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Abstract

In this article we model the inflationary inertia in Brazil, as measured
by the monthly series of IPCA (Aggregate Consumer Prices Index), for
the period of inflationary transition from August of 1994 until January
of 2003. The concept of inflationary inertia is defined as the value of
the first order autoregressive parameter for the IPCA, in a dynamic
econometric model with time varying parameters and a GARCH com-
ponent to control the presence of conditional heteroscedasticity. The
model shows that the increasing periods of inflationary inertia are on
the crisis moments, and we can identify two periods associated with this
phenomenon, being the first moment after the exit of the target zone
regime in 1999 and the second associated to the presidential election in
2002. The same analysis is realized with a decomposition of IPCA in
free and monitored components showing that inflationary inertia can be

identified with the free component of prices in Brazil.
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1 Introduction

The hypothesis of Inertial Inflation tried to explain the process of persistent
high inflation in Brazil in years before 1994 as been the result of mechanisms
of price and wage indexation mechanisms present in Brazilian economy. The
most relevant academic works for the Inertial Inflation hypothesis are the ar-
ticles of Modiano (1983 and 1985), Arida and Lara Resende (1985) and Lopes
(1986). An econometric model for the inflation rate, according to Inflationary
Inertia hypothesis, was formulated by Novaes (1993). Modifying the staggered
contracts model of Taylor (1979), introducing a completely backward looking
behavior to wage readjustments, he obtains as a result that the inflation index
should have a unit root, that is, it should be a process of random walk with an
autoregressive coefficient equals one. The unit root in the inflation rate causes
shocks to be permanently incorporated in the inflation structure, preventing
any tendency of mean reversion. Unit root tests for the inflation index can
be found in Cardoso (1983) and Novaes (1993), and in this studies the null
hypothesis of a unit root cannot be rejected, a evidence to validity of Inertial

Inflation hypothesis.

The implementing of a economic stabilization plan called as Plano Real
in 1994, through a sophisticated mechanism of currency substitution, elimi-
nate hyperinflation in the Brazilian economy, taking from the inflation index
the inflationary feedback component correspondent to an autoregressive coef-
ficient equals one. Although the Real Plan has been successful in eliminating
hyperinflation, a significant parcel of the economy still was based on indexed
contracts based on past inflation, and thus still exists an inertial component in
Brazilian economy, justifying an econometric analysis on the possible inertial

component in the inflation.

In this article we attempted to show that the inflationary inertia compo-
nent can be modeled with a dynamic process, in which we replace constant
inflationary inertia with a varying inertia coefficient. When we allow infla-
tionary inertia to be altered in time, we show that it tends to accelerate in
two crisis moments in the Brazilian economy: the moment after the cambial
crisis who forced the ends of the target zone regime in February 2002 and
the months before the presidential elections in 2002; both periods marked by

a strong uncertainty related to political and economic policies that would be
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adopted in the future.

To model inertia in the inflation rate measured by IPCA as a dynamic
process, we used a state space model with time varying parameters with a
GARCH component to control the existence of conditional heteroscedasticity.
The necessity of a GARCH component is related to the fact that the existence
of time varying parameters in econometric models can be caused by uncon-
trolled conditional heteroscedasticity, and to avoid this effect, we estimated a

time varying parameters structure with conditional heteroscedasticity.

2 Regressions with Time Varying Parameters
and GARCH (1,1)

The simplest formulation to allow the time variation of inertial inflation
parameter would be to assume a linear regression model with time varying
parameters, a model easily estimated by the Kalman Filter. However, there is
a problem in the estimation of models with parameters that change in time:
the existence of time variation in the parameters can be caused by problems
of incorrect specification of the model, related to the presence of uncontrolled
conditional heteroscedasticity in the model. The omission of this component
would lead to the exacerbation of the possible time variation in the parameters,
in which an extreme case would be the identification of a spurious model of
regression with time varying parameters, in which the real data generating
model would be the regression with constant parameters with heteroscedastic
shocks.

The presence of conditional heteroscedasticity is directly related to the
existence of parameter changes in the data generating process. That a model
of regression with random coefficient and constant variance can be transformed
into a heteroscedastic regression with fixed parameters (Bauwens, Lubrano and
Richard (1999)) is a known result in Bayesian literature. The relation between
conditional heteroscedasticity and parameter change is also explored in Tsay
(1987) CHARMA (Conditional Heteroscedastic ARMA) model and in Nicholls
(1987) and Quinn (1982) RCA (Random Coefficients Autoregressive) model,

which use random coefficients to produce conditional heteroscedasticity.
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The application of time varying parameters models to explain inflationary
behavior can be found in Cogley and Sargent (2001), who model an inflationary
process to the United States after World War II, with a system of equations
with time varying parameters. The objective of this model is to examine
the existence of changes in the conduction of economic policy in relation to
the fight against inflation and the exploration of a possible trade-off between
inflation and unemployment, occasioned by the existence of a Phillips curve
for American data.

Sims (2001) and Stock (2001) criticize the result found by Cogley and Sar-
gent (2001) about changes in the conduction of economic policy, correspondent
to the existence of time varying parameters, affirming that the change of pa-
rameters examined by them was due to the hypothesis that the variance of each
estimated equation in the model was constant to the whole sample. According
to Sims (2001) and Stock (2001), if a conditional heteroscedasticity component
were included in the model, the parameters variance found by Cogley and Sar-
gent (2001) would not be significant. As a response to this analysis, Cogley
and Sargent (2001) modify their time varying parameter model to include a
stochastic volatility component, and in this model, Cogley and Sargent (2002)
can find indication of time variance in economic policy parameters.

To avoid the problem of spurious time variance in the parameters, due to
the lack of a conditional heteroscedasticity component, we estimated a time
varying parameters (TVP) model with a component GARCH. The model used
is a variant of the general state space model suggested by Harvey, Ruiz and
Sentana (1992). This formulation of this model, as presented by Kim and
Nelson (1999), is the following:

yt:Hﬂt‘FAZt—FGt‘i‘AG* (1)
By = i+ F B + w4+ Awyf (2)
€ ~ N(O, R)7 Wy ~ N(07 Q) (3)

In this representation, the equation 1 shows the observation equation (mea-
sure), being y;, of dimension (n x K),a vector of K observed variables and size
n; H is a matrix that relates the observable components to the ones that are
unobservable, which are measured by f;, and A is a matrix that relates a

matrix of exogenous variables z; to observed variables.
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The equation 2 is the state equation that represents the behavior of unob-
servable components 3; and in this equation matrix F captures the evolution
of parameter  between t-1 and t periods. The terms ¢, €*, w;, w; are the
shocks of equations of measure and observation. Matrices R and Q contains
the distributions of the shocks, assumed as multivariate normal.

To avoid the problem of spurious time variance in the parameters, due to
the lack of the heterokedastic component, we adopted the time varying pa-
rameters model by Harvey, Ruiz and Sentana (1992). This model is different
from the classic model state space with time varying parameters, for the in-
troduction of Ae* and Aw;, which allow the introduction of heteroscedasticity

components when we define the following structure:

€/ |i—1 ~ N(0, hyy)

\ (4)
Wi |1 ~ N(0, hy)

This representation for the conditional variance uses the class of mod-
els known as GARCH (Generalized Autoregressive Conditional Heteroscedas-
ticity), originally introduced by Engle (1982) and generalized by Bollerslev
(1986)2.

In model TVP-GARCH (1,1), the components of conditional volatility in

the state and observation equations will be given by:

hi = oo + are?) + aghyy (5)
hor = Yo + Mwi % + Y2l
The determination of which shocks in the system are liable to GARCH
structures is determined by loading matrices A and A. In our model only
the first element of A different from zero, while all the elements of A are
fixed in zero, which makes that GARCH heteroscedasticity be only present in
the observation equation, avoiding the econometric identification problem that
occurs when Aand A are simultaneously different from zero. When A = 0 and
A =0, the model is reduced to a time invariant state space model.
Given the state space formulation of this model, the usual method of esti-
mation would be the application of Kalman filter, which, in this case, would

be given by the following equations:

Biji—1 = i+ FBi1—1 (6)

2See Appendix on a more detailed discussion about GARCH models.
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Py = FP_qy1 F" + Q + Ahgy X (7)
Meje—1 = Yt — Hﬁt\t—l — Az (8)
fii—1 = HPyy_ H> + R+ Ahy v 9)
But = Brje—1 + Pt\t—lH’ftﬁl_mt\t—l (10)
Py = Py1 — Pt|t—1H’ftﬁ1_1HPt|t—1 (11)

The equations 6, 7, 8 and 9 are known as prediction equations, and the
equations 10 e 11 are known as updating equations of Kalman Filter. The
terms in these equations are: P, the covariance matrix of parameters f;,
represents the forecast error and [;, n; is conditional covariance of prediction
error. All these matrices are conditioned to a set of information v, which can
be dated in t-1 or t.

However, Kalman filter represented by equations 6 to 11 is not directly
useful, once terms hy; and hg are functions of previous shocks, and this for-
mulation is not allowed by the linear Kalman Filter. To overcome this problem,
Harvey, Ruiz and Sentana (1992) replace the terms hy; and hg, with its condi-

tional expectation given by:

hit = o + cn Elei_ [the—1] + P

hor = Yo + N B [ 1] + ha

To put these approximations in the model, Harvey, Ruiz and Sentana
(1992) define the following matrices®:

(12)

By 1 F0p O Bi-1 I 0 A
al=lol+]o 0o of|e,|+]0 10 (13)
wr 0 0, 0 0 |]|wr, 0, 0 1

which is an increased representation of equation 6:

Bl—r = 0"+ FB 1 + G of (14)
and we defined @)} as:
Q@ 0p O
Q; = Elvjvg[ha] = | 0k hy 0 (15)
O, 0 hy

3Matrices 0y, and 0,, are vectors K to 1 and n to 1 of zeros.
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The observation equation is now given by the expression:

B
w=|H A0 || g |+An+q (16)

*
Wy

and FE [e€;] = R. Replacing 15 and 16 in Kalman Filter, the new prediction

and updating equations are:

By = A"+ F* By (17)
Pl =F'P_, F" + G'Q;G" (18)
M1 = Ye — H* B — Az (19)
fijgr = H Py H> + R (20)

B = Bye—r + P H” f|t -1 (21)
t)\kt = tthl - t\t 1H* th 11H* tthl (22)

The terms E [€;2,]1—1] and E [w;?)|t)_1] necessary to the calculation of

hiy and hg, are given by:

K [6?31|¢t—1] =k [5:—1“/%—1]2 +E |6 — Gt 1|¢t 1 ]
2

: (23)
B [wii ] = B [wilee]’ + B |wiy — B [wi 1] |

With these approximations, we can use Kalman filter to obtain the estimators
of Maximum likelihood through the of the prediction error decomposition 24

for the unknown parameters of the model:

Inl = —_Zln 27r |ft‘t 1| Zﬁt‘t 1ft|t 177t\t 1 (24)

The likelihood function defined in 24 can be maximized by numerical meth-

ods as usual.
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Table 1: Unit Root Tests
Series ADF Stat Model Integration Order

IPCA -4.8199 intercept, 1 lag I(0
Unemployment -2.8528 intercept ,12 lags [
SELIC -2.6514 intercept, 1 lag I
Exchange Rate -2.8943 intercept, trend  I(1

3 Linear Model

To verify the need for a model with time varying parameters, we started
from a linear model estimated by ordinary least squares and through specifi-
cation tests and structural break tests, to check if a model that allowed a time
dynamics to the parameters was necessary. To define the linear models, we
selected the unemployment rate measured by IBGE, interest rate on federal
bonds (SELIC) and BRL/US$ exchange rate as control variables®. These vari-
ables aim to control the effects that the level of economic activity, influence of
prices of imported products and expectatives would have on current inflation
rate, avoiding that the model estimation be inconsistent due to the absence of
relevant explicative variables.

We tested the order of integration of the series through an ADF (Aug-
mented Dickey-Fuller) test, set in Table 1. The tests shows that we can reject
the presence of a unit root to the inflation rate measured by IPCA to the period
in analysis, and that we can not reject the hypothesis of a unit root SELIC,
unemployment and exchange rate series. The results of these tests show that
we must set the inflation series of IPCA in level, and the other series in first
differences in the equations to be estimated, so that all the series be in the
same order of the integration in the model specification.

The linear model selected by the Bayes Information Criteria (BIC) corre-

sponds to the model set in Table 2°. The linear estimation indicates that in

4The series of monthly unemployment rate and IPCA inflation are calculated by IBGE,
Instituto Brasileiro de Geografia e Estatstica, the Brazilian Bureau of Statistics. The
monthly data on SELIC and Exchange Rates are supplied by BACEN, Central Bank of

Brazil. The sample utilized is from February of 1994 until January of 2003.
®Due to the evidence of heteroscedasticity indicated by the White test (Table3), the

standard errors were calculated using Newey-West heteroscedasticity and autocorrelation
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Table 2: Linear Model

Parameter Std. Error t Stat Pr(>|t])

Intercept 0.6218 0.0610 10.19  0.0000
IPCA, 0.1442 0.0120 11.97  0.0000
dExchanges 1.5181 0.7107 2.14  0.0352
dSELIC;3 —0.0353 0.0132 —2.68 0.0087
dSELIC, —0.0265 0.0133 —1.99 0.0492
dUnemployment; —0.1886 0.1090 —1.73 0.0869
dUnemployment; —0.2651 0.1110 —2.39 0.0189

this period the inertial component is very low, corresponding to an autoregres-
sive coefficient of 0.1442 for the first lag of IPCA. In this model, lags 3 and
4 of SELIC interest rate and lags 1 and 7 of unemployment, with expected
negative signs, were included, showing negative relations between the inflation
and rates of interest and unemployment. In this linear model, the inflation
rate is reduced with the increasing of SELIC with a 3 and 4 month lag, and it

also negatively responds to the increasing of unemployment rates.

To verify if the linear model was correctly specified, we used the White
heteroscedasticity test, a RESET test and a test for ARCH conditional het-
eroscedasticity, set in Table 3. The White test rejects the null hypothesis that
the linear model residuals are homoscedastic, indicating the need of a het-
eroscedasticity correction for the estimation of the correct covariance matrix
and also showing that estimation is inefficient. The Reset general test specifi-
cation rejects, in any level of significance, that the proposed linear model have
a correct specification, which could happen due to the absence of relevant ex-
plicative variables, incorrect functional form or structural breaks in the model.
The ARCH test, however, does not reject the null hypothesis that the linear
model does not have an ARCH conditional variance structure.

Although this result is an initial evidence against the inclusion of a GARCH
structure, it notices that as a model with a GARCH structure can be written

as a model where the parameters of conditional mean are time varying and

consistent covariance matrix.
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Table 3: Specification Tests - Linear Model
Test White

F Stat. 2.6412  Probability 0.0045
LM Stat. 26.7856 Probability 0.0082

Test Reset

F Stat. 7.4558  Probability  0.0000
LM Stat. 42.5462 Probability 0.0000

Test ARCH

F Stat. 0.1281  Probability 0.7211
LM Stat. 0.1305  Probability 0.7178

the variance is constant, this result can show the necessity of the control of
the changes of parameter in conditional mean, what will be confirmed by the
estimation of the model of time varying parameters presented in section 2,
where the GARCH component will be relevant, as it will be seen in section 4.

To test the constancy of parameters in the estimate linear model, we used
the tests proposed by Andrews (1993) and Andrews and Ploberger (1994) to
test for structural breaks when the breakpoint is unknown. The Sup, AveF

and ExpF tests used are defined as:

SupF = sup F; (25)
i<i<i
AveF = — ZF (26)
ver = = i
Z_Z—l_li:i
1 7
ExpF =1 — 0.5 F; 27
pF = log Z._ngexp( ) (27)

These tests are calculated estimating a series of statistics F; of structural
break for a whole sequence of possible structural breakpoints for the samples
defined in k < i <@ <7 < n—k, in the interval [7, 7] ,where k and n-k determine
the beginning and the end of the tested sample. Thus, SupF, AveF and ExpF
tests allow the test of structural break without determining the breakpoint to
be tested.
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Table 4: Parameter Constancy Tests
Test  F Stat. Prob.
Supl  20.5366 0.07792

AveF 12,5633 0.03018
ExpF 8.1094  0.03782

Table 4 contains these tests results for the linear model. The three tests
show that we can reject the null hypothesis for parameters constancy and
must consider an alternative hypothesis that the parameters are not constant,
showing that there is a structural break in one or more points in the estimated
sample. This result shows that the linear model is not able of controlling all
the dynamics in the inflation series measured by IPCA for the analyzed period,
indicating the necessity of controlling the time variation in the parameters that

cause the structural breaks captured by SupF, AveF and ExpF tests.

4 TVP-GARCH (1,1) Results

The results of specification tests for the linear model shows the possible
presence of a time varying structure in parameters, it is justified the estimation
of a more complex model for the data in analysis. To estimate time varying
parameters model and GARCH (named TVP-GARCH (1,1)), we began with
the choice of linear model variables as a general model. The final model chosen
is presented in Table 5. The vector of estimated hyperparameters of exchange
rate series was not statistically different from zero, and for this reason, it was
removed from the estimated TVP-GARCH (1,1) model.

The final TVP-GARCH Model (1,1) corresponds to the results presented
in Table5. In this model the hyperparameters of all included variables are
significantly different from zero in any level of significance, which also happens
to GARCH components. The fact that there is a significant GARCH struc-
ture shows that the result of time variation in the parameters is valid even
controlling the conditional variance structure existing in the series.

The GARCH component show that shocks persistence in the conditional

volatility is very low, once the persistence measured by the addition of @ and
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Table 5: Model TVP-GARCH(1,1)

Series Hyperpar. sd  Std. Error t Stat Pr(> |t])
Intercept 0.1204 0.0368 14.1243  0.0000
IPCA, 0.0757 0.0171 30.2720  0.0000
dSELIC; 0.0000 0.0015 334.5158 0.0000
dSELIC, 0.0222 0.0163 31.7233  0.0000
dUnemployment; 0.0000 0.0053 97.1896  0.0000
dUnemployment; 0.01381 0.0139 39.5747  0.0000
GARCH w 0.0682 0.0202 9.8990 0.0000
GARCH « 0.01001 0.0002 37.6362  0.0000
GARCH g 0.5063 0.1653 5.9861 0.0000
log-lik -58.8566

B parameters is bellow one, showing that shocks rapidly dissipates in the con-
ditional variance of this series. The fact that thea coefficient value, which
measures the effects of square shocks of the medium structure in the condi-
tional variance a moment ahead, is very low shows that the shocks in the mean
have very small immediate effects on the inflation rate variance, and that the
permanent effect of these shocks is close to zero. The conditional variance
structure is basically influenced by the variance in the previous moment mea-
sured by coefficient f3.

Figures 1, 2, 3 and 4 show the hyperparameters vectors estimated by TVP-
GARCH (1,1) model, showing the time evolution of these parameters. Given
the non-linear formulation of the model and the reduced size of the sample,
to construct the intervals of confidence for the parameters, we used the block
bootstrap methodology®.

The behavior of Inflationary Inertia can be seen in Figure 1, which shows
the estimated values for the autoregressive parameter for the IPCA. Taking as
analysis reference the value estimated by the linear model for the autoregressive
parameter of IPCA, with value 0.14, we can observe that inflationary inertia
tends to increase in the periods of uncertainty in the Brazilian economy. It
can be seen that the inertia tends to increase abruptly after January 1999,

which corresponds to the exchange crisis that indicated the end of target zone

6See Appendix for the description of the bootstrap methodology utilized.
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regime, where there was a great expectation of inflationary acceleration, which
turned not to be true, as the behavior of consecutive reductions of inflationary

inertia in the months following February 1999 shows.

Another great increase in the Inflationary Inertia corresponds the months
from June to December of 2002. The estimated values for the Inertia from June
2002 to January 2003 are respectively 0.072, 0.083, 0.95, 0.142, 0.748 and 0.584.
We can associate this acceleration in the inertia and in the inflation rate with

the presidential election in that year.

From June 2002 on, the election surveys indicated the victory of the oppo-
sition candidate and the current governments growing incapacity to react in
the presidential running. This was considered by the economic agents as vic-
tory indicator of the opposition candidate, whose campaign mainly focused on
the retaking of growth, through the reduction of interests rate and emphasis
on social policies, which was associated by some economic agents as aban-
doning the fiscal policy adjustment and inflationary goals used by the present

government.

The acceleration of inflation would be caused by an increase in the un-
certainty of economic agents, which was reflected in expectations for higher
inflation in the future, leading to a preventive behavior of agents with decision
power on prices of increasing prices on that moment to avoid future losses
with a realized higher inflation. This view, consistent with the theory of In-
ertial Inflation, and supported by TVP-GARCH (1,1) model, would ascribe
all the responsibility of inflationary acceleration to the process of expectative
formation, in opposition to the hypothesis that there is a connection between
expectations and inflation increase in the exchange depreciation on this period,

another explication to the inflation acceleration in this period.

The hyperparameter associated to the intercept (Figure 2) explain the be-
havior of the inflation in the analyzed period, when we analyze the values of
the intercept with the values of the inflationary inertia. Maintaining the other
variables constant, the effect of the intercept and the IPCA autoregressive
parameter shows that the period of decrease of the inflationary inertia from
the beginning of the sample to approximately August 1998 is marked by a
tendency of inflation decrease. That happens due to fact that the intercept
estimated by the model is also in reduction in this period. From this date, we

can notice an increase tendency in the inflation index, which is captured by
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Figure 1: Inflationary Inertia - TVP- GARCH(1,1)

Intercept — TVP—GARCH(1,1)
T T T

2.5

Intercept
— — Superior Limit
Inferior Limit

0.5 —

—o.5 i i i i i L L
Janos Janoe Jan9o7 Janos Jan99g Janoo Jano1 Janoz Jano3

Figure 2: Intercept - TVP- GARCH(1,1)

a simultaneous elevation in the intercept and the autoregressive coefficient for
IPCA.

The vectors of estimated parameters for the interest rate SELIC (Figure 3))
show more complex behavior. The estimated parameters for the third time lag,
while the parameters become positive in the fourth lag, mainly starting from
January 1999, being this sign the contrary of what we expected. As January
1999 marks the end of the period of the target zone, it would be possible to

interpret this sign change as an alteration in the economic policy.

The estimated parameters for the first difference of the unemployment in-
dex (Figure 4) show that there is a reduction in the negative relationship be-

tween inflation and unemployment in that period, since the estimated values
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DSelic, - TVP-GARCH(1,1)
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Figure 3: SELIC - TVP- GARCH(1,1)

for the first lag of the difference of the unemployment have become negative

lately. That can be interpreted as the fact that the unemployment index has

increased in this period, but with an effect that is becoming smaller on the

inflation index. The behavior of the parameters associated to the seventh lag

of the unemployment index does not show a clear tendency, having a reduction

in the values until January 1998 and from that some fluctuations without a

clear tendency.

DUnemployment, ~ TVP-GARCH(1,1)
25 T T T

T T
— DUnemployment,
— ~ Superior Limit

— - Inferior Limit

DUnemployment, - TVP-GARCH(1,1)

-15 L L L L L
Jan9s Jan96 Jan97 Jan98 Jan99 Jan00

L L
Jan01 Jan02

(a) DUnemployment_1

T
— DUnemploymey

~ ~ Superior Limit

— - Inferior Limit__| |

L L L L L
Jan98 Jan99 Jan00 Jan01 Jan02 Jan03

(b) DUnemployment_7

Figure 4: Unemployment - TVP- GARCH(1,1)
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IPCA Forecasts— TVP-GARCH(1,1)
T T T

T
— — IPCA Forecast
6 —— IPCA
Superior Limit
Inferior Limit

Figure 5: IPCA Forecasts- TVP-GARCH(1,1) Model

4.1 Specification Analysis

The analysis of serial correlation for the linear model and for the model
TVP-GARCH(1,1) is in the Table 6. By the Q statistics, none of the two
models presents any evidence of residual serial correlation. The model TVP-
GARCH(1,1), besides avoiding the problem of serial auto-correlation, still con-
trols the heteroscedasticity presence and it represents an efficiency gain in the
econometric estimate for the behavior of IPCA, which will be reflected in the

confidence interval of the forecasts of this model, as presented in section 5.

5 Forecast analysis

The one step-ahead forecasts of the model TVP-GARCH(1,1) in the Figure
5. The model TVP-GARCH(1,1) can follow in a very close way the behavior
of IPCA, which we can notice when the forecasts of the model do not exhibit
any tendency of being below or above the observed values, what effectively
happens with the forecasts of the linear model, present in the Figure 6. The
forecasts of the linear model had almost always been smaller than the values
observed for IPCA until approximately January 1997, and from this date they
have tended to be higher than the observed values.
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Table 6: Residual Autocorrelation

Linear Model TVP Model

AC ACP Q-STAT Prob AC ACP Q-STAT Prob
1 0.075 0.075 0.5498 0.458 0.096 0.096 0.9010 0.343
2 -0.106 -0.112 1.6623 0.436 -0.145 -0.155 2.9746 0.226
3 0.008 0.025 1.6682 0.644 -0.095 -0.066 3.8717 0.276
4 0.001 -0.014 1.6682 0.796 -0.074 -0.083 4.4271 0.351
5 -0.017 -0.012 1.6987 0.889 -0.127 -0.142 6.0845 0.298
6 0.014 0.015 1.7180 0.944 -0.054 -0.064 6.2856 0.381
7 0.042 0.037 1.9016 0.965 -0.066 -0.120 6.8423 0.445
8 0.037 0.034 2.0444 0.980 0.045 0.010 7.0580 0.530
9 0.129 0.134 3.8270 0.922 0.074 0.008 7.6416 0.571
10 -0.064 -0.082 4.2697 0.934 0.013 -0.031 7.6613 0.662
11 0.042 0.088 4.4633 0.954 0.081 0.078 8.3745 0.679
12 0.187 0.164 8.3351 0.758 0.300 0.297 18.394 0.104
13 0.022 0.010 8.3903 0.817 0.041 0.046 18.759 0.137
14 -0.121 -0.091 10.044 0.759 -0.122 0.003 20.263 0.122
15 -0.059 -0.053 10.451 0.790 -0.153 -0.058 22.958 0.085
16 0.029 0.010 10.550 0.836 -0.080 -0.014 23.705 0.096
17 -0.046 -0.061 10.779 0.867 -0.076 -0.045 24.380 0.109
18 -0.009 -0.027 10.810 0.902 0.011 0.007 24.395 0.142
19 -0.081 -0.105 11.603 0.902 -0.022 -0.059 24.453 0.179
20 0.034 0.019 11.748 0.924 0.091 0.026 25.469 0.184
21 0.077 0.029 12.495 0.925 0.053 -0.047 25.819 0.213
22 -0.048 -0.029 12.783 0.939 0.011 -0.021 25.853 0.259
23 0.046 0.081 13.053 0.951 0.015 -0.012 25.864 0.307
24 -0.002 -0.049 13.053 0.965 0.070 -0.009 26.491 0.329
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Figure 6: IPCA Forecasts - Linear Model

The property that the values foreseen by the model TVP-GARCH(1,1)
are not biased, in contrast with the bias observed in the linear model, can
be quantified by the measures of predictive performance in the Table 7. The
bias proportion of the linear model is very superior compared to the model
TVP-GARCH, as well as the variance proportion that measures how much
the variance of the forecast is far from the variance of the observed values.
The covariance proportion measures the non systematic part of the forecast
errors is close to one for the model TVP-GARCH(1,1) and has value 0.5619 for
the linear model, confirming that the linear model makes systematic forecast
errors. A model with good predictive performance is the one that the values of
the bias proportions and variance are very close to zero, concentrating all the
values on the non systematic part of the forecast mistakes in the covariance
proportion, what happens for the model TVP-GARCH(1,1).

The Table 7 also shows that the model TVP-GARCH(1,1) is superior in
forecast terms for the three analyzed predictive criteria, that are the Root
Mean Squared Error, the Mean Absolute Error and the Theil Inequality index.
The Root Mean Squared Error and the Mean Absolute Error are comparative
criteria, where the best model for these criteria is the one that has the smallest
value. The Theil Inequality Index is always restricted among values 0 and 1,
where 0 would be a perfect adjustment and 1 would be a totally imperfect
adjustment.

The superior predictive performance of TVP-GARCH(1,1) model can be

explained by the adaptative structure represented by the time varying param-
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Table 7: One Step Ahead Forecast Analysis

Measure Linear Model TVP-GARCH(1,1)
Root Mean Squared Error 0.5977 0.4903
Mean Absolut Error 0.4845 0.3637
Theil Inequality 0.3338 0.2501
Bias Proportion 0.0026 0.0003
Variance Proportion 0.4353 0.0015
Covariance Proportion 0.5619 0.9981

eters. A large forecast error is a signal of a change in the parameters of model,
what it can be captured by a model of time varying parameters but not for
linear model, who assumes a fixed parameter. This is the most important
evidence in favor of TVP-GARCH(1,1).

6 Uncertainty and Inflation

The conditional variance estimated by the model TVP-GARCH(1,1) is pre-
sented in the Figure 7. The graph confirms that the persistence of the average
shocks in the structure of the variance is very low, since volatility groupings
are not present, and the reversion to the unconditional variance is very fast,
as expected because of the relatively low value of persistence.

An important subject is to verify if moments of uncertainty on the infla-
tion index, measured by the conditional variance, influence the inflation index.
This subject could be formulated as a hypothesis that the agents would react
to a larger uncertainty on the inflation index, increasing its prices in a preven-
tive way. One simple way to test this hypothesis is verify if exists a positive
relationship between the present inflation and the volatility of the inflation in
the past.

In order to verify the validity of this hypothesis, we formulated a simple
test through a linear regression having the inflation as a dependent variable
and the past values of the volatility of the inflation as explanatory variables.
Estimating this relationship, the model selected by the criterion of informa-

tion BIC has the conditional variance lagged just one period as explanatory
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Figure 7: Conditional Volatility

Table 8: Regression - Inflation and Uncertainty
Parameter Std. Error t Stat Pr (> |¢|)

Intercept  0.1850 0.0989 1.8700 0.0647
Variance; 2.7111 0.4188 6.4730 0000
F' Test 41.90 Prob. F 0.0000

variable.

The Table 8 shows that the null hypothesis that there isn’t a relationship
between inflation and the past volatility of inflation is rejected at any signif-
icance level, being an indication in favor of the hypothesis that the agents
react to the uncertainty about the inflation passed with preventive increases

of prices’.

"However, the results obtained by this regression should be carefully considered, since
the efficient form of estimation would be to simultaneously estimate the parameter of the
past variance as explanatory variable in the conditional mean and the component GARCH
of conditional volatility, through a model of GARCH-in-mean model with time varying
parameters. But the presence of a GARCH component in the equation of the conditional
mean in the leads to a non-linear state space that cannot be estimated by the usual tool of
the Kalman Filter. The accomplished estimate is inherently inefficient and in this way the
power of the accomplished test is reduced.
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Table 9: TVP-GARCH - Free and Monitored Prices
Free Prices Monitored Prices

Hyperpar. sd Pr(> |t|) Hyperpar. sd Pr(> |¢])

Intercept 0.000008 0.000000  0.124890 0.000000
IPCA, 0.079091 0.000000  0.000010 0.000000
dSELIC; 0.000000 0.000000 0.567193 0.196843
dSELIC, 0.000080 0.000000  0.248861 0.024182
dUnemployment; 0.036008 0.000000  0.058694 0.000002
dUnemployment; 0.009781 0.000000  0.000030 0.000000
GARCH w 0.000020 0.000000 0.341664 0.585119
GARCH « 0.098710 0.000000 0.276353 0.634358
GARCH g 0.000020 0.886143 0.490568 0.013933
log-lik -68.7870 -174.8518

7 Free and Monitored prices

A subject involved in the discussion of the existence of the inflationary
inertia is to verify if the inertia component is due to the components of free
or monitored prices that compose the series of IPCA. IPCA is constituted by
two groups of prices, the free prices, that constitutes about 72% of the index,
and the prices monitored by the government, that constitutes the remaining
28% of IPCA. The application of the model of time variant parameters allows
verifying if the origin of the inflationary inertia is due to the agents behavior
in the formation of the free prices or if it is caused by the public policies of
price control in controlled sectors of economy.

In order to verify this, we applied the same model TVP-GARCH for the
of IPCA-Free prices and for the IPCA-Monitored prices, with the arranged
results in the Figures 8 and 9 and in the Table 9. The Figures show the
component of estimated inflationary inertia for each one of the series and the
one step-ahead forecasts of the each model &.

The estimated inflationary inertia component for the series of free prices

has a similar behavior to the one of the series of full IPCA index, what suggests

8The other figures and results are not shown due to space constraints, but they are
available with the authors.
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Figure 8: Free Prices - Inertia and Forecasts

that the component of varying inertia in the series of full IPCA index is caused
mainly by the behavior of the free prices. This hypothesis is also supported
when we look at the estimated inertia component for the series of monitored
prices, in the beginning of the series the inertia is close to 1, but it tends to

stabilize starting from January 1999 in values close to 0.23.
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Figure 9: Monitored Prices - Inertia and Forecasts

The component GARCH shows that while the volatility of the free prices
is owed to the past shocks (the coefficient [ is not statistically significant), the
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Table 10: Linear Model - Free Prices
Parameter Std. Error t Stat — Pr(> [t])

Intercept 0.12052 0.05593 2.155 0.0339
IPCA, 0.80650 0.06526 12.359  j2e-16
DExchanges 0.09520 0.52647 0.181 0.8569
DSELIC;y -0.21214 0.13161 -1.612  0.1106
DSELIC, 0.12468 0.13901 0.897 0.3722

dUnemployment; -0.12908 0.07762 -1.663  0.0999
dUnemployment; -0.06252 0.80450 -0.777  0.4392

SupF 28.2398 0.005184
AveF 14.8828 0.007817
ExpF 11.2641 0.002804

process of conditional volatility for the monitored prices is only formed by the
own volatility in the past, since just the coefficient [ is statistically significant.

We also verified that if it would be really necessary to estimate a model
of time variant parameters for free and monitored prices. This verification
is justified by the fact that the behavior of the inflationary inertia for the
monitored prices tends to stabilize in time, what could indicate that a model
of constant parameters can be more indicated for these series. The linear
models estimated for the series of free and monitored prices are in the 10 and
11.

We compared the linear specification with constant parameters and the
model TVP-GARCH through predictive criteria, disposed in the Table 12.
Through the analysis of the forecast criteria, the model TVP-GARCH(1,1)
is more adapted for the series of free prices, since this model overcomes the
linear model in all the criteria. For the series of monitored prices, the result is
inverted, since the linear model is superior to the model TVP for the criteria
of the Root Mean Squared Error, Mean Absolute Error and for the Theil
Inequality, but the forecast bias of the linear model is superior to the one from
the model TVP-GARCH(1,1), since the bias and variance proportions of the
linear model for these series are still larger than the ones calculated for the
forecasts of the model TVP-GARCH. The need of a model with time variant

parameters for the series of free prices and the evidence that a linear model with
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Table 11: Linear Model - Monitored Prices
Parameter Std. Error tstat — Pr(> [t])

Intercept 0.92452 0.19097 4.841 5.47e-06
IPCA, 0.27404 0.09815 2.792 0.00642
DExchanges 3.21674 1.77949 1.808 0.07407
DSELIC;y 0.19138 0.45579 0.420 0.67559
DSELIC, 0.43347 0.47336 0.915 0.36261

dUnemployment; -0.35325 0.26696 -1.323  0.18918
dUnemployment; -0.82048 0.27853 -2.946  0.00412

SupF 29.0425 0.003809
AveF 10.5700 0.08826
ExpF 11.5765 0.002138

Table 12: Forecast Analysis - Free and Monitored Prices

Free Prices Monitored Prices
Measure Linear. TVP-GARCH(1,1) Linear TVP-GARCH(1,1)
Root Mean Squared Error 0.5759 0.5775 1.315 1.5783
Mean Absolut Error 0.4368 0.4013 1.0004 1.1947
Theil Inequality 0.2668 0.1781 0.3013 0.3634
Bias Proportion 0.0026 0.0134 2.78e-05 7.94e-05
Variance Proportion 0.5792 0.0928 0.4114 0.0359
Covariance Proportion 0.4183 0.8938 0.5856 0.9640

constant parameters is enough for the series of monitored prices corroborate
the hypothesis that the inflationary inertia is caused by the agents’s behavior

with power of price formation in the markets.

8 Conclusions

The article shows that there are evidences that point for a dynamics of
time variation in the parameters for the behavior of the Brazilian inflation in
the analyzed period. A model formulated in space state with a component
to control the existence of conditional heteroscedasticity was estimated for

one time variant regression among the index of measured inflation for IPCA,
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last IPCA and a series of control variables, showing that the component of
inflationary inertia, given by the vector of parameters for the first lag of IPCA,
can explain the behavior of the inflation in moments of economic uncertainty

in Brazil.

Predictive analyses show that the inflation forecasts given by the model
TVP-GARCH(1,1) are non biased and superior to the forecasts of the linear
model. That is consistent with the fact that the tests of constancy of param-
eters and structural breaks, with unknown breakpoints, showed that there is
some structural break related to the time variation in the parameters of the
model for IPCA, which makes the forecasts of the linear model, that maintain
the parameters fixed, to be biased and with mean squared and absolute errors
superior compared to the models TVP-GARCH(1,1), that allow the adaptation

of the parameters.

The model shows that two moments of great increase of the inflationary
inertia are related to the periods of crisis and uncertainty in Brazilian economy.
The first moment is after the exchange rate crisis of 1999, and the second
moment is related to the presidential election in 2002. The behavior of the
inflationary inertia can explain the acceleration of the inflation in these periods,

consistent with the interpretations related with Inertial Inflation hypothesis.

We tested the hypothesis that there is a positive relationship among the
uncertainty in the inflation index and the volatility of past inflation. The test,
accomplished through a simple regression between the present inflation and
the past volatility of the inflation index, indicates that the hypothesis that
the economic agents which formulate prices react to the uncertainty in the

inflation index with positive readjustment of prices is justified by the data.

The decomposing of the component of inflationary inertia, through the
separated estimate for the free and monitored prices, shows that we can identify
the component of inflationary inertia as caused directly by the behavior of the
free prices, that show an inertia component similar to the one shown by the
series of total IPCA, while the inertia component in the series of monitored
prices tends to stabilize in time and can be appropriately modeled as a time

inavariant parameter.
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Appendix

GARCH Models

Engle (1982) ARCH model applied to a time-fixed parameters process de-
fines the conditional volatility behavior of a series as a linear function of square
shocks which occurred in the past of the series. We can represent the behavior

of the mean of the series as:
?Jt = X/B + Et (28)

e =2\ (29)

where X is a matrix of explicative variables, which can include lags of 3;. The
process is IID Normal (identically and independently distributed) with zero

mean and unitary variance. A process ARCH (1) is represented as:
hy = w + Oél€§,1 (30)

where h; represents the conditional variance of the series in moment t. That
all the realizations of h; be not negative is a necessary condition, which re-
quires that w be greater than 0 and that a; be > 0. If «; is 0, the model is
conditionally homoscedastic.

The representation 30 shows that the model ARCH captures volatility
groupings, due to the fact that shock ¢, is increasing function of previous
shock 2 .

Model ARCH (1) can be generalized to a general form ARCH (q) repre-
sented as:

he = w+ ang}_| + oo}y + ... 4 ase;_, (31)
where the unconditional variance o2 is defined by:

w
o
l—ap—ap— ... —ay

The model will be stationary covariance if all the roots of polynomial 1-
a1 L—ayL?—...—a, L7 are out of the unit circle, which is equivalent to say that
shocks do not have permanent effects, and there is a reversion to the mean in

the volatility.
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It is common the necessity of a representation with a high ¢ value in model
ARCH to properly represent the volatility existing in financial series. Boller-
slev (1986) suggested a general formulation, known as GARCH (Generalized
ARCH), which is a generalization of model ARCH, to include lags of h; in 31.
Model GARCH (1,1) is represented as:

ht =w + 0116?_1 + ﬁlht—l (32)

The positivity conditions are that w and «; § 0 and 8; > 0.This represen-
tation avoids the necessity of many lags of ¢, , which we can notice if 32 is

written as:

ht =w + CY1€?71 + Bl (U} + 0415?,2 + Blht—Q) (33)

Continuing this recursion we reach:
o0 o0
hy = Z Bw + ay Z Bl (34)
i=1 i=1

Representation 34 corresponds to a model ARC H (co) for £7. Adding e7in
both sides of 32 and moving the term h; to the right side of the equation,
model GARCH (1,1) can be written as a model ARMA (1,1) to &2:

ef =w+ (o1 + Br)e} | + v — Brog (35)

where v; = €7 — hy. The process defined in 35 to €7 be stationary covariance if
oy + 51 < 0.
We defined the unconditional variance of ¢, as:

2 w

B 1 —ar— B (36)

o

An important characteristic derived by Bollerslev (1986) is that the auto-

correlations of €, are given by:

p. = (a1 + B1) tpy (37)

that is, the correlations exponentially decline, but in the factor of oy + f;.
When «; + S is close to one, the decline is very slow, as it occurs in the

autoregressive model with unit roots.
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In the same way that the model ARCH (1) can be generalized to a process
ARCH(q), we can generalize a process GARCH (1,1) to a process GARCH

(p,q) given by:
q p
hy =w + Z g2 .+ Z hy_; (38)
=1 =1

Although the estimation of models GARCH of order greater than (1,1) is
trivial, the most employed specification is the one of a GARCH (1,1); this

seems to be the most adequate formula in practice, according to Bollerslev,
Chou and Kroner (1992).

Block Bootstrap

To obtain the confidence interval for the hyperparameters estimated by
the model TVP, we used the bootstrap methodology. The bootstrap method,
introduced by Efron (1979) is a non-parametric method which consists of treat-
ing the available sample as the population, and from consecutive resampling
of this sample, obtaining the distribution of the estimators or test statistics.
Due to the need of very little restrictive regularity conditions, the bootstrap
method allows accurate close estimate of the distributions in finite samples.

The bootstrap algorithm can be described in the following way. Having
a sample y,, with units {X;, Xy,...X,,}, we construct a new sample from this
sample, with M-sized reposition, in which M is usually equal to the sample
original size, which we denoted as x*={X;, X;,...X}. The units of x} con-

ditioned to x, are IID random variables with probabilities given by:
PUX? = X)) = ©
* 1 — v) T n

For each replication x; of the bootstrap, we calculate the value of the
estimators of interest. Replicating this process many times we obtain empirical
distribution of the estimators, which is easily visualized by a histogram. Two
usual ways of obtaining confidence intervals from the estimators using this
method are the percentile bootstrap, in which we fixed the confidence intervals
such as percentiles («/2) e (1-«/2) of the estimators empirical distribution,
and the bootstrap-t method, in which the estimators confidence interval will

be given by the estimator value around the percentiles (a/2) e (1-a/2) of
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the bootstrap estimators empirical distribution multiplied by the estimators

standard deviation calculated using the original sample.

However the main condition for the validity of the ordinary method of
bootstrap is that data of the original sample be from an independent process,
since the resampling process for the construction of the bootstrap sample is
independent too. In the case of data with some structure of dependence, the
ordinary method of bootstrap is inadequate, since the bootstrap samples do
not reproduce the structure of existent dependence in the original sample of
the data. When the bootstrap is applied to a dependent process, the variance
of the bootstrap estimator does not converge to the real variance of the esti-
mator, causing it to be an inconsistent estimator, as shown initially by Singh
(1981). In the case of time series, the bootstrap method is inadequate for the
destruction of the whole structure of temporal dependence existing in data

generating process.

To apply the bootstrap method to dependent processes, we should modify
the procedure of resampling in order to reproduce the process of existent de-
pendence in the data. Knsh (1989) and Liu and Singh (1992) independently
proposed the procedure known as bootstrap in moving blocks, or block boot-
strap. The idea of the block bootstrap is, instead of taking observations in
an independent way, to remove consecutive blocks observations from the data
original sample. Consequently, the bootstrap samples would reproduce the
structure of dependence of the series, allowing the obtaining of correct distri-
butions to the estimators in the presence of dependence. When the process
is weakly dependent, the size of the blocks should increase with the size of
the sample and the bootstrap should asymptotically reproduce the structure

of original time dependence.

There are some distinctive ways of accomplishing the procedure of choice
of the blocks. The simplest way is to choose size-fixed blocks and allow the
overlay of the blocks. The bootstrap proposed by Carlstein (1986) is composed
of blocks with no overlay. These two procedures are asymptotically equivalent.
One problem of these methods is that they suffer from a border problem - the
observations closest to the beginning or the end of the series have smaller
probability of being included in the bootstrap samples. Politis and Romano
(1992) proposed two ways of solving the problem - the circular block bootstrap
method and the stationary bootstrap method. In the circular block bootstrap
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the data are placed in a circular way, allowing the end of the series to be
connected to the beginning of the series, therefore attributing the same weight
to the borders in the resampling process. The stationary bootstrap is equally
formulated, but in that case the block size is a random variable®.

An additional problem is how to choose the mean size of the blocks used
in the stationary bootstrap method, once the bootstrap performance critically
depends on the size of the used block. To select the optimum size, we used
the methodology proposed by Politis and White (2004). According to this
methodology, the mean size for the blocks used in the stationary bootstrap is

of 5 observations.

9For further definitions and properties of the bootstrap methods for dependent processes,
see Lahiri (2003), especially pgs. 34-36 for the properties of the stationary boostrap.
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