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Abstract

We are interested in this work to a numerical estimation of parame-
ters intervening in the formation process of the sand dunes. They are in
particular the phenomenological parameters and which influences re-
spectively the curvature and the slope. We formulate an optimal control
problem (inverse problem) and we implement several numerical meth-
ods to approach the problem. Then we make a comparative study of
these numerical methods in order to choose the best for the analysis.
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1 Introduction

Following the great noted climate changes, one attends a reactivation of the

sand dunes remained motionless during thousands of years [1]. From now on,

the Sahara are spread out by the wind and the dunes threaten the ecosystems.

The comprehension of the characteristics of the formation of sand dunes and

the phenomena related to their displacement become then an important issue.

To determine the parameters concerned in the different models governing the

formation of the sand dunes is a crucial step in the search for effective means

fight against the stranding. The mathematical models which control the for-

mation of the sand dunes are formed in general by systems of partial derivative

equations [2,3,4] which reveal parameters unknown and inaccessible to direct

measurements. To identify one or more unknown parameters controlling the

formation of sand dunes generally amounts to solve an inverse problem. The

resolution of this kind of problem is based on minimization of an objective

functional describing the difference between the observations (measurements)

and simulations (numerical calculations).

The present paper study the development of numerical approaches for es-

timating the parameters of the model describing the formation of sand dunes.

It is therefore an inverse problem of estimation of parameters of diffusion and

transport. The paper is structured as follows: in the second section we give the

mathematical model which describes the formation of the sand dunes. In the

third section we give a formulation of the inverse problem. The section four

to six will be devoted to the numerical approximation of the inverse problem.

In the section seven, we will proceed to numerical simulations followed by an

analysis of the results and we finish by a conclusion.

2 Mathematical model

The mathematical model describing the formation of the sand dunes is

given by the following system [2]:
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

∂h(x, t)

∂t
+

∂q(x, t)

∂x
= 0 if |∂h(x, t)

∂x
| < tan(γ) ∀ (x, t) ∈ Ω× [0, T ]

∂q(x, t)

∂x
= qsat(x, t)− q(x, t) if h(x, t) > 0,

∂q(x, t)

∂x
= 0 elsewhere

qsat(x, t) = 1− αD
∂2h(x, t)

∂x2
+ β

∂h(x, t)

∂x

h(x, t) = 0, ∀ (x, t) ∈ Γ× [0, T ]

h(x, 0) = h0, ∀x ∈ Ω

(2.1)

• h (t, x): Denotes the height of the dune at every point x of the space

and time t;

• q (t, x) : Denotes the flux of sand grains transported at any point and

at any time;

• qsat(t,x): Is saturation flux ;

• h0(x) Denotes the initial condition.

When all the parameters are given, the resolution of the model can be done

analytically or numerically. In the last study, we have underlined the effect of

the parameters α and β [2].

3 Formulation of the inverse problem

The inverse problem of identification of parameters is written as follows:

min
α,β

S(α, β) = min
α,β

∫ T

0

∫
Ω

|h(x, t, α, β)− hmes(x, t)|2 dxdt

Under constraint

∂h(x, t)

∂t
− αD

∂2h(x, t)

∂x2
+ β

∂h(x, t)

∂x
= f(x, t) ∀ (x, t) ∈ Ω× [0, T ]

h(x, t) = 0, ∀(x, t) ∈ Γ× [0, T ]

h(x, 0) = h0, ∀x ∈ Ω

(3.1)
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With:

f(x, t) = q(x, t)− 1

We can translate this problem of minimization in the following way: the couple

of parameters (α β) is sought so that the height h resulting from the simulations

approaches as much as possible measured height hmes

3.1 Discretization

Let n be a non-zero natural integer and Ω = [a, b] the spatial domain. We

define the discretization step of the domain Ω = [a, b] by ∆x = b−a
n

and we

subdivide the domain Ω into subintervals [xi, xi+1] such that xi = a + i×∆x

for i ∈ {0, 1, · · · , n} .

We also subdivide the time domain T = [0, tf ] into k subintervals [tj, tj+1] with

k a non-zero integer and tj = j ×∆t for j ∈ {0, 1, · · · , k}.
Thus, the functional of minimization can be written as follows:

Sn,k(α, β, xi, tj) =
n∑

i=0

k∑
j=0

[h(xi, tj, α, β)− hmes(xi, tj)]
2 (3.2)

We can rewrite Sn,kin the following matrix form:

Sn,k(P, xi, tj) = [H(P )−Hmes(x, t)]T [H(P )−Hmes(x, t)] (3.3)

With:

P=(α,β) : The Parameter vector

H(P)= (h(xi, tj, α, β))1≤j≤n
1≤i≤n

: Matrix whose components are h(xi, tj, α, β)

Hmes(x, t) = (hmes(xi, tj))1≤j≤n
1≤i≤n

: Matrix whose components are hmes(xi, tj)

The minimum of Sn,k is reached when its first derivate with respect to P is

zero

∇Sn,k(P ) = 0 =⇒ 2[J(t, P )][H(xi, tjP )−Hmes(xi, tj)] = 0 (3.4)

With:

J(t,P): is the first derivate of h(x,t,P) with respect to parameter P, called also

sensitive matrix or jacobian matrix.
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J(t, P ) =



∂h1

P1

∂h1

P2

· · · ∂h1

Pm

∂h2

P1

∂h1

P2

· · · ∂h2

Pm

...
... · · · ...

∂hk

P1

∂hk

P2

· · · ∂hk

Pm



(3.5)

4 Resolution Algorithms

4.1 Algorithm 1: Gauss-Newton

Let us suppose that the functional of minimization S ∈ C2(Rn, R) the set

of the functions of class twice continuously derivable.

We approach the Hessien of the functional of minimization by the formula:

H(S(P )) ≈ 2[J(t, P )]T [J(t, P )] [5] [6]. J(T, P) is the gradient of the functional

of minimization.

Algorithm 1

Parameter Initialization P 0 = (αintial, βintial)

from r = 1 until the stopping criterion is not validated do:

Step 1: Resolution of the model with the values of P r in order to obtain

the theoretical answer of the system h(xi, tj, P
r);

Step 2:Determination of the matrix of sensitivity J(t, P r);

Step 3: calculate the new value of the parameter P r+1:

P r+1 = P r + [J(t, P r)T · J(t, P r)]−1 · J(t, P r) · (H(x, t, P r)−Hmes(x, t))

Step 4: Checking of the stopping criterion

r ← r + 1
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4.2 Algorithm 2: Levenberg-Marquardt

The Levenberg-Marquardt method consists of a regularization of the matrix

of the sensitivities [7-10]

Algorithm 1

Parameter Initialization P 0 = (αintial, βintial)

from r = 1 until the stopping criterion is not validated do:

Step 1: Resolution of the model with the values of P r in order to obtain

the theoretical answer of the system h(xi, tj, P
r);

Step 2:Calculation of S(P r) and determination of the matrix of sensitivity

J(t, P r);

Step 3: calculate the new value of the parameter P r+1:

P r+1 = P r + [J(t, P r)T · J(t, P r) + µr · Λr]−1 · J(t, P r) · (H(x, t, P r)

−Hmes(x, t))

Λ: Positive definite matrix.

µ: Positive real.

Step 4: Resolution of the model with the new values of the parameters P r+1

in order to obtain the new theoretical answer of the system h(xi, tj, P
r+1) and

calculation of S(P r+1);

Step 5: If S(P r) > S(P r+1), µr ← 10× µr and return to step 3;

If not µr ← 0.1× µr

Step 6:Checking of the stopping criterion

r ← r + 1

5 Algorithm 3: The conjugate gradient

The fundamental idea of this method consists in determining the news

reiterated P k+1 starting from the last P k iteration by [11]:

P k+1 = P k − γkdk (5.1)

With:

P k: The parameter vector estimated at the iteration k;
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γk: The descent depth at the iteration k;

dk: The descent direction at the iteration k;

dk = ∇S(P k)− βkdk−1 (5.2)

βk =
‖∇S(P k)‖
‖∇S(P k−1)‖

andβ0 = 0 (5.3)

and β0 = 0

5.1 Problem of sensitivity

This problem consists in determining the variation δh(x, t) of the height in-

duced by a variation of the parameter δP . Considering the system of partial

derivative equation satisfied by h(x, t) + ηδh(x, t) then when η −→ 0, the

problem of sensitivity is given by:

• For a variation of the parameter P1 = α

∂δh(x, t)

∂t
− P1D

∂2δh(x, t)

∂x2
− δP1D

∂2δh(x, t)

∂x2
+ β

∂h(x, t)

∂x
= 0

δh(x, t) = 0, ∀ (x, t) ∈ Γ× [0, T ]

δh(x, 0) = h0, ∀x ∈ Ω

(5.4)

• For a variation of the parameter P2 = β

∂δh(x, t)

∂t
− αD

∂2δh(x, t)

∂x2
+ P2

∂δh(x, t)

∂x
+ δP2

∂δh(x, t)

∂x
= 0

δh(x, t) = 0, ∀ (x, t) ∈ Γ× [0, T ]

δh(x, 0) = h0, ∀x ∈ Ω

(5.5)

The descent depth γk is the value corresponding to the optimal pitch in the

direction of descent of the new value of unknown parameters. This magnitude

γk minimize the following criterion:

γk = arg[min(S(P k − γkdk))] (5.6)
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After developments and calculations, the depth of descent γk is calculated at

each iteration k is obtained:

γk =

∑n
i=1

∑k
j=1[h(x, t, P k)− hmes(xi, tj)]δh(x, t, P k)∑n

i=1

∑k
j=1[δh(x, t, P k]2

(5.7)

Depth of descent γk is calculated at each iteration according to the solution of

the problem of sensitivity δh(x, t, P k).

6 Adjoint problem

6.1 Formulation

The goal of the adjoint problem is to obtain the expression of the gradi-

ent in order to be able to determine the direction of descent. This problem

consists in building a function Ψ(x, t) called ?multiplier of Lagrange? which

allow to determine the expression of the gradient ?∇S(P ) of the functional of

minimization S (P). The Lagrange formula is defined by [12-14]:

L(P, h, Ψ) = S(P, h) + R(P, h, Ψ) (6.1)

With

R(P, h, Ψ): Corresponds to the system of equation of the model multiplied by

the Lagrange multiplier.

The expression of the variation of Lagrange δL(P, h, Ψ) is:

δL(P, h, Ψ) =
∂L

∂P
δP +

∂L

∂h
δh +

∂L

∂Ψ
δΨ (6.2)

If we fix Ψ(x, t), we have:

∂L

∂Ψ
δΨ = 0 =⇒ δL(P, h, Ψ) =

∂L

∂P
δP +

∂L

∂h
δh (6.3)

In order to obtain the gradient of the criterion it is necessary to choose suitably

Ψ(x, t). The multiplying choice of the function of Lagrange Ψ(x, t) is chosen

so that the following equation is satisfied:

∂L

∂h
δh = 0 =⇒ δL(P, h, Ψ) =

∂L

∂P
δP (6.4)
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Moreover, if h is solution of the equations defining the mathematical model,

we have:

L(P, h, Ψ) = S(P ) =⇒ δL(P, h, Ψ) = δS(P, h) (6.5)

6.2 Determination of the adjoint problem equations

In this part we will determine the equations of the adjoint problem for each

unknown parameter.

• For the parameter of diffusion P1 = α

The Lagrange formula is defined by:

L(P1, h, Ψ) = S(P1, h) + R(P1, hΨ) (6.6)

The expression of the variation of Lagrange is:

δL(P1, h, Ψ) = δS(P1, h) + δR(P1, hΨ) (6.7)

With:

δS(P1, h) =

∫ t

0

∫
Ω

[h(xi, t, P1 − hmes(xi, t]δh(x, t)δD(x− xi)Ψdxdt (6.8)

δR(P1, hΨ) =

∫ t

0

∫
Ω

[
∂δh(x, t)

∂t
−P1D

∂2δh(x, t)

∂x2
−δP1D

∂2δh(x, t)

∂x2
+β

∂h(x, t)

∂x
]Ψdxdt

(6.9)

So we have:

δL(P1, h, Ψ) =

∫ t

0

∫
Ω

[h(xi, t, P1 − hmes(xi, t]δh(x, t)δD(x− xi)Ψdxdt+∫ t

0

∫
Ω

[
∂δh(x, t)

∂t
− P1D

∂2δh(x, t)

∂x2
− δP1D

∂2δh(x, t)

∂x2
+ β

∂h(x, t)

∂x
]Ψdxdt

(6.10)
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We can rewrite the variation of Lagrange formula in this form:

δL(P1, h, Ψ) =

∫ t

0

∫
Ω

[h(xi, t, P1 − hmes(xi, t]δh(x, t)δD(x− xi)Ψdxdt+∫
Ω

δh(x, tf )Ψ(x, tf )dx−
∫ t

0

∫
Ω

[δh
∂Ψ

dt
]dxdt−

∫ t

0

∫
Ω

[P1Dδh
∂2Ψ

∂x2
]dxdt

−
∫ t

0

∫
Ω

[DδP1
∂2h

∂x2
]Ψdxdt +

∫ t

0

∫
Ω

[βδh
∂Ψ

∂x
]dxdt

(6.11)

The multiplier of Lagrange is chosen so that:

∂L

∂h
δh = 0 (6.12)

Which leads to the adjoint problem:
∂Ψ(x, t)

dt
+ P1D

∂2Ψ(x, t)

∂x2
− β

∂Ψ(x, t)

dx
= E(x, t)

Ψ(x, tf ) = 0

(6.13)

When h is solution of the mathematical model and Ψ is solution of the asso-

ciated problem, then:

δL = δS =

∫ t

0

∫
Ω

δP1
∂h

∂x
Ψdxdt (6.14)

We define the gradient of the criterion in the following way:

∇S =

∫ t

0

∫
Ω

∂h

∂x
Ψdxdt (6.15)

• For the parameter of diffusion P2 = β

The Lagrange formula is defined by:

L(P2, h, Ψ) = S(P2, h) + R(P2, hΨ) (6.16)

The expression of the variation of Lagrange is:

δL(P2, h, Ψ) = δS(P2, h) + δR(P2, hΨ) (6.17)

With:

δS(P2, h) =

∫ t

0

∫
Ω

[h(xi, t, P2 − hmes(xi, t]δh(x, t)δD(x− xi)Ψdxdt (6.18)
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δR(P2, hΨ) =

∫ t

0

∫
Ω

[
∂δh(x, t)

∂t
−αD

∂2δh(x, t)

∂x2
+P2

∂δh(x, t)

∂x
+δP2

∂δh(x, t)

∂x
]Ψdxdt

(6.19)

So we have:

δL(P2, h, Ψ) =

∫ t

0

∫
Ω

[h(xi, t, P2 − hmes(xi, t]δh(x, t)δD(x− xi)Ψdxdt+∫ t

0

∫
Ω

[
∂δh(x, t)

∂t
− αD

∂2δh(x, t)

∂x2
+ P2

∂δh(x, t)

∂x
+ δP2

∂δh(x, t)

∂x
+ β

∂h(x, t)

∂x
]Ψdxdt

(6.20)

We can rewrite the variation of Lagrange formula in this form:

δL(P2, h, Ψ) =

∫ t

0

∫
Ω

[h(xi, t, P2 − hmes(xi, t]δh(x, t)δD(x− xi)Ψdxdt+∫
Ω

δh(x, tf )Ψ(x, tf )dx−
∫ t

0

∫
Ω

[δh
∂Ψ

dt
]dxdt +

∫ t

0

∫
Ω

[P2δh
∂Ψ

∂x
]dxdt

−
∫ t

0

∫
Ω

α[Dδh
∂2Ψ

∂x2
]dxdt +

∫ t

0

∫
Ω

[δp2
∂h

∂x
]Ψdxdt

(6.21)

The multiplier of Lagrange is chosen so that:

∂L

∂h
δh = 0 (6.22)

That implies the multiplier of Lagrange is solution of the following associated

problem: 
∂Ψ(x, t)

dt
+ αD

∂2Ψ(x, t)

∂x2
− P2

∂Ψ(x, t)

dx
= E(x, t)

Ψ(x, tf ) = 0

(6.23)

When h is solution of the mathematical model and Ψ is solution of the asso-

ciated problem, then:

δL = δS =

∫ t

0

∫
Ω

δP2
∂h

∂x
Ψdxdt (6.24)

We define the gradient of the criterion in the following way:

∇S =

∫ t

0

∫
Ω

∂h

∂x
Ψdxdt (6.25)
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7 Numerical Simulations

Figure 1: Evolution of the paramater α using different methods

Figure 2: Evolution of the paramater β using different methods
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Figures 1 and 2 describe the evolution of the parameters α and β . In this

first simulation the values of initialization are taken close to the target values.

The target values of the required parameters are =1 and =4 [3] and the values

of initialization of the parameters and fixed respectively at 0.25 and 2.75.

One notes that the various algorithms converge towards the target solutions,

however this convergence does not unroll same manner. The algorithm of

Gauss-Newton and the algorithm of the conjugate gradient converge after only

5 iterations while for the algorithm of Levenberg-Marquardt, one needs at

least 13 iterations. Indeed, the algorithm of Levenberg-Marquardt requires

a considerable computing time mainly due to the calculation of the matrices

of sensitivity to each stage of the algorithm which can become petitioning

important calculations.

Table 1: Error by Newton-Gauss method

Iteration 1 2 · · · 6 7

Error between

calculated height

and measured height 36.0504 11.1731 · · · 2.6168× 10−8 2.310× 10−12

Approximation error

of parameter α 0.75 0.4268 · · · 9.6489× 10−10 1.07× 10−13

Approximation error

of parameter β 1.25 0.1191 · · · 3.1197× 10−9 2.22× 10−13
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Table 2: Error by Levenberg-Marquardt method

Iteration 1 2 · · · 14 15

Error between

calculated height

and measured height 36.0504 36.0504 · · · 1.6208× 10−9 1.6101× 10−13

Approximation error

of parameter α 0.75 0.7499 · · · 1.8868× 10−11 1.5× 10−14

Approximation error

of parameter β 1.25 1.24 · · · 2.0247× 10−10 5.4× 10−14

Table 3: Error by conjugate gradient

Iteration 1 2 · · · 6 7

Error between

calculated height

and measured height 36.0504 4.5782 · · · 1.3971× 10−9 1.5105× 10−11

Approximation error

of parameter α 0.75 0.1037 · · · 5.0726× 10−12 2.7936× 10−14

Approximation error

of parameter β 1.25 0.0912 · · · 8.7831× 10−10 2.22× 10−14

The results obtained, show that as the iteration increases the error between

the calculated height and the measured height decreases. Indeed, the procedure

of estimate of the parameters allows as well as possible to approach the required

parameters which are determining in the rebuilding of the phenomenon of

formation of the sand dunes.
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Figure 3: Evolution of the paramater α using different methods

Figure 4: Evolution of the paramater β using different methods
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In this second simulation, the values of initialization are taken far away

from the target values. Values of initialization of the parameters and fixed

respectively at 3 and 6. It is noted that the algorithm of Newton-Gauss does

not convergence towards the target solutions. Indeed, the disadvantage of this

method resides on the approximation of Hessien according to the gradient of

the functional. While the algorithm of Levenberg-Marquardt and the conju-

gate gradient ensure a convergence towards the target solutions. In spite of

results of convergence, the method of Levenberg-Marquardt is characterized

by its slow behavior when the value of initialization is far from the required

solution. The major advantage of the algorithm of conjugate gradient is that

it is fast and converges independently of the initialization values.

8 Conclusion

The objective of this work is the identification of the parameters involved

the model describing the formation of the sand dunes. It is an inverse problem

solved by the methods of Newton-Gauss, Levenberg-Marquardt and the conju-

gate gradient. At first the various methods to solve the problem are presented.

Simulations showed that one of the advantages of Gauss-Newtons method is

that it does not require the calculation of Hessien, which makes calculation

faster. Nevertheless, this method is limited because it does not ensure conver-

gence when the initialization values are chosen far from the target solutions.

The algorithm of Levenberg-Marquardt converges whatever the initialization

values; but this convergence proves to be slow because of the matrices to re-

verse. As for the algorithm of the conjugate gradient, fast convergence makes

it interesting. One of the advantages of this method is that combined with the

method of the adjoint problem, it allows the exact calculation of the gradient.
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