money from the fund.

Redemption Period: Number of days between two consecutive specified
dates. Hedge fund investors are allowed to take back their capital only at

these pre-specified intervals.

Notice Period: The advance number of days that a hedge fund investor is

required to inform the fund of his willingness to withdraw his capital.

Incentive Fee (%): Also called Performance fee, it is the main source of
hedge fund’s profits. It is shaped as an option to provide incentives for a
hedge fund manager to generate profits. Calculated as a fraction of profits

generated above the high-water mark.

Management Fee (%): Designed to provide to the fund’s manager enough
money to cover his operating costs. It is a fraction of the fund’s asset under

management.

Minimum Investment($M): The minimum amount of money required by

the fund to be accepted as an investor.

High Water Mark: Defines the fund’s manager compensation. The clause
means that the manager receives performance fee only on increases in the N AV

of the fund in excess of the previous highest NAV.

Leverage: Percentage of capital borrowed by the fund to boost the potential

profit of the strategy.
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7.1.2 Investment Strategies

The term ‘hedge funds’ is a generic acronym associated to a pool of pro-
fessionally managed capital. However, hedge funds are highly heterogeneous,
covering a large range of investment styles with various approaches, objectives
and performance characteristics. There is no consensus in the financial litera-
ture in the way to classify the wide basket of strategies implement in the hedge
fund universe. For simplicity, we adopt LH:04 classification which is closed to
Chicago-based Hedge Fund Research database. Hedge funds are classified into
five main strategies: tactical trading, equity hedge, event-driven, relative value
and funds of funds.

Tactical trading strategies: Also called directional funds, the term refers
to funds that speculate in the direction of market prices of commodities, cur-
rencies, bonds and/or equities. They trade on a discretionary or directional
basis. CTAs and Global macro funds belong to this category.

Equity Hedge: Indicates managers implementing long/short investment strate-
gies in equities. The strategy is not automatically market neutral. The cat-
egory can be further divided into different sub-strategies, based on manager
invest target as: Sector or/and geographically focus, emerging market, dedi-
cated short bias, and market timers.

Event-driven: As their name claimed, event-driven funds are particularly in-
terested in situations where the investment opportunity is associated to specific
corporate events such as: mergers and acquisitions, bankruptcy, recapitaliza-
tion, stock buybacks. Fund’s managers invest mainly on equity, debt or trade
claim from those companies. Risk arbitrage and distressed securities funds
dominate this group.

Relative value: They intend to profit on pricing differences between similar
or related assets such as options, futures, equities and debt. The underlying
assumption is that the price gap between the two similar/related securities
will return to its fair value as the investment horizon growths. This cate-
gory regroups strategies such as: fixed income arbitrage, convertible arbitrage,
statistical arbitrage, index arbitrage and mortgage-backed securities arbitrage.
Funds of funds: This category represents funds investing in a pool of hedge
funds. The investment principle relies on the assumption that combining indi-
vidual funds will reduce the risk and provide a more stable return in the long

run. The manager may allocate his resource within a strategy, or in multiple
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strategies.

7.2 Appendix B: Alternative optimizers

Asymptotic Mean Variance Portfolio Model: Following Gyo:Vaj:07
we briefly define the conditional expected value of the Markowitz-type utility

function as:

E{Um ((e(X 1 0-1), X), A) | Xuoa} ] Ef{a(X10-1), X1) | X1z}

—AVar{(a(Xl,T_l),Xﬂ |X17T_1} (10)

where X is the T-th day market vector, a(X; 1) is the investor portfolio
weight and A is a positive constant coefficient representing the investor absolute
risk aversion.

Under mild conditions, equation 10 can be expressed in as follow:

E{Un (e X1 7-1), X1), A) | Xypa} = (1 = 20)E{(a(X 1 p1), X7) = 1| Xypa}
—AE{((@(X17-1), X7) = 1)* | X101}
+1 = A+ AE* {a(X171), Xo) | Xig1}

finally, the kernel-based mean-variance portfolio is expressed as:

&(X1op) =argmax | (1-20) DY (@, X)-1)-X2 Y ((a,X;)—1)

achm {i€Se,t,n} {i€Se,w,n}
2
A
+ﬁ Z <a ) Xz>
&0 {i€Se,t,n}

where Sy () is the similarity set associated to each pair (k, ).
GO-GARCH Portfolio Selection: To relax the notation, let’s denote
by X; the vector of m funds’s gain factors at time ¢. We assume that the

dynamics of the gain factors vector is
Xt = Bo+ b1 Xi—1 + ey,

where ¢, is the vector of unexpected returns. We estimated an AR(1) model to
filter out autocorrelation. Finally, I adjust the Roy:van:02 GO-GARCH(1,1)
model for the residuals of the AR(1) to estimate the time varying conditional

covariance matrix.
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Briefly, the fundamental assumption behind the GO-GARCH model is
the following:
Given an observed economic process {z;}, there exists an uncorrelated
components {y;} such that
Ty = 2y

where Z is the linear map that links the observed economic process to the

unobserved components is assumed to be constant and invertible. Associated
to the GO-GARCH(1,1) process:

vy = Zyy ye ~ N(0, Hy)
Ht = dz’ag(hl,t, Tty hm,t) (13)
hig = (1—ai—B) 4wl +Bihigr i=1,---,m (14)

with Hy = I represents the unconditional covariance matrix of the compo-

nents. Therefore, the conditional covariance matrix of {z;} are obtained by:

V,=ZH,Z
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Table and Figure Captions

Table 1: This table presents the fund’s filtering procedure across all hedge
fund categories (Panel A) and summary statistics of individual hedge fund
characteristics (Panel B) such as: Leverage, High Water Mark, Redemption
period, Management Fee, Incentive Fee, Notice period, Lockup period, Mini-

mum Investment.

Table 2: This table presents summary statistics on individual hedge funds
gain factors, across all styles through Panel A to E: the Mean, the standard
deviation [SD], the skewness, the kurtosis, the minimum [Min|, the maximum
[Max], the t-statistic of mean, skewness and kurtosis, the Jarque-Bera [JB
Test] and Lilliefors normality test statistics, and the [JB Test] 95% P-value.
The critical value of the Lilliefors test at 95% confidence level is 0.805/\/7,

where T’ is the sample size.

Table 3: This table presents summary serial correlation statistics on indi-
vidual hedge funds amongst all styles through Panel A to Panel E: the first-
order serial correlation of gain factors [p(r)] and of squared gain factors [p(r?)],

with their respective 95% P-value.

Table 4: This table presents the annualized summary statistics on the opti-
mal portfolio constructed across the 5 styles under scrutiny. Through Panel A
to E, the results of various allocation strategies are reported. Several measures
of performance are outlined: the annualized average yield [AAY], the annu-
alized standard deviation [sdev], the Sharpe ratio [SR], the modified Sharpe
ratio [mSR] as defined in Equation (8), the out-performance rate [S], that
is, the percentage of allocation periods for which the I* investment strategy
performs better than one of the various alternative strategies. The coefficient

of relative risk aversion, A are set equal to 5,10, and 15.

Table 5: This table presents the annualized summary statistics on the
optimal portfolio constructed across the 5 styles under scrutiny, in the case
of respecting hedge funds redemption restrictions such as Lockup period and
Redemption period. Through Panel A to E, the results of various allocation
strategies are reported. Several measures of performance are outlined: the
annualized average yield [AAY], the annualized standard deviation [sdev], the
Sharpe ratio [SR], the modified Sharpe ratio [mSR)] as defined in Equation (8),

the out-performance rate [S], that is, the percentage of allocation periods for
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which the I* investment strategy performs better than one of the various
alternative strategies. The coefficient of relative risk aversion, A are set equal
to 5,10, and 15.

Table 6: This table presents the results of robustness assessment of the fund
selection process. We test the effect of drawing various samples of funds, on
the dominance relationships between our four investment strategies. The ex-
periment is performed on the HFR Equity hedge fund category. Test statistics
on paired t-test [t-statistics| of differences in sample mean and the Mann-
Whitney-Wilcoxon test [M-W tests] for differences in location are reported,
with their respective 95% P-values in brackets.

Figures 1, 3, 5, 7, 9: These figures display respectively the evolution of
the wealth achieved, investing in the HFR Global Macro, CTAs Barclay, HFR
Equity Hedge, HFR Relative Value, and HFR Event-Driven funds under our
four investment strategies. The investor’s coefficient of relative risk aversion,
A=5.

Figures 2, 4, 6, 8, 10: These figures display respectively the evolution of
the wealth achieved, investing in the HFR Global Macro, CTAs Barclay, HFR
Equity Hedge, HFR Relative Value, and HFR Event-Driven funds under our
four investment strategies, in the case of respecting hedge funds redemption
restrictions such as Lockup period and Redemption period. The investor’s
coefficient of relative risk aversion, A = 5.

Figures 11, 12: These figures are Boxplots of respectively, the annualized
average yield [AAY] and the annualized Sharpe ratio for the 150 samplings
of HFR Equity Hedge funds. Those Boxplots intends to highlight the the
dominance relationships between our four investment strategies in different

structure of the data set. The coefficient of relative risk aversion, A = 5.
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Table 3: Ljung-Box statistics for individual HFR hedge fund returns and
squared returns

Panel A: Global Macro funds

p(r)  P-value p(r?)  P-value
Fundl | 14.12 0.17 42.17  0.00
Fund2 | 9.50 0.49 2258 0.01
Fund3 | 10.80 0.37 81.07  0.00
Fund4 | 23.66 0.01 13.25  0.21
Fund5 | 12.51 0.25 65.55  0.00
Fund6 | 16.98 0.07 1555 0.11
Fund7 | 24.05 0.01 2254 0.01
Fund8 | 7.46 0.68 8.07 0.62
Fund9 | 26.36 0.00 14.31  0.16
Fund10 | 12.98 0.23 3.82 0.96
Fund1l | 7.29  0.70 2492  0.01
Fund12 | 13.50 0.20 3.08 0.98
Fund13 | 15.11 0.13 2252  0.01
Fund14 | 10.25 0.42 2.94 0.98
Fund15 | 17.02 0.07 20.25  0.03
Fund16 | 17.89 0.06 45.59  0.00
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Panel B: Barclay CTAs funds

p(r)  P-value p(r?)  P-value
Fundl | 20.63 0.02 30.33  0.00
Fund2 | 29.21 0.00 38.47  0.00
Fund3 | 554 0.85 9.58 0.48
Fund4 |9.59 048 10.84  0.37
Fund5 | 19.82 0.03 9.13 0.52
Fund6 | 20.26 0.03 7.68 0.66
Fund7 | 8.56  0.57 2.07 1.00
Fund8 | 62.78 0.00 42.40  0.00
Fund9 | 10.54 0.39 21.16 0.02
Fund10 | 21.65 0.02 27.30  0.00
Fund11 | 11.29 0.34 1.99 1.00
Fund12 | 14.74 0.14 43.16  0.00
Fund13 | 26.36 0.00 30.12  0.00
Fund14 | 14.49 0.15 20.65 0.02
Fundl5 | 14.04 0.17 22.88 0.01
Fund16 | 25.30 0.00 13.89  0.18
Panel C: Equity Hedge funds
p(r)  P-value p(r?)  P-value

Fundl | 16.40 0.09 9.52 0.48
Fund2 | 13.26 0.21 72.61  0.00
Fund3 | 5.53 0.85 14.45  0.15
Fund4 | 25.58 0.00 42.44  0.00
Fund5 |[3.91 0.95 18.34  0.05
Fund6 | 22.92 0.01 15.15 0.13
Fund7 | 22.74 0.01 39.76  0.00
Fund8 | 25.16 0.01 37.88  0.00
Fund9 | 14.70 0.14 1.47 1.00
Fund10 | 6.06  0.81 23.24  0.01
Fundll | 13.33 0.21 54.29  0.00
Fund12 | 5.64  0.84 2155  0.02
Fund13 | 13.86 0.18 22.08 0.01
Fund14 | 6.16  0.80 13.87  0.18
Fund15 | 5.78  0.83 16.62  0.08
Fund16 | 14.50 0.15 37.12  0.00
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Panel D: Event-Driven funds

p(r)  P-value p(r?)  P-value
Fundl | 22.38 0.01 15.55 0.11
Fund2 | 24.26 0.01 21.71  0.02
Fund3 | 53.03 0.00 53.47  0.00
Fund4 | 35.94 0.00 2245 0.01
Fund5 | 16.03 0.10 82.44  0.00
Fund6 | 38.91 0.00 22.12  0.01
Fund7 | 30.86 0.00 1224  0.27
Fund8 | 33.44 0.00 14.79  0.14
Fund9 | 42.42 0.00 11.08 0.35
Fund10 | 29.31 0.00 10.94 0.36
Fund1l | 24.86 0.01 9.74 0.46
Fund12 | 17.66 0.06 25.05 0.01
Fund13 | 19.01 0.04 31.39  0.00
Fund14 | 41.17 0.00 11.56  0.32
Fund15 | 17.67 0.06 28.91  0.00
Fund16 | 10.76 0.38 28.69  0.00

Panel E: Relative Value funds

p(r)  P-value p(r?)  P-value
Fundl | 12.99 0.22 30.11  0.00
Fund2 | 36.91 0.00 32.87  0.00
Fund3 | 9.62 0.47 9.17 0.52
Fund4 | 44.99 0.00 10.51  0.40
Fund5 | 61.25 0.00 36.42  0.00
Fund6 | 21.20 0.02 111.10 0.00
Fund7 | 63.55 0.00 6.50 0.77
Fund8 | 506.62 0.00 207.20 0.00
Fund9 | 31.02  0.00 24.61 0.01
Fund10 | 15.21  0.12 29.15  0.00
Fund11 | 40.45  0.00 54.56  0.00
Fund12 | 45.96  0.00 97.36  0.00
Fund13 | 42.25  0.00 87.17  0.00
Fund14 | 35.97  0.00 26.22  0.00
Fund15 | 79.59  0.00 67.37  0.00
Fund16 | 11.79  0.30 12.35  0.26
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Table 4: Annualized Portfolio Performance Statistics
Panel A: Global Macro funds
K=17 & L=10
Strategy A | AAY(%) ASD(%) ASR mSR S(%) tc*
Ix 28.58 23.86 1.20
5 |23.44 11.07 2.12 041 5226 0.46
MVE 10 | 20.45 9.01 227 0.55  50.32 0.43
15 | 18.66 8.14 2.29 0.64 49.68 0.45
o | 14.01 10.56 1.32 1.10 56.13 -0.33
GO-GARCH(1,1) | 10 | 13.87 10.50 1.32 1.11 56.13 -0.38
15 | 13.83 10.48 1.31 1.11 5548 -0.39
EWCRP 13.67 11.72 1.16  1.24 58.06 0.16
Panel B: Barclay CTAs funds
K=17 & L=10
Strategy A | AAY (%) ASD(%) SR mSR S(%) tc*
I« 40.80 45.84 0.89
o | 25.42 12.71 2.00 047 5253 -3.36
MVE 10 | 21.69 10.04 2.16 0.54 5190 -4.40
15 | 19.27 8.90 2.16 0.59 51.27 -4.58
o5 | 13.52 11.94 1.13 0.81 5949 2.26
GO-GARCH(1,1) | 10 | 13.36 11.85 1.12 0.81 59.49 2.07
15 ] 13.31 11.82 1.12 0.81 59.49 2.04
EWCRP 13.16 11.05 1.19 0.80  59.49 0.40
Panel C: Equity Hedge funds
k=17 & L=10
Strategy A | AAY (%) ASD(%) SR mSR S(%) tc™
I« 29.33 19.31 1.52
5 | 25.52 12.21 2.09 0.54 5342 0.72
MVE 10 | 22.39 9.63 233 0.72  54.79 0.80
15 | 20.46 8.32 246 0.81 56.85 0.84
5 | 11.93 7.81 1.52 1.3 65.75 -4.23
GO-GARCH(1,1) | 10 | 11.81 7.78 1.51 1.53 65.75 -12.73
15 | 11.77 7.76 1.51 1.53 65.75 -24.22
EWCRP 13.45 10.72 1.25 1.86 65.75 0.17




316 Performance Based Diversification

Panel D: Event-Driven funds
K=7 &L=10

Strategy A | AAY (%) ASD(%) SR mSR S(%) tc™
1€ 23.49 13.77 1.68
5 |20.14 9.04 2.78 0.71 47.02 2.56
MVE 10 | 18.85 7.72 3.17 0.77  50.99 0.77
15 | 18.07 7.00 3.44 081 5232 0.75

o | 13.22 10.43 1.26  3.09 63.58 -0.26
GO-GARCH(1,1) | 10 | 13.15 10.42 1.26 3.10 63.58 -0.27
151 13.13 10.41 1.26 3.11 63.58 -0.27
EWCRP 12.72 6.35 1.99 1.46 63.58 0.12

Panel E: Relative Value funds
K=17 &L=10

Strategy A | AAY (%) ASD(%) SR mSR S(%) tc™
I 25.55 23.29 1.10
5 | 21.57 10.03 2.15 0.30  52.29 -0.50
MVE 10 | 19.47 6.71 290 0.37 5490 -1.04
15 | 18.57 5.47 3.39 0.39  55.56 -1.20
o | 10.99 4.12 2.65 0.76  75.82 -0.24
GO-GARCH(1,1) | 10 | 10.89 4.07 266 0.77 75.82 -0.24
15| 10.85 4.05 266 0.77 75.82 -0.24
EWCRP 11.03 2.76 3.98 0.71 71.90 0.22
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Table 5: Hedge Fund Redemption Restrictions and Annualized Portfolio Per-

formance Statistics

Panel A: Global Macro funds

K=7 &L=10

Strategy A | AAY(%) ASD(%) ASR mSR S(%) tc*
Ix 29.07 23.89 1.22
5 | 21.20 11.83 1.79 0.66 50.35 1.12
MVE 10 | 18.76 9.75 1.92 0.74 50.35 1.12
15 | 17.22 8.90 1.93 0.80 51.05 1.17
5 | 13.93 10.49 1.32 1.14 50.35 -1.57
GO-GARCH(1,1) | 10 | 13.87 10.47 1.32 1.14 50.35 -1.61
15 | 13.85 10.46 1.32 1.14 50.35 -1.60
EWCRP 14.09 11.94 1.18 1.26  48.25 0.48
Panel B: Barclay CTAs funds
K=17 & L=10
Strategy A | AAY (%) ASD(%) SR mSR S(%) tc*
I« 38.10 44.23 0.86
5 |23.31 14.37 1.62 0.50 49.65 38.26
MVE 10 | 19.77 11.32 1.75 0.56  52.45 15.82
15 | 17.59 9.84 1.79 0.60 55.24 13.99
o5 | 14.40 12.06 1.19 0.74 53.85 2.24
GO-GARCH(1,1) | 10 | 14.27 11.98 1.19 0.75  53.85 2.26
15 | 14.22 11.96 1.19 0.75  53.85 2.27
EWCRP 13.67 11.21 1.22 0.75  53.15 0.98
Panel C: Equity Hedge funds
k=17 & L=10
Strategy A | AAY(%) ASD(%) SR mSR S(%) tc™
| 31.19 19.26 1.62
5 | 25.10 12.57 2.00 0.92 57.14 1.61
MVE 10 | 21.54 9.91 2.18 1.04 57.14 1.82
15| 19.42 8.61 2.26 1.11  56.39 1.83
5 | 12.32 8.03 1.53 1.70  59.40 6.02
GO-GARCH(1,1) | 10 | 12.32 8.02 1.53 1.69 58.65 5.96
15 | 12.33 8.02 1.53 1.69 58.65 6.11
EWCRP 14.09 11.09 1.27 211  56.39 0.56
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Panel D: Event-Driven funds

K=17 &L=10

Strategy A | AAY(%) ASD(%) SR mSR S(%) tc*
I« 20.90 13.05 1.60
o | 18.24 7.76 235 0.51 47.83 2.93
MVE 10 | 17.00 6.30 2.70 0.58 53.62 2.23
15 | 16.30 5.01 296 0.61 53.62 1.74
o | 12.83 10.93 1.17 3.84 54.35 -0.68
GO-GARCH(1,1) | 10 | 12.81 10.90 1.17 379  54.35 -0.69
15 | 12.81 10.89 1.17 3.78  54.35 -0.69
EWCRP 12.71 6.55 1.93 1.27  55.07 0.29
Panel E: Relative Value funds
K=17 & L=10
Strategy A | AAY (%) ASD(%) SR mSR S(%) tc*
Ix 21.44 26.06 0.82
o | 18.26 13.33 1.37 0.25 53.62 -5.68
MVE 10 | 17.62 8.44 2.09 0.22 55.80 9.67
15| 17.09 6.63 258 0.23 54.35 5.28
5 | 11.29 4.44 253 047 68.84 -0.50
GO-GARCH(1,1) | 10 | 11.23 4.36 2.06 047 68.84 -0.51
15 | 11.20 4.33 2.07 048 68.84 -0.51
EWCRP 11.23 2.88 3.88 0.44 67.39 048
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Table 6: Robustness assessment of the fund selection process. We test the effect
of drawing various samples of funds, on the dominance relationships between
our four investment strategies. The investigation is addressed by drawing 150
times, a set of 16 HFR Equity Hedge funds from a sample of 97. P-values (in
brackets) are computed at 95% confidence level. Small P-values indicate that
the distribution free allocation strategy performs better than the optimizers

listed in column 1 according to the Annualized average yields.

Strategy t-statistics M-W tests
MVE 13.4 10714
(1.125658e-27)  (1.309928e-21)
EWCRP 39.04 11325
(1.948257¢-80)  (1.161420e-26)
GO-GARCH(1,1) | 43.44 11325
(8.481405¢-87) (1.161420e-26)
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Figure 1: Wealth achieved by each investment strategy amongst 16 HFR
Global Macro funds.
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Figure 2: Wealth achieved by each investment strategy amongst 16 HFR
Global Macro funds. Experiments are implemented under various hedge fund

redemption restrictions.
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Barclay CTAs
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Figure 3: Wealth achieved by each investment strategy amongst 16 Barclays
CTAs funds.
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Figure 4: Wealth achieved by each investment strategy amongst 16 Barclays
CTAs funds. Experiments are implemented under various hedge fund redemp-

tion restrictions.
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Figure 5: Wealth achieved by each investment strategy amongst 16 HFR Eq-
uity Hedge funds.

Equity Hedge

— EWCRP
- - GOGARCH, ,

MV<
IK

20
|

15
|

wealin

10
|

1996 1998 2000 2002 2004 2006

date

Figure 6: Wealth achieved by each investment strategy amongst 16 HFR Eq-
uity Hedge funds. Experiments are implemented under various hedge fund

redemption restrictions.
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Figure 7: Wealth achieved by each investment strategy amongst 16 HFR Rel-

ative Value funds.
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Figure 8: Wealth achieved by each investment strategy amongst 16 HFR Rel-
ative Value funds. Experiments are implemented under various hedge fund

redemption restrictions.
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Figure 9: Wealth achieved by each investment strategy amongst 16 HFR
Event-Driven funds.

Event-Driven

— EWCRP
- - GOGARCH; ;
MV<

o — I

wealin

1996 1998 2000 2002 2004 2006

date

Figure 10: Wealth achieved by each investment strategy amongst 16 HFR
Event-Driven funds. Experiments are implemented under various hedge fund

redemption restrictions.
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Figure 11: Boxplots of AAY for 150 resamplings HFR individual Equity Hedge
funds. Median values for each strategy are displayed in the subtitle below the
graphic.
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Figure 12: Boxplots of annualized Sharpe ratios for 150 resamplings HFR
individual Equity Hedge funds. Median values for each strategy are displayed
in the subtitle below the graphic.



