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Abstract

This paper estimates the volatility of most important European
stock market indices during the global financial crisis started in 2008,
such as DAX, CAC40, FTSE100, among others. The estimation of
volatility is made from a new family of stochastic volatility models pro-
posed by Santos, Franco, Gamerman [33, 17] and extended to distri-
butions of heavy tails by Pinho, Franco, Silva [32]. This new family
of models denoted by non-Gaussian State Space Models (NGSSM) is a
subclass of state space models where it is possible to compute the ex-
act likelihood. It is also estimated volatility of the series by APARCH
model and the results showed that NGSSM has a significantly better
performance.
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1 Introduction

The last financial crises, which occurred all over the world, have been char-

acterized by the speed in with which volatility spreads around the global stock

markets. One of the main concerns, among economists and the population in

general, is how long this crisis will last. Therefore, there has been recently an

outburst of researches focusing on the study and modeling of volatility.

Relying on the fact that the unconditional distribution of daily returns

has fatter tails than the normal distribution, the usual time series models,

such as VAR and ARIMA, which assume the normality and homoscedasticity

assumptions, are not appropriate for modeling volatility. Thus, more adequate

procedures, whose conditional variance varies in time, have been proposed.

In the literature there are many works about heteroscedastic models, such

as ARCH proposed by Engle [13], GARCH proposed by Bollerslev [6], multi-

variate GARCH proposed by Bauwens, Laurent, Rombouts [4], EGARCH pro-

posed by Nelson [30], TGARCH proposed by Zakoian [42], stochastic volatility

model proposed by Taylor [39] and multivariate stochastic volatility model pro-

posed by Harvey, Ruiz, Shephard [23].

West, Harrison, Migon [40] proposed the Dynamic Generalized Linear Mod-

els (DGLM) that attracted an immense interest due to great applicability in

diverse areas of the knowledge, but the analytical form is easily lost, even using

very simple components.

Santos, Franco, Gamerman [33, 17] proposed a Non Gaussian State Space

Models - NGSSM, a generalization of the Smith-Miller result [37]. This pro-

cedure comprises a dynamic model with exact evolution equation, as well as

transformations one by one of the series, allowing the analytical integration

of the states and the obtaining of the exact likelihood function, as well the

predictive distributions one step ahead.

Pinho, Franco, Silva [32] proposed other distributions (all are heavy tail

distributions) that are special cases of the NGSSM, that are the Log-normal,

Log-gamma, Fréchet, Lévy and Skew GED. Santos, Franco, Gamerma [33, 17]

presented two distributions heavy tails, the Pareto and Weibull.

The paper is organized as follows. Section 2 defines the NGSSM. Section

3 shows the GARCH and APARCH models. Section 4 discusses about the

inferential procedure in NGSSM. Section 5 shows the results of the models
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fitted to the real series and Section 6 concludes the work.

2 Non Gaussian State Space Model - NGSSM

In this section, the models are introduced. They are given in this formula-

tion in [33, 17]. The main advantage of these models compared to the DGLM

is that exact inference can be performed.

A time series {yt} is in this class of models if it satisfies the following

assumptions:

A0 Its probability (density) function can be written in the form:

p(yt|µt, ϕ) = q(yt, ϕ)µ
r(yt,ϕ)
t exp (−µts(yt, ϕ)) , for yt ∈ H(ϕ) ⊂ < (1)

and p(yt|µt, ϕ) = 0, otherwise. Functions q(·), r(·), s(·) and H(·) are

such that p(yt|µt, ϕ) ≥ 0 and therefore µt > 0, for all t > 0. It is also

assumed that ϕ varies in the p-dimensional parameter space Φ.

A1 If xt is a covariate vector, the link function g relates the predictor to

the parameter µt through the relation µt = λtg(xt, β), where β are the

regression coefficients (one of the components of ϕ) and λt is the latent

state variable related to the description of the dynamic level. If the

predictor is linear, then g(xt, β) = g(x
′
tβ).

A2 The dynamic level λt evolves according to the system equation λt+1 =

ω−1λtςt+1, where ςt+1|Y t ∼ Beta (ωat, (1− ω)at), 0 < ω ≤ 1, t = 1, 2, ...,

that is, ω λt+1

λt
| λt, Y t ∼ Beta (ωat, (1− ω)at), Y t = {Y0, y1, . . . , yt} and

Y0 represents previously available information.

A3 The dynamic level λt is initialized with prior distribution λ0|Y0 ∼ Gamma(a0, b0).

There is a wide range of distributions that belong to this class of models.

It includes many commonly known discrete and continuous distributions such

as Poisson, Gamma and Normal (with static mean) but also includes many

other distributions that are not so commons.

Santos, Franco, Gamerman [33, 17] and Pinho, Franco, Silva [32] found

some special cases of the NGSSM as follow in the Table 1, which provides
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the form of functions q(·), r(·), s(·) and H(·) for distributions in this family.

The more common cases such as Poisson and Exponential were previously

singled out in the literature. Several other cases of this family are introduced

here and they include continuous and discrete distributions. Some of them

are well known such as Normal and Pareto, but the family includes also the

Borel-Tanner and the Rayleigh distributions, for example.

Table 1: Cases of the NGSSM
Model Tails q (yt, ϕ) r (yt, ϕ) s (yt, ϕ) H (ϕ)

Log-Normal heavy
[
(yt − γ)

√
2π

]−1
1
2

[ln(yt−γ)−δ]2

2
(γ,∞)

Log-Gamma heavy
αα[ln(yt)]

α−1

[Γ(α)yt]
α α ln (yt) (1,∞)

Fréchet heavy α (yt − γ)−α−1 1 (yt − γ)−α (γ,∞)

Lévy heavy [2π (yt − γ)]−
3
2 1

2
[2 (yt − γ)]−1 (γ,∞)

Skew GED heavy/light κ
Γ(α−1)(1+κ2)

1
α

[
(yt−δ)+

k−α

]α
+

[
(yt−δ)−

kα

]α
(−∞,∞)

Pareto heavy y−1
t 1 ln (yt) (1,∞)

Weibull heavy/light υyυ−1
t 1 yυ

t (0,∞)

Poisson light (yt!)
−1 yt 1 {0, 1, . . .}

Borel-Tanner light γ
(yt−γ)!

yyt−γ−1
t yt − γ yt {γ, γ + 1, . . .}

Gamma light
ααyα−1

t
Γ(α)

α αyt (0,∞)

Normal light [2π]−
1
2 1

2
(yt−γ)−2

2
(−∞,∞)

Laplace light 1√
2

1
√

2 |yt − γ| (−∞,∞)

Inverse Gaussian light 1√
2πy3

t

1
2

(yt−γ)−2

2ytγ2 (0,∞)

Rayleigh light yt 1 1
2
y2

t (0,∞)

Generalized Gamma light
υyα−1

t

Γ( α
υ )

1 yυ
t (0,∞)

Theorem 2.1 in [33, 17] below provides basic results of these models for se-

quential or on-line inference for the level λt (filtering results) and the predictive

distribution.

Theorem 2.1. If the model is defined in A0-A3, the following results, for

t=1, 2, ..., can be obtained:

1. The prior distribution λt|Y t−1, ϕ follows a Gamma(at|t−1, bt|t−1) distri-

bution such that

at|t−1 = ωat−1, (2)

bt|t−1 = ωbt−1. (3)

2. The on-line or updated distribution of λt|Y t, ϕ is Gamma (at,bt), where

at = at|t−1 + r(yt, ϕ), (4)

bt = bt|t−1 + s(yt, ϕ). (5)
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3. The one step ahead predictive density function is given by

p(yt|Y t−1, ϕ) =
Γ(r(yt, ϕ) + at|t−1)q(yt, ϕ)(bt|t−1)

at|t−1

Γ(at|t−1)[s(yt, ϕ) + bt|t−1]
r(yt,ϕ)+at|t−1

, yt ∈ H(ϕ),

(6)

∀t ∈ N and Γ(·) is the gamma function.

For more details and the proof of Theorem 2.1 can be found in [33, 17].

3 APARCH models

The Autoregressive Conditional Heteroscedasticity (ARCH) models were

proposed by Engle [13] and the Generalized Autoregressive Conditional Het-

eroscedasticity (GARCH) models were proposed by Bollerslev [6, 7] and [8].

The GARCH models are defined as follows.

yt = σtεt (7)

σ2
t = θ0 +

p∑
i=1

θiε
2
t−1 +

q∑
j=1

φjσ
2
t−j (8)

where θ0 > 0, θi ≥ 0, φj ≥ 0 and
r∑

k=1

(θk + φk) < 1 with i = 1, . . . , p, j =

1, . . . , q and r = max (p, q).

In the literature, many extensions have been proposed for the ARCH-

GARCH. These extensions take into account the asymmetry, different dis-

tributions, regime change, among others. There may be mentioned Logarith-

mic GARCH (Log-GARCH) proposed independently in slightly different forms

by [18, 31] and [29], the Exponential GARCH proposed by [30], Nonlinear

GARCH (NGARCH) proposed by [24], GJR-GARCH proposed by Glosten

et al. (1993), Asymmetric Power ARCH (APARCH) proposed by Ding et

al. (1993), Threshold GARCH (TGARCH) proposed by [42], Fractionally In-

tegrated GARCH (FIGARCH) proposed by [3], the Asymmetric Threshold

GARCH (ATGARCH) proposed by [11], among many other works.
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In this paper the NGSSM are compared with the APARCH models, because

Laurent shows that the APARCH models are extensions of the GARCH models

[27], as it was mentioned above. The APARCH(p,q) models proposed by Ding,

Granger, Engle [12] are defined as follows:

yt = σtεt (9)

σδ
t = θ0 +

p∑
i=1

θik (εt−i)
δ +

q∑
j=1

φjσ
δ
t−j (10)

k (εt−i) = |εt−i| − γiεt−i (11)

where θ0 > 0, θi ≥ 0, δ ≥ 0, −1 < γi < 1, φj ≥ 0, i = 1, . . . , p, j = 1, . . . , q.

Then, the proposal of this model imposes a Box Cox power transforma-

tion of the conditional standard deviation process and the asymmetric abso-

lute residuals. Thus, this proposal is aligned with [10], who shows that the

asymmetric response of volatility to positive and negative shocks produces the

leverage effect of the stock market returns. Laurent shows that the APARCH

includes seven other ARCH extensions as special cases [27], that follow:

1. ARCH by Engle [13], when δ = 2, γi = 0 and φj = 0 (i = 1, . . . , p; j = 1, . . . , q);

2. GARCH by Bollerslev [6], when δ = 2 and γi = 0 (i = 1, . . . , p);

3. GARCH by Taylor [38] and Schwert:1990, when δ = 1 and γi = 0

(i = 1, . . . , p);

4. GARCH-GJR by Glosten et al. (1993), when δ = 2;

5. TARCH by Zakoian [42], when δ = 2;

6. NARCH by Higgins and Bera [24], when γi = 0 and φj = 0 (i = 1, . . . , p; j = 1, . . . , q);

7. Log-ARCH by Geweke [18], Pantalu [31] and MILHA [29], when δ →∞.
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4 Inference for hyperparameters of the NGSSM

models

The model parameters are divided into the latent states {λt} and fixed

parameters ϕ, usually called hyperparameters. The on-line and smoothed

inference for the state parameters are presented and the knowledge of the

hyperparameters is assumed in both cases.

In this section, inference for the hyperparameters and the latent states is

discussed.

4.1 Classical Inference

One way of making classical inference about the parameter vector ϕ is

through the marginal likelihood function, whose form is given by

L(ϕ; Y n) =
n∏

t=1

p(yt|Y t−1, ϕ) =
n∏

t=1

Γ(r(yt,ϕ)+at|t−1)q(yt,ϕ)(bt|t−1)
at|t−1

Γ(at|t−1)[s(yt,ϕ)+bt|t−1]
r(yt,ϕ)+at|t−1

, (12)

where yt ∈ H(ϕ) and ϕ is composed by ω, β and by parameters of the spe-

cific model. Maximization of the marginal likelihood function (12) is typically

performed numerically.

The asymptotic confidence interval for ϕ is built based on a numerical

approximation for the Fisher information matrix In(ϕ), using In(ϕ) ∼= −G(ϕ),

where −G(ϕ) is the matrix of second derivatives of the log-likelihood function

with respect to the parameters. As the computation of the derivatives is not

an easy task, numerical derivatives are used (see [15]).

Let ϕi, i = 1, . . . , p, be any component of ϕ. Then, an asymptotic confi-

dence interval of 100(1− κ)% for ϕi is given by

ϕ̂i ± zκ/2

√
V̂ ar(ϕ̂i),

where zκ/2 is the κ/2 percentile of the standard normal distribution and V̂ ar(ϕ̂i)

is obtained from the diagonal elements of the Fisher information matrix.

Pinho, Franco, Silva [32] presented Monte Carlo results comparing Bayesian

and classical inferences methods in the estimation of the NGSSM parameters
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for the heavy tailed distributions (see Table 1). In that work an important clas-

sical inference problem is appointed, the parameter ω (known as the discount

factor) presented, for small series, a large bias. This problem do not affect the

inferential process here, once all series have more than 1.000 observations.

4.2 Bayesian Inference

Bayesian inference for ϕ can be performed using MCMC algorithms pro-

posed by Gamerman and Lopes [16], since the posterior distribution of the

hyperparameter is not analytically tractable. The marginal posterior distribu-

tion of parameter vector ϕ is given by

π(ϕ|Y n) ∝ L(ϕ; Y n)π(ϕ), (13)

where L(ϕ; Y n) is the likelihood function defined in (12) and π(ϕ) is the prior

distribution for ϕ. In this work, proper uniform priors are used for ϕ.

Credibility intervals for ϕi, i = 1, ..., p are built as follows. Given a value

0 < κ < 1, the interval [c1, c2] satisfying

c2∫
c1

π(ϕi | Y n) dϕi = 1− κ

is a credibility interval for ϕi with level 100(1− κ)%.

4.3 Stochastic volatility smoothed

Inference for the latent variables (volatility) can be made with the output

from the MCMC algorithm proposed by Santos, Franco and Gamerman [33].

Once a sample ϕ(1), ...,ϕ(M) is available, posterior samples λ(1), ..., λ(M) from

the latent variables are obtained as follows:

1. set j = 1;

2. sample the hyperparameter ϕ(j) from the MCMC algorithm;

3. sample the set λ(j) of latent variables from p(λ|ϕ(j), Y n) using Theorem

3;
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4. increase j → j + 1 and return to step 1, until j = M .

Again, similar comments are valid for the predictive distributions. Note

that

p(yt+h|Y t) =

∫
p(yt+h|Y t, ϕ) π(ϕ|Y n) dϕ.

Thus, h-step-ahead predictive distributions can be approximated by

1

M

M∑
j=1

p(yt+h|Y t, ϕ
(j))

from which summaries such as means, variances and credibility intervals can

be obtained.

4.4 Methods of adequacy and choice of models

After fitting the model to the data, it is necessary to verify the adequacy

model. In literature, there are many suggested methods of diagnosis and below

are described two proposals.

Harvey and Fernandes [22] suggest some methods of diagnosis, based on

standardized residuals, also known as residuals of the Pearson. These residuals

are defined by:

rp
t =

yt − E (yt |Yt−1, ϕ)√
V ar (yt |Yt−1, ϕ)

The another alternative is to use the residuals called by deviance proposed

by McCulagh and Nelder [28], which can be expressed as:

rd
t =

2ln

 p (yt |yt, ϕ)

p
(
yt

∣∣∣φ̂t, ϕ
)


1
2

,

where φ̂t = E (yt |Yt−1, ϕ).

The authors propose the following analysis of the residuals:

1. Examining the plot of the residuals vs. time and vs. an estimate com-

ponent level.

2. Verify that the sample variance of the standardized residuals is close 1. A

value greater than 1 indicates overdispersion relative to the model which

is fitted to the data.



116 Volatility of the European Stock Market Indices...

More details about these methods of adequacy can be seen in [33].

There are not rare times when you get a more appropriate model for the

data and when this occurs is necessary a criterion for determining the best

model. According to Harvey [21] the AIC and BIC criteria proposed by Akaike

[1] and Schwarz [34], respectively, are suitable. The AIC and BIC criteria are

defined by:

AIC = −2l (ϕ̂) + 2k

and

BIC = −2l (ϕ̂) + 2k ln (n) ,

where l (·) is the log-likelihood function, k number of parameters and n the

number of observations.

Hurvich and Tsai [25] proposed AICc which is a correction of the AIC.

Burnham and Anderson [5] strongly recommend using AICc, rather than AIC,

if n is small or k is large. The AICc criterion is defined by:

AICc = AIC +
2k (k + 1)

n− k − 1

In this work, to verify the adequacy model is used the deviance and for

comparison of models is used AICc and BIC criteria.

5 Application to real time series

In this subsection, some the NGSSM stochastic volatility were fitted to

some of main stock market indexes in the world, such as DAX (Germany),

CAC40 (France), FTSE100 (United Kingdom), FTSEMIB (Italy), IBEX35

(Spain) and PSI20 (Portugal). The period of the series between 01/02/2007

to 12/06/2011 and each series has, respectively, 1261, 1264, 1247, 1244, 1256

and 1090 observations.

Figure 1 presents the indexes and the log-returns of the six series. It can be

observed, in all cases, two volatility clusters, the first and biggest is observed

around the instants 400 and 500, which correspond to the second semester

of 2008, period of the global financial crisis in 2008. The second volatility

clusters the instants observed around the instants 1200, which are in the second

semester of 2011, period that the crisis intensified in Europe. In this, it is easy
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still to observe that the biggest volatility clusters are in Germany and France,

because these countries are more exposed to the European crisis.

Table 2: Likelihood, AIC and BIC values for the NGSSM and APARCH models

fitted to the DAX and CAC40 series.
SERIES NGSSM AICc BIC LN LIKE APARCH(1,1) AICc BIC LN LIKE

LOGNORMAL -15.44 -15.43 9737.39 NORMAL 1.55 1.57 -973.50

LOGGAMMA -15.77 -15.76 9949.14 SKEW NORMAL -13.54 -13.52 8539.39

PARETO -15.16 -15.15 9558.32 t-STUDENT -13.99 -13.98 8826.46

DAX WEIBULL -15.79 -15.78 9959.21 SKEW t-STUDENT -11.81 -11.80 7452.30

FRÉCHET -14.79 -14.77 9325.42 GED -14.34 -14.32 9044.14

LÉVY -14.04 -14.03 8855.78 SKEW GED -15.26 -15.24 9622.73

LAPLACE -13.94 -13.93 8791.30

SKEW LAPLACE -15.02 -15.00 9471.75

GED -14.51 -14.50 9154.58

SKEW GED -15.49 -15.48 9771.27

LOGNORMAL -15.08 -15.07 9536.28 NORMAL 1.53 1.55 -962.77

LOGGAMMA -15.39 -15.38 9732.31 SKEW NORMAL -13.41 -13.39 8476.82

PARETO -14.91 -14.91 9428.08 t-STUDENT -13.79 -13.78 8721.14

CAC40 WEIBULL -15.42 -15.41 9748.88 SKEW t-STUDENT -14.04 -14.03 8880.02

FRÉCHET -14.67 -14.65 9272.11 GED -14.01 -14.00 8859.66

LÉVY -14.14 -14.13 8938.04 SKEW GED -14.87 -14.85 9401.88

LAPLACE -13.73 -13.71 8677.39

SKEW LAPLACE -14.78 -14.77 9347.10

GED -14.29 -14.28 9033.88

SKEW GED -15.27 -15.25 9653.61

Table 3: Likelihood, AIC and BIC values for the NGSSM and APARCH models

fitted to the FTSE100 and FTSEMIB series.
SERIES NGSSM AICc BIC LN LIKE APARCH(1.1) AICc BIC LN LIKE

LOGNORMAL -15.64 -15.63 9757.34 NORMAL -13.24 -13.22 8259.48

LOGGAMMA -15.94 -15.93 9942.63 SKEW NORMAL -14.08 -14.07 8784.03

PARETO -15.48 -15.48 9656.82 t-STUDENT -14.41 -14.40 8989.56

FTSE100 WEIBULL -15.97 -15.96 9958.95 SKEW t-STUDENT -14.93 -14.91 9312.05

FRÉCHET -15.19 -15.17 9471.33 GED -14.61 -14.59 9112.19

LÉVY -14.70 -14.69 9167.93 SKEW GED -15.47 -15.46 9650.76

NORMAL -12.46 -12.45 7770.50

SKEW NORMAL -7.45 -7.43 4649.11

LAPLACE -14.32 -14.30 8929.05

SKEW LAPLACE -15.37 -15.35 9586.66

GED -14.88 -14.87 9279.78

SKEW GED -15.80 -15.78 9854.99

LOGNORMAL -14.90 -14.89 9271.11 NORMAL -12.60 -12.58 7840.07

LOGGAMMA -15.24 -15.22 9479.46 SKEW NORMAL -13.34 -13.32 8298.45

PARETO -14.77 -14.76 9188.63 t-STUDENT -13.63 -13.61 8479.02

FTSEMIB WEIBULL -15.27 -15.25 9498.85 SKEW t-STUDENT -13.95 -13.93 8678.42

FRÉCHET -14.45 -14.44 8991.81 GED -13.89 -13.87 8640.99

LÉVY -13.92 -13.91 8660.91 SKEW GED -14.45 -14.44 8993.03

NORMAL -11.72 -11.70 7290.19

SKEW NORMAL -7.42 -7.40 4616.71

LAPLACE -13.56 -13.55 8436.73

SKEW LAPLACE -14.63 -14.62 9105.18

GED -14.13 -14.11 8788.87

SKEW GED -15.11 -15.10 9405.34

The models in the tables were adjusted, using both Bayesian and classical

inferences, to the time series with an one-day delay as a covariate, using the

logarithm link function, that is, µt = λtexp {βXt}, where Xt is one day delay

log-return. The irregularity of the data due to the holidays and weekends
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Figure 1: The index and the log-return of DAX, CAC40, FTSE100,

FTSEMIB, IBEX35 and PSI20, in the period from 01/02/2007 to

12/06/2011.
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Table 4: Likelihood, AIC and BIC values for the NGSSM and APARCH models

fitted to the PSI20 and IBEX35 series.
SERIES NGSSM AICc BIC LN LIKE APARCH(1.1) AICc BIC LN LIKE

LOGNORMAL -15.73 -15.72 8575.23 NORMAL -12.76 -12.74 6955.76

LOGGAMMA -16.12 -16.11 8790.45 SKEW NORMAL -12.88 -12.86 7024.52

PARETO -15.65 -15.64 8533.18 t-STUDENT -14.54 -14.52 7929.09

PSI20 WEIBULL -16.16 -16.15 8810.77 SKEW t-STUDENT -15.27 -15.25 8326.68

FRÉCHET -15.32 -15.30 8350.79 GED -14.80 -14.78 8067.46

LÉVY -14.70 -14.69 8013.44 SKEW GED -15.71 -15.70 8568.12

NORMAL -12.60 -12.59 6871.99

SKEW NORMAL -13.93 -13.91 7593.20

LAPLACE -13.35 -13.33 7278.00

SKEW LAPLACE -15.54 -15.52 8473.96

GED -15.03 -15.02 8195.98

SKEW GED -15.96 -15.94 8703.42

LOGNORMAL -14.95 -14.94 9393.84 NORMAL -12.48 -12.47 7843.85

LOGGAMMA -15.21 -15.19 9552.15 SKEW NORMAL -13.21 -13.19 8298.79

PARETO -14.76 -14.75 9271.39 t-STUDENT -13.63 -13.61 8560.56

IBEX35 WEIBULL -15.24 -15.23 9576.33 SKEW t-STUDENT -13.63 -13.61 8560.56

FRÉCHET -14.52 -14.51 9120.81 GED -13.91 -13.90 8742.33

LÉVY -14.05 -14.04 8824.65 SKEW GED -14.87 -14.85 9341.72

NORMAL -11.71 -11.70 7359.32

SKEW NORMAL -7.43 -7.41 4669.95

LAPLACE -13.57 -13.56 8526.36

SKEW LAPLACE -14.63 -14.62 9193.43

GED -14.14 -14.13 8881.32

SKEW GED -15.10 -15.08 9487.20

was ignored. For implementation of the Bayesian inference, the Metropolis-

Hastings algorithm is used with generation of two chains. In general, vague and

proper priors are assumed for the hyperparameters and latent parameters as

uniform with suitably large limits and Gamma with small parameters values,

respectively.

For comparing the NGSSM with some known procedures in the literature,

APARCH models with Gaussian, Skew Gaussian, t-Student, Skew t-Student,

GED and Skew GED errors were also fitted to the series. All models for both

approachs were estimated using the square of the log-return of the stock market

indexes.

The programs, developed in Ox Metrics by authors, is used to estimate

the NGSSM-SV. The fGARCH package in software R is used to estimate the

APARCH models and the Coda package is used for diagnostic methods, check-

ing the chains convergence through graphic methods such as the autocorrelo-

gram, time series and trace plots. The method of Quasi-Maximum Likelihood

Estimation is used for estimating the parameters of APARCH models in the

package fGARCH. For more details see [9].

In the Tables 2, 3 and 4 can be observed that the comparison of the models

were performed using the AICc, BIC and log-likelihood (LN LIKE) criterion.

For more details about AICc and BIC see [5].
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According to the three criterion, the Weibull model is the best one within

the NGSSM models and the APARCH (1,1) with Skew GED errors is the

best one in the GARCH family. Comparing the two approaches (NGSSM

and APARCH) it is worth to note that the Log-normal, Log-gamma, Weibull

presented better results than the APARCH models for all series, with the

Weibull model being the best one, followed closely by the Log-gamma model.

For assessing the fit of the models, the pearson residuals were utilized

according to the description and suggestion in [33]. The pearson residuals

analysis did not give evidence about any misspecification of the model fitted

to the real series. The Box-Pierce test was also used for verifying the hypothesis

of no autocorrelation in the residuals and their square, which was not violated.

Table 5 presents the estimates of maximum likelihood (MLE) and Bayesian

estimates, posterior mean (BE Mean) and posterior median (BE Median) for

parameters of the Weibull model fitted to the volatility series of all indexes. In

addition, 95% asymptotic confidence (Conf I) and credibility (Cred I) intervals

are also built. It is verified that all parameters are significant to the 5% level.

Table 5: Parameter estimates of the Weibull models for the volatility of the

indexes.
SERIES ϕ MLE BE-Mean BE-Median Conf I Cred I

ω 0.9450 0.9428 0.9434 [0.9238 ; 0.9605] [0.9222; 0.9597]

DAX β 8.3022 8.2390 8.2384 [4.7684 ; 11.8359] [4.6592 ; 11.7813]

υ 0.5585 0.5596 0.5598 [0.5331 ; 0.5839] [0.5342 ; 0.5853]

ω 0.9366 0.9345 0.9349 [0.9131 ; 0.9539] [0.9124 ; 0.9542]

CAC40 β 6.9278 6.8905 6.8557 [3.6311 ; 10.2244] [3.7835 ; 10.2181]

υ 0.5901 0.5909 0.5912 [0.5633 ; 0.6169] [0.5623 ; 0.6166]

ω 0.9324 0.9303 0.9306 [0.9087 ; 0.9501] [0.9092 ; 0.9497]

FTSE100 β 6.4875 6.3674 6.4090 [2.7243 ; 10.2508] [2.5262 ; 10.1761]

υ 0.5968 0.5977 0.5976 [0.5696 ; 0.6240] [0.5711 ; 0.6249]

ω 0.9366 0.9349 0.9355 [0.9148 ; 0.9529] [0.9141 ; 0.9523]

FTSEMIB β 5.6876 5.6596 5.6437 [2.4538 ; 8.9214] [2.4974 ; 8.9660]

υ 0.5958 0.5968 0.5966 [0.5688 ; 0.6228] [0.5707 ; 0.6240]

ω 0.9320 0.9302 0.9307 [0.9085 ; 0.9497] [0.9088 ; 0.9490]

IBEX35 β 4.9623 4.9590 4.9278 [1.9046 ; 8.0200] [1.9477 ; 7.9854]

υ 0.5938 0.5948 0.5947 [0.5669 ; 0.6207] [0.5682 ; 0.6215]

ω 0.9100 0.9078 0.9082 [0.8807 ; 0.9323] [0.8806 ; 0.9325]

PSI20 β 6.2642 6.2645 6.3132 [2.3792 ; 10.1493] [2.3486 ; 10.1653]

υ 0.5803 0.5814 0.5811 [0.5515 ; 0.6090] [0.5531 ; 0.6092]

In the Figures 2 the smoothed estimate of the stochastic volatility and the

95% credibility intervals can be observed and it was obtained by the fit of the

Weibull model under the Bayesian approach. The peak around the instants

400 and 500 is referent to, in the second semester of 2008, the Imobiliary crisis
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(f) PSI20

Figure 2: The dashed line represents the smoothed estimate of the stochas-

tic volatility, obtained by the fit of the Weibull model under the Bayesian

approach. The grey area indicates the 95% credibility intervals.
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in US and Lehmann-Brothers crisis, the period of the global financial crisis in

2008.

6 Conclusion

This work presents a comparative study between the NGSSM models pro-

posed by Santos, Franco and Gamerman [33] and APARCH models proposed

by Ding, Granger and Engle [12] for important stock market indexes of Amer-

ica, Europe and Asia, such as DAX, CAC40, FTSE100, FTSEMIB, IBEX35

and PSI20, in the period between 01/02/2007 to 12/06/2011.

For all series the volatility fitted by the NGSSM models was better than

the APARCH models. In particular, the best NGSSM for all series was the

Weibull model.

Three future works additional to the study presented here are in progress.

The first is the evaluation of the maximization methods obtaining the maxi-

mum likelihood estimatives that produce results faster and with less bias. In

this work was used the BFGS, algorithm proposed by [2, 14, 20] and [36].

The second is the comparison between NGSSM and APARCH models for the

forecasting of the stock market index. The third is the comparison between

NGSSM and other stochastic volatility models proposed in the literature.
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