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Abstract

Retail banks usually apply simple linear regression models for de-
scribing the dynamics of the deposit rates of non-maturing accounts
(NMA) like savings deposits. Thus, typical patterns like asymmetry or
rigidity that banks follow when adjusting their deposit rates are ignored.
This is insofar surprising, as the asymmetric deposit rate adjustment
affects the pricing of embedded options for NMA. In this work we con-
tribute to the elimination of these inconsistencies. Based on data for
deposit rates from a representative sample of Swiss banks we provide a
strong evidence for both asymmetric adjustment and rigidity pattern.
Our proposed modeling approaches reveal that the strategies of Swiss
banks to adjust deposit rates are regime dependent. In times of mar-
ket stress, Swiss banks are tight to market rates; however, in normal
regimes this is not observed.
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1 Introduction

A large percentage of the balances of retail banks consists of positions with no

contractual maturity, the so-called non-maturing accounts (NMAs). This in-

cludes, for example, savings and sight deposits on the liabilities side or variable-

rate mortgages on the assets side, which in Switzerland have as well no contrac-

tual maturity. The NMAs are characterized by two options: first, the retail

bank is allowed to adjust the client rate2 at any time as a matter of policy

and second, the clients are allowed to withdraw their investments or to repay

variable mortgages at any point in time, without penalty. Therefore, the fu-

ture cash flows from the client rate payments and the volume changes of these

positions due to the demand for retail products are uncertain. The importance

of modeling NMAs is particularly emphasized in Basel II with respect to the

uncertainty of cash-flows due to the optionalities. The regulation framework

stresses the importance of finding realistic client rate models for NMA.

The high relevance of the profits generated with interest rate sensitive busi-

ness in a retail bank’s balance implies an important role for the measurement

and control of the corresponding risks. In this context, the policy to fix client

rates for the retail business plays a central role. The banks determine the client

rates depending on their costs structure and on the demand for the products. It

is typically observed that, for example, deposit rates are below the rates on the

money market. Clients invest in deposits because they have only limited mar-

ket access, or because they hold savings deposits for liquidity considerations.

However, non-maturing products are in competition with other investment or

financing opportunities. For the determination of the client rates, banks look

at the margins of their retail products as well as at the rates for alternative

savings products on the market. Therefore, the client rates on retail banking

products have to be adjusted to changes in the level of market rates. It can

usually be observed that this adjustment occurs only with some delay and with

an asymmetric pattern.

A common practice in banks is to apply linear regression models for mod-

eling the dynamics of the client rates. These models serve for example for

2By client rate it is denoted the rate payed/received by the retail banks for de-
posit/mortgage accounts. Often the same type of models are applied in the literature for
both deposit or loan rates, as it is known that in the case of NMA they move in parallel and
they show common patterns
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forecasting or for valuation purposes. This way, neither the rigidity nor the

asymmetry the banks follow when they adjust their client rates to changes in

the observed market rates are reflected. This is insofar surprising as the asym-

metric client rate adjustment forms the basis for pricing the embedded options

of non-maturing accounts. In this work we contribute to the elimination of

these inconsistencies.

The goal of this paper is to develop models that explain the behavior of

deposit rates of NMA and to assess them from a statistical and economical

point of view for finding applicability in the management of NMA. Based on

data for deposit rates from a representative sample of Swiss banks we bring a

strong evidence for both asymmetric adjustment and rigidity patterns and we

propose modeling approaches which reflect both patterns. In this respect we

extend the existing literature with a joint model for asymmetry and rigidity.

Our new findings reveal that the strategies of the Swiss banks to adjust the

deposit rates are regime dependent.

This paper is organized as follows: section 2 offers a detailed literature

overview of the properties and model types used to describe the client rates

of NMA; section 3 describes the data; section 4 includes the cointegration

analysis applied to Swiss deposit rates in relation to relevant market rates;

Sections 5,6,7 describe our modeling approaches employing one model in error

correction form, one threshold model to describe the asymmetric adjustment

of deposit rates and one rigidity model for deposit rates, respectively. Section

8 concludes.

2 Literature overview

Although various authors investigate different types of loan and deposit

products in different markets, there is consensus that client rates of retail

banking products typically exhibit the following characteristics:

Stickiness (or rigidity): Product rates remain stable over longer time peri-

ods and react with some delay to changes in market rates. This results

from the fact that changes in product rates are associated with admin-

istrative costs, therefore banks have only an incentive for adjustments
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when these are smaller than the costs for not changing the rates, e.g.,

due to an outflow of volumes (e.g., see [31]). As a consequence, banks

adjust their product rates only after larger changes in market rates and

when they are convinced that these are not just temporary ([37]). Banks

take also advantage from the fact that customers have no or limited in-

formation on current market conditions or competitors’ product rates, or

they obtain such information only with some delay (see [36]). Clients face

also search and switching costs that prevents them from changing their

bank connection (see [10], [34]). [19] find that the “speed of adjustment”

depends also on market concentration, i.e., the (local) competition in the

market for retail banking products. For liability products, one may also

explain stickiness by the fact that the product rate has a natural lower

bound of zero (or some slightly larger rate). If the rate dropped below

this limit, clients would withdraw deposits. On the other hand, the bank

will increase the product rate again not before market rates have reached

a certain level.

Discrete changes: As a further consequence of the administrative costs for

adjusting the product rates, banks change them (sporadically) in discrete

steps, e.g., 25 bp (see [10], [28], [31]). In this way, a “disequilibrium”

between the client rate and (the new level of) market rates is corrected

at once.

Asymmetric adjustment: This effect describes that the timing and extent

of an adjustment depend whether market rates go up or down and the

current product rate is below or above its “equilibrium” ([15]). [19], [34]

find that banks are slower to raise interest on deposits when market rates

rise, but are faster to reduce consumer deposit rates when markets fall.

The motivation is similar as for stickiness: banks exercise their market

power to optimize their margins by delaying the pass-through of higher

market rates to clients (see [41]).

Incomplete adjustment: Banks do not pass a change in market rates fully

to clients, e.g., the difference between market and deposit rates widens

when market rates increase. [23] explains this with imperfect competition

that allows banks to set the product rates so that they maximize their

profits.
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Although not often considered in the literature, one can also suspect that

individual banks have different adjustment policies for other reasons than mar-

ket power. For example, [16] finds evidence that the pass-through depends on

banks’ asset and liability structure. It is often claimed that rates of liability

(loan) products are below (above) market rates. [25] and [27] motivate this

with the exclusion of arbitrage opportunities for individual investors. How-

ever, in Europe the interest rate on savings accounts may very well be higher

than money market rates ([8]). This was the case in Switzerland in 2002 and

2003 when the 3 month Libor temporarily dropped below 25 bp. Furthermore

variable-mortgage rates were below market rates during the early 1990ies which

resulted in negative margins for many banks.

In order to reflect the diverse NMA product characteristics in different

markets, a multitude of model types and econometric approaches have been

suggested.

Linear models explain the product rate as a linear function of (possibly

lagged) market rates of one (or more) different maturities and can be

estimated with regression analysis. In the simplest specification, this

does not allow for the consideration of asymmetric adjustments. Using

this framework, [23] find a clear evidence of an incomplete adjustment

of the product rate for US negotiable order of withdrawal (NOW) and

money market deposit accounts (MMDA) from 200 banks. For similar

products [24] obtain significant estimators and high R2 in a regression for

deposit rates on a short-term rate. [36] extends this approach by non-

linear dependencies to take asymmetry into account and finds strong

support for this. Particularly for German-speaking countries the “mov-

ing average method” is popular, which uses moving averages of current

and previous rates as explanatory variables. Consultants who propagate

this approach for the construction of replicating portfolios recommend

that banks should change their product rates frequently by the same

amount as the average portfolio rate changes in order to keep the mar-

gins on variable banking products stable ([40]). By construction, this

reflects the rigidity of product rates. In a comparison of different mod-

els for data of various accounts from up to 400 German banks, [12] find

higher R2 values, in particular for typical savings deposits (“with agreed

notice of 3 months”) than, e.g., an asymmetric pass-through model.
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Asymmetric partial adjustment models assume a long-term equilibrium

between product and market rates. Although there may be tempo-

rary deviations due to frictions, the distorted product rate will adjust

smoothly to the long-run equilibrium relation over time. Asymmetry of

adjustments can be taken into account by different coefficients for the

adjustment speed depending on the product rate being below or above

the equilibrium ([34]). [6] finds strong evidence of asymmetry in an anal-

ysis of the NOW and MMDA accounts of almost 100 US banks which has

also a strong impact on the estimated values and risk of the positions.

Error correction models make also the assumption of a long-term equilib-

rium between product and market rates which is described by a coin-

tegration vector. The residuals of the long-term relation are used to

estimate the relation of the short-term deviations from the equilibrium.

Since here the first differences of product and market rates are used

which are stationary, the error correction term is also stationary and

the approach provides consistent estimates. Asymmetry is also incor-

porated by different speeds of adjustment for increases and decreases in

market rates ([43]) and is empirically confirmed by [30] for deposits of

Australian banks while [33] finds significant differences between different

bank groups in Germany. More recent publications like [7], [18], [38]

employ also models in error correction form and find evidence for asym-

metric adjustment of the client rate to strictly positive/negative changes

in market rates.

Threshold error correction models extend the latter framework by mak-

ing the movements in client rates dependent on the interest rate regime.

Technically a regime is specified by an indicator variable that is “one”

if some threshold variable exceeds a threshold value and zero otherwise.

This is used, e.g., by [3] to explain the interest rate pass-through to UK

mortgage rates or [35] to model the asymmetry in Swiss deposit rates.

Friction models assume that changes in the client rate are non-linear func-

tions of the spread between its lagged value and exogenous rates. The

main feature of this relationship is a range of spread values for which

the client rate remains unchanged, it increases (decreases) only when the

spread exceeds (falls below) certain limits [13]. Obviously, this is useful
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to incorporate stickiness. [5], [28] model changes in the product rate

as function of the accumulated margin since the last adjustment. If it

crosses certain boundaries, the product rate is updated in discrete steps

whose size depends on the magnitude of the current margin. A potential

drawback of the approach is that it requires large samples that contain

a sufficient number of “jumps” in order to obtain significant results as

the client rate remains unchanged for a long time. With the different

threshold values a large number of parameters need to be estimated and

a rather complex non-linear optimization method is required.

Probit models are based on a similar idea: the change in the client rate

as response variable can take as value the different levels of changes

observed in reality (e.g., 0, ±25 bp, ±50 bp, . . .). The product rate’s

propensity to change in discrete steps is represented by a latent variable

which is linear in some exogenous variables. For the latter, [26] use a

money market rate, the change in this rate and the spread to the product

rate. In an application for Swiss savings accounts, [14] use the lagged

product rate and current and previous observations of the factor of a

term structure model (which represents the level of the yield curve and

moves in parallel to a long-term interest). Again this suffers from the

fact that long histories are needed for calibration. Logit models allow

only for two states “change” and “no change”. This is exploited by [31]

who distinguish between strictly rising and falling rate regimes.

3 Data

Our main goal is to test and compare many econometric deposit rate mod-

els to reflect the characteristics of the NMA deposit rates representative for the

Swiss market. For this purpose, we investigate the deposit rate of the Swiss

deposit accounts published by the Swiss National Bank (SNB) as average over

all Swiss Banks for the sample period 1988-2010 with monthly observations.

The number of banks and the bank categories subject to reporting require-

ments, accordingly to the last statistics published by SNB are presented in

Table 1.
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Table 1: The number of banks in each bank cat-

egory, at 31.12.2010. Source Swiss National Bank,

http://www.snb.ch/en/iabout/stat/statpub/bchpub/stats/bankench

Cantonal banks 24

Big banks 2

Regional banks and savings banks 69

Raiffeisen banks 1

Stock exchange banks 47

Other banking institutions 10

Foreign-controlled banks 122

Branches of foreign banks 32

Private bankers 13

Total 325

We also extend our analysis on data sets for the deposit rates from 10

individual Swiss banks (sample 1988-2010) with monthly observations. For

confidentiality reasons, in this paper neither the identity of each bank nor the

category to which each bank belongs can be revealed. The market rates used

in our modeling approach are provided by the SNB. We test the sensitivity

of the deposit rates with respect to market rates of different maturities. Here

short as well as long-term market maturities are tested.

4 Cointegration analysis

Most of the time series of the deposit rates support the statement in the

literature that time series of interest rates are based on the I(1)3 property. We

apply the Augmented Dickey Fuller unit root test to check for stationarity in

the deposit rates (average over all Swiss Banks as well as the deposit rates from

the 10 Swiss banks) and in the market rate series (one short maturity: Libor 3m

as well as one long maturity: Swap 5y). Tables 4 and 5 (Appendix) summarize

the results. In all cases, we conclude non-stationarity of the analyzed series. In

3Integrated of order 1
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this case, for most banks which model the level of deposit rates by regression

analysis, depending on market rates of different maturities (or moving averages,

as it is the case of Germany), the results do not reflect real causalities, but only

spurious correlations (see [37], p. 104). In order to obtain consistent results

it is required to conduct the regression analysis based on the first differences

of the time series. An alternative would be also to derive the common trend

which links the deposit rate to the market rate by the cointegration analysis

and then to derive a model in error correction form.

We apply Johansen’s cointegration test to see if the average deposit rate

over all Swiss banks as well as the deposit rate from our 10 data sets share a

long-term common trend with market rates. We include in the cointegration

analysis one short maturity, the Libor 3 month rate as well as a longer maturity,

the Swap 5 year rate. To compare the strength of the long-term relation we

include just one market rate at one time in the cointegration relation or both

of them simultaneously. The results are presented in Table 6.

Johansen’s cointegration test shows overall that the deposit rate is cointe-

grated with market rates. The cointegrating vectors presented in the 3 panels

of Table 6 represent the long-term common movement of the deposit rate with

one of the included market rates or with both of them simultaneously. It helps

us to obtain the “equilibrium deposit rates”, or its expected value, given its

common long-term trend with market rates. We include in the specification

of our cointegration analysis also a constant as it is known that the deposit

rate is, in general, below market rates. We observe for all data sets that the

long-term relation between the deposit rate and the market rate is stronger

for the longer than for the shorter maturity. The beta coefficient MRlong is

overall higher than the coefficient of the short rate MRshort(panels 1 and 2 of

Table 6). Thus, in 7 out of the 10 data sets, the long-term sensitivity of the

deposit rate to the long-term rate is above 0.9, while the sensitivity to the short

rate varies between 0.154 and 0.784. The coefficient of the long-term rate is

more stable between the data sets, showing a smaller standard deviation than

in the case of the short rate coefficient. While including both market rates in

the cointegrating vector, the coefficients of the two market rates sum up to

one only in 3 cases (data set 1, data set 4 and data set 8). For these particular

cases, we can conclude that the deposit rates of the Swiss banks share a com-

mon long-term trend with both market rates, but the sensitivity to the rate of
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the long maturity is overall higher. We have also included in the cointegration

analysis all liquid market rates, but overall the maturity with the strongest

link to Swiss deposit rates is the Swap 5 year rate. The interpretation follows:

as they are less volatile, changes in the longer maturity better reflect the im-

portant changes on the market and, therefore, they are used in the decisions

of Swiss banks to adjust accordingly the deposit rates. This result is in line

with the rigidity pattern of the deposit rates which are adjusted only when the

changes in the market rates are considered stable and significant.

5 Model in error correction form

After we found that the deposit rates of Swiss banks are strongly coin-

tegrated to the Swap 5 year rate, a natural way to model the dynamics of

the rates is to derive a model in error correction form (ECM). The ECM

is the most used model in the literature for client rate modeling (for both

mortgage/deposit rates, see section 2). Differences between the various ECM

applications come from the choice of different bank products, different market

rates as explanatory variables and other exogenous explanatory factors.

The specification of our model for the deposit rates in error correction form

is:

∆CR = δ + Γ1∆CRt−1 + Γ2∆MRlong
t−1 + γECt−1 + εt (1)

where the ECt is derived from the cointegrating equations derived in Table 6,

panel 2. We thus take as market rate the one which showed the strongest link

to the deposit rates paid by Swiss banks, i.e. the Swap 5 year rate.

We estimate equation (1) using average over the deposit rates over all Swiss

banks published by the SNB as well as for the 10 data sets from individual

Swiss banks. The results are presented in Table 7. The results concerning the

aggregate deposit rate data are presented in the first column of Table 7.

In the case of the individual banks, we observe that individual changes in

the market rates do not have a significant explanatory power for the deposit

rate. However, lagged changes in the deposit rate and its deviations from the

equilibrium level are significant. The model performance is displayed in Figure

2. We observe a low performance of the model to fit shocks in the deposit rate.

Thus, significant drops in the deposit rates which occur between 1992-1993 (as
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a consequence of a significant drop in market rates) as well as the drop caused

by the financial crisis (November 2008) cannot be anticipated by our ECM

model. The explanation is that a change occurs in the market rates in each

period, but the deposit rate does not reflect all these changes. The Ordinary-

Least-Square (OLS) estimation is weak in fitting so many zero changes caused

by the rigidity pattern of the deposit rate. Important characteristics like the

asymmetry and the rigidity must be investigated.

Over all data sets we observe that lagged changes in the deposit rate are

significant. However, the estimated coefficient for Γ1 shows different magnitude

between our data sets, varying between −0.055 and −0.250. It means that

each 100 bp increase in the deposit rate in the previous month will imply, on

average, a decrease at the current month varying between 5.5 bp and 25 bp

over our data sets. Our results show that changes in the market rate have a

low explanatory power. Only in two cases out of 10, Γ2 is significantly positive

and it has an economical interpretation: when the lagged market rate goes up,

the Swiss deposit rate will be, on average, increased instantaneously, since the

sign of the coefficient is positive. In two cases the coefficient is significant, but

it has a negative sign, which cannot be interpreted from an economical point of

view since one would expect that deposit rates follow the direction of market

rates. Overall we cannot conclude a clear explanatory power of lagged market

rate changes for changes in the deposit rates. This result in not surprising,

given the stickiness of deposit rates. As discussed in the introduction, deposit

rates remain stable over longer time periods and react with some delay to

changes in market rates.

The coefficient of the error correction term is overall significant. The co-

efficient γ reflects the dynamics of the short-term deposit rate with respect

to its equilibrium level derived in relation to market rates. Our γ coefficient

varies between −0.063 and −0.136 over our data sets. The interpretation is

that banks adjust the deposit rate every month, on average, with 6.3%to13.6%

from the disequilibrium of the previous period to reestablish the equilibrium

spreads to market rates.

Our R2 values show an explained variation varying between 14.9 − 68.5%

of the total variation. The interpretation of our low R2 results is due to the

characteristics of our model variables. We model monthly changes in deposit

rates which, given the rigidity pattern, are compound of many consecutive zero
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changes in contrast to market rates where we have a change every month.

Our results from the error correction model show that Swiss deposit rates

adjust linearly to the previous period disequilibrium level. Thus, if the deposit

rate in the previous period was too high/low comparing to its equilibrium

level derived in relation to market rates, banks decrease/increase it in the next

period to close the gap. However, lagged individual changes in the market

rates have no conclusive explanatory power for changes in the deposit rate. In

other words, short-term market dynamics are not reflected in the savings rate

changes.

The model in error correction form for the deposit rates, although widely

used in the related literature, shows a relatively low explanatory power. This is

due to the very distinct pattern of rigidity and asymmetry in the Swiss deposit

rate data and, therefore, we will extend our analysis in these directions in the

next chapters.

6 Modeling the asymmetries of deposit rates

6.1 Reasons for asymmetries and drivers of different

types of asymmetries in the literature

Intuitively, an asymmetry in the adjustment of the deposit rates may be

present if they rapidly adjust to decreasing market rates, but are slow to react

when market rates rise. In this context, deposit rates are said to be “upward

sticky”. The literature has provided evidence that relates asymmetry of deposit

rates to market rates, but a common behavioral explanation for these results

is lacking.

For the definition of deposit rates, banks look at the margins of their re-

tail products as well as at the rates for alternative savings products on the

market. A change in market rates may cause a pressure on the margin that

forces a bank to adjust its deposit rates. The desired minimum margin or the

bank’s cost structure, respectively, define a lower (upper) bound for the client

rate on asset (liability) products. On the other hand, the competition on the

market for retail banking products sets also limits for the client rates that a

bank may fix without losing volume. Banks may exploit the leeway between
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these limits given by the current margin and the competitive situation to op-

timize their margins. This results in asymmetric adjustments of their client

rates for a short term where they take advantage from customers’ rigidity due

to switching costs, insufficient information on bank interest rates or implicit

price agreements among banks. In case market rates go up and the difference

between the current client rate and its equilibrium level becomes too large,

the increasing pressure from the competition requires an adjustment of prod-

uct rates to avoid volume outflows. This effect is weaker the less elastic the

demand for a banking product is.

The described situation does not explain asymmetries with respect to the

long-term dynamics of adjustments. The banks’ flexibility to achieve desired

margins may be confined or extended if the elasticity of demand for a product

with respect to the client rate is not stable over time. An asymmetry in the

long term may therefore result if clients react in certain situations more and in

other situations less sensitive. Based on these considerations, various drivers

may be identified that may cause asymmetric adjustments of client rates.

Type 1. Sign of the change in market rates The bank may show a dif-

ferent adjustment policy depending on whether market rates go up or

down. In this way, it takes advantage of customers’ tardiness for the

reasons given above in the short term. Often periods with a persistent

trend of the interest rate evolution reflect a certain stage of the business

cycle. For example, increasing market rates go along with a boom in

the economy while a downswing is characterized by decreasing rates. If

the business activity has an impact on the elasticity of the demand for

banking products, clients may change their demand behavior in different

market environments, which leads also to long-term asymmetries.

Type 2. Magnitude of market rate change Furthermore, the magnitude

or speed of a change in market rates may influence banks’ asymmetric

adjustment behavior. Large decreases in market rates increase the pres-

sure on the margin of liability products. It can be expected that then

banks’ reaction is stronger than in case of moderate changes.

Type 3. Level of market rates It can be suspected that stronger “smooth-

ing effects” exist in periods of high or low market rates than at an average

level. This results from the fact that a change in the trend of the interest
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rate dynamics occurs more frequently in times of extreme than of average

rates. Banks do not reproduce changes in market rates up to the turning

points, but try to anticipate trend changes. This results in a more rigid

and incomplete adjustment for a high or low level of market rates than

for an average level. Moreover, banks cannot adjust their deposit rates

when interest rates are very low since the deposit rate cannot fall below

zero.

Type 4. Sign of the deviation from equilibrium According to the liter-

ature [Frost/Bowden 1999], the deviation of the client rate from its equi-

librium level (in the previous period) has also an effect on banks’ ad-

justment behavior. For example, if the product rate of a deposit posi-

tion is above its long-term equilibrium, the pressure on a bank’s margin

increases and a stronger reaction on changes in market rates can be ex-

pected than in the opposite case of a deposit rate below the equilibrium

level. In the latter case, the bank resets the deposit rate to avoid a loss

of volume.

6.2 Our approach versus the existing literature

[6] is the first who specifies an interesting property of the asymmetric ad-

justment of deposit rates. He derives an equilibrium deposit rate conditional

on the short market rate and states that under asymmetric deposit rate ad-

justment the unconditional expected deposit rate will be different from the

expected equilibrium rate. [6] determines whether asymmetries exist in the

adjustment of deposit rates to positive/negative disequilibrium, but he does

not take into account the adjustment speed depending on the magnitude of

the disequilibrium itself. In fact, clients accept low deposit rates as they ben-

efit from other services, for example “more advantageous mortgage financing”

([25]), or because of the costs for consumers of switching banks ([1], [39]) or

because of the “limited memory of depositors” ([26]). In this case, banks

do not have an incentive to adjust deposit rates to each change in the more

volatile short rate, but they adjust only to movements in the more stable rates

of longer maturities, which better reflect the market trend.
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Asymmetry is also incorporated by different speeds of adjustment for in-

creases and decreases in market rates ([43]) and is empirically confirmed by

[30] for deposits of Australian banks while [33] finds significant differences be-

tween different bank groups in Germany. More recent publications like [7], [18]

employ models in error correction form and find evidence for asymmetric ad-

justment of the client rate to strictly positive/negative changes in the market

rates or disequilibria. These models do not estimate the threshold values in

the market rates or in the level of client rates disequilibria but, as in the case of

[6], the threshold is fixed a priori to zero. In this way, these models reflect only

the first and the fourth type of asymmetries described above. An interesting

approach is that of [38], who employ a unifying empirical pass-through model

that allows for thresholds, asymmetric adjustment, and structural changes

over time in the interest rate pass-through in the four Common Monetary

Area (CMA) countries of the South African Customs Union.

For modeling the deposit rate, we propose a simple threshold model to

determine whether the relationship between the deposit rate of Swiss banks and

market rates (represented by one short and one longer maturity) is asymmetric.

We use the grid-search procedure proposed by [20] to locate the most likely

threshold level and simulate the appropriate asymptotic distribution in order

to test the hypothesis of asymmetry. This is necessary when the threshold

level is unknown a priori and chosen endogenously. We test for threshold

effects in the short rate, in the rate of one longer maturity and in the error

correction term. In this way, the asymmetric adjustment is not related to

positive/negative changes in the market rate or in the disequilibria, but it

depends whether the market rate changes or the disequilibria of the deposit

rate are within tolerable bounds, or at extreme levels. The same approach was

used by [42] for US prime rate movements.

6.3 Model

The deposit rate model that we specify helps us to determine whether there

are asymmetries between market rates and the deposit rate in the form of a

threshold effect. We will test for a threshold effect in the 3 month rate, 5 years

rate and in the deviations from the equilibrium which links the deposit rate to
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market rates.

∆CRt = δ + α1∆CRt−1 + α2∆MRshort
t−1 + α3∆MRlong

t−1

+ α4ECt−1 + εt, ωi ≤ τ (2)

∆CRt = δ′ + α′1∆CRt−1 + α′2∆MRshort
t−1 + α′3∆MRlong

t−1

+ α′4ECt−1 + εt, ωi > τ

where ∆CRt is the change in the deposit rate, ∆MRshort
t−1 is the lagged change

in the Libor 3 months rate and ∆MRlong
t−1 represents the lagged change in the

Swap 5 years rate, ECt−1 is the lagged error-correction term derived from the

estimated cointegration vector (Table 6, panel 2), and ε is a random i.i.d.

disturbance. We introduce lagged values of the explanatory variables as it is

known that there is a delay in the deposit rate adjustment to market rates

changes. The factor EC shows the deviations of the deposit rate from its

equilibrium level. ωi is the threshold variable which is used to split the sample

into two regimes. We will test at one time for threshold significance in changes

in one of the two considered market rates as well as in the error correction

term. Equation (2) allows all of the regression parameters to switch between

the regimes.

For simplification, our model can be rewritten:

yi = θ
′

1xi + εi, ωi ≤ τ, (3)

yi = θ
′

2xi + εi, ωi > τ, (4)

where ωi is the threshold variable used to split the sample into two regimes.

The random variable εi is a regression error.

Our observed sample is {yi, xi, ωi}n
i=1, where yi stands, in our case, for the

changes in deposit rate observations as dependent variable and xi is an m-

vector of independent variables. The threshold variable ωi may be an element

of xi and is assumed to have a continuous distribution. To write the model

in a single equation4, we define the dummy variable di(τ) = I[ωi ≤ τ ], where

I[·] is the indicator function and we set xi(τ) := xidi(τ). Furthermore, let

λ
′
n = θ

′
2 − θ

′
1 denote the threshold effect. Thus, equations 3 and 4 become:

4see Hansen (2000)
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yi = θ′xi + λ′nxi(τ) + εi (5)

In order to simplify the threshold estimation procedure (in the next sec-

tion), we rewrite equation (5) in matrix notation. We define the vectors Y εRn

and εεRn by stacking the variables yi and εi, and the n×m matrixes XεRn×m

and X(τ)εRn×m by stacking the vectors x′i and xi(τ)′. Then (5) can be written

as:

Y = Xθ + X(τ)λn + ε (6)

The regression parameters are (θ, λn, τ) and the natural estimator is least

squares (LS).

6.3.1 Hansen’s grid search to locate the most likely threshold

To determine the location of the most likely threshold, we will apply

Hansen’s grid search. In the implementation of this threshold estimation pro-

cedure, we follow [21] and [22]. This paper develops a statistical theory for

threshold estimation in the regression context. As mentioned in the previous

section, the regression parameters are (θ, λn, τ). Let

Sn(θ, λ, τ) = (Y −Xθ −X(τ)λ)′(Y −Xθ −X(τ)λ) (7)

be the sum of squared errors function. Then, by definition, the LS estimators

θ̂, λ̂, τ̂ jointly minimize (7). For this minimization, τ is assumed to be restricted

to a bounded set [τ , τ̄ ] = Ω. The LS estimator is also the MLE when εi is i.i.d.

N(0, σ2). Following [21], the computationally easiest method to obtain the LS

estimates is through concentration. Conditional on τ , equation (6) is linear in θ

and in λn, yielding the conditional OLS estimators θ̂(τ) and λ̂(τ) by regression

of Y on X(τ)∗ = [XX(τ)]. The concentrated sum of squared errors function

is

Sn(τ) = Sn(θ̂(τ), λ̂(τ), τ) = Y ′Y − Y ′X(τ)∗(X(τ)∗
′
X(τ)∗)−1X(τ)∗

′
Y,

and τ̂ is the value that minimizes Sn(τ), i.e.,

τ̂ = argmin Sn(τ)

To test the hypothesis H0 : τ = τ0, a standard approach is to use the like-

lihood ratio statistic under the auxiliary assumption that εi is i.i.d. N(0, σ2).
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Let

LRn(τ) := n
Sn(τ)− Sn(τ̂)

Sn(τ̂)
.

The likelihood ratio test of H0 is to reject for large values of LRn(τ0).

Using the LRn(τ) function, asymptotic p-values for the likelihood ratio test

are derived:

pn = 1−
(
1− exp(−1/2 · LRn(τ0)

2)
)2

.

6.4 Results

We get the first insights into the asymmetric adjustment considering the

average of the deposit rates paid by all Swiss banks (source SNB). Afterwards

we extend our analysis to our 10 individual banks data sets for the deposit

rates. Our threshold variable will be, at one time, either the short rate, the long

rate or the error correction term. We verify if there is evidence for a threshold

effect in each case by employing the heteroskedasticity-consistent Lagrange

multiplier (LM) test for a threshold introduced by [20]. Since the threshold

ω is not identified under the null hypothesis of no threshold effect, the p-

values are computed by a bootstrap analog. Using 1000 bootstrap replications,

the p-value for the threshold model using the short rate (Libor 3m rate) was

insignificant at 0.262, while that for the threshold model using the long rate

(Swap 5y) and the error correction term were significant at 0.048 and 0.016,

respectively. Figures 4 and 5 display a graph of the normalized likelihood ratio

sequence LR∗
n(ω) as a function of the threshold in the long rate, and in the error

correction term variables, respectively. The LS estimates of ω is, in each case,

the value that minimizes this graph, which occurs at ω̂long = τlong = −0.520

and ω̂EC = τEC = 1.027, respectively.

Since no significant threshold was found in the changes in the short market

rate, we display only the estimation results for the other two cases, when

the threshold variable is either changes in the Swap 5 year rate or the error

correction term. Following the specification of the threshold model in equations

(3) and (4), we estimate the model allowing all variables to switch between

regimes. Using the coefficients shown in Table 8, we obtain the fitted values

for the deposit rate model for each of the two estimated versions (see Figures
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6 and 7). The estimated deposit rates fit well the observed data, in both cases.

In an inspection of the residuals, the standard deviations of the residuals show

no big difference between the two situations (see Figure 8).

To test if the calibrated model is realistic, we perform an out-of-sample test

by re-estimating the model using historical observations of the deposit rate

from January 1988 up to January 1998. A second (non-overlapping) historical

period (February 1998 to July 2010) is designated as the out-of-sample testing

period. Figure 9, Appendix summarizes the out-of-sample performance in case

of the model with threshold variable in changes in the Swap 5 year rate. The

performance of the model based on regimes in the error correction (EC) term

is displayed in Figure 10, Appendix. Table 9 shows the model estimates.

The deposit rate model produces meaningful values for the out-of-sample

testing period. In Figure 11 we can observe that over a long-term out-of-

sample period, the residuals in the case of the model with threshold in the EC

term have with 25% a smaller volatility than in the case of the model based

on regimes in the Swap 5 year rate changes.

We would like to see the out-of-sample performance of our threshold models

over a shorter time horizon. Thus, we re-estimate the model using historical

observations of the deposit rate from January 1988 up to December 2005.

A second (non-overlapping) historical period (January 2006 to July 2010) is

designated as the out-of-sample testing period.

The deposit rate model based on the Swap 5 year rate regimes produces

meaningful values for the out-of-sample testing period, January 2006 to July

2010. It is able to forecast the drop in the Swiss deposit rates in the financial

crisis (Figure 12). Overall, as shown in Figure 14, the threshold model based

on market rate regimes performs better to reflect the extreme the market rates

shocks in the deposit rate adjustments than the EC regimes-based model.

6.5 Interpretation of results

Beginning with the error-correction model that uses changes in the Li-

bor 3 month rate as threshold variable, we found the threshold parameter to

be statistically insignificant. This implies that deposit rates of Swiss Banks

respond in a linear fashion to the short rate. In fact, we expect that since the

short rate is more volatile, it does not have a major impact on the adjustment
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of the deposit rates in banks (the deposit rates do not follow closely short rate

movements).

With changes in the 5 years Swap rate as threshold variable, we find that

the threshold is significant (Table 8). A threshold exists when the change in

the Swap rate equals −52 basis points (bp). Furthermore, for every negative

shock of 100 bp below −52 bp in the Swap 5 year rate, the deposit rate will be

adjusted, on average, by a 59 bp drop per month. In the second regime, the

coefficient of the Swap 5 year rate is not significantly different from zero. The

threshold model results help us to conclude that changes in the Swap 5 year

rate are reflected in changes in the Swiss deposit rates only in case of large

changes in the market rate. As a consequence, Swiss banks adjust their product

rates only after larger changes in market rates and when they are convinced

that these are not just temporary ([37], [p. 38]). These results allow us to

conclude a strong asymmetric relationship between the deposit rate and the

changes in the rates of longer maturities. The delimitation of the two market

rates regimes helps us to focus on that what is noteworthy: in case of a large

drop in market rates, the deposit rate will be adjusted accordingly. Thus,

the threshold model is able to explain important drops which occurred in the

deposit rate history, including the drop occurred in the period of the financial

crisis. In Nov. 2008 a very large drop in the market rates occurred (104 bp

drop in Swap 5 year rate). We have a threshold at −0.52 bp in the Swap

rate. When the Swap rate drops more than 0.52 bp in the previous period,

our model has a large speed of adjustment to the Swap rate in this extreme

regime. In December 2008 banks decreased also considerably the deposit rates

and our model can reflect this change. This works also out-of-sample, when we

split the sample in December 2005 and recalculate out-of-sample the financial

crisis period. In the same way the threshold model is able to explain the drop

in Swiss deposit rates which occurred between 1992 and 1993 as a consequence

of the significant decrease in the market rates from this period.

With the error-correction term as threshold variable, we also find that the

threshold is significant. A threshold exists when the deposit rate is 1.027%

(102.7 bp) above its equilibrium level. For every 100 bp above this departure

from equilibrium, we expect the convergence back to equilibrium to be of the

magnitude of a 10.9 bp drop in the deposit rate per month. Below this dise-

quilibrium threshold, the convergence to equilibrium only occurs with a 3.9 bp
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drop. Hence, as suspected, the greater the magnitude of the disequilibrium, the

greater the speed of adjustment towards equilibrium. The speed of adjustment

would be approximately 2.8 times larger for the more extreme disequilibrium.

Looking at the model fit (Figure 7) we observe that the model fits the drop

in the deposit rates from 1992 to 1993, but it is less accurate in explaining

the drop in the financial crisis than in the case of the model with threshold

in the Swap 5 year rate. In case of the crisis, banks are tighter to changes in

the market rates, therefore in this case it is useful to use the threshold model

which identifies market rates regimes.

However, over the longer time period (when we split the sample in 1998),

the model which identifies regimes in the error correction term has a higher

out-of-sample power than the model based on market rate regimes. This occurs

because on the long-run deposit rates share a long-term equilibrium relation

to the market rates, so corrections back to equilibrium are of importance to

keep the system in equilibrium. By contrary, when we look out-of-sample

over a shorter time period, splitting the sample in December 2005, the model

with threshold in the Swap 5 year rate offers a better fit to the data, since

shocks in the market rates are better reflected by the regime identified as

volatile. Overall, we conclude that both asymmetry models in discussion are

of importance for explaining the decisions about deposit rate adjustment in

the case of the Swiss banks. Thus, if important shocks are expected on short-

term in the market rates, this information can be incorporated in the deposit

rate adjustment using a model with threshold in the market rate. In case

of the Swiss deposit rates, the Swap 5 year rate reflects best the asymmetric

adjustment of the deposit rate to market rates. However, when long-term

forecasting is required, a model based on regimes in the error-correction term

is able to fit better the long-run equilibrium relation between the deposit rate

and market rates.

It is worth observing that our out-of-sample tests results (Tables 9 and 10)

show that the location of the threshold in the error correction term is stable

over the two samples. However, there are different threshold values in the two

samples for changes in the Swap 5 year rate. Thus, up to 1998 the estimated

threshold lies at −17 bp changes in the Swap rate, while in the sample up

to 2005 the values drops to −52 bp. This reflects the fact that the Swiss

banks, on average, became less risk averse and they adjust deposit rates only
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to significant changes in the market rates. Here by risk averse we understand

the aversion of banks to losing clients. In other words, the tolerable bounds

of non-adjusting the rates increased, which is in line with the strong rigidity

pattern present in the deposit rates of Swiss banks.

6.6 Robustness check

We recall the specification of the error-correction model from equation (2)

and check for threshold effects in changes in the market rate and in the error

correction term, by investigating 10 data sets for deposit rates from individual

Swiss banks.

The estimation results are presented in Table 11. In 9 out of 10 data sets,

we found that a significant threshold exists in changes in the market rate.

Furthermore, in 7 out of the 9 identified cases, the threshold has a positive

value, varying between 4 bp and 17 bp for changes in the Swap 5 y rate. With

respect to the number of observations included in each regime, we observe that

in the 7 cases in discussion, the first regime (the case where the changes in

the market rate fall below the threshold value) contains up to 4 times more

observations than regime two. So we conclude that regime one represents the

normal regime, while regime two isolates the deposit rate adjustments for more

extreme changes in the market rate. To have a better understanding about the

two regimes identified by the model, we display the magnitude of changes in the

Swap 5 year rate over the analyzed period and mark the maximum identified

threshold value (see Figure 15). We observe that regime two delimitates the

cases where more extreme positive changes occur in the Swap 5 year rate.

Concerning sensitivity of the deposit rate to changes in the market rate,

the coefficients show a high dispersion between the data sets and, beside this,

their sign is not clearly defined. So also when we distinguish between the two

identified regimes, we conclude that individual changes in the market rates are

not reflected in the deposit rate adjustments.

Overall we observe that the EC coefficients are significant. Furthermore,

they have a higher value in the second regime. Thus, positive changes in

the Swap 5 year rate above the threshold value (more extreme) will imply a

large negative disequilibrium of the deposit rate. In this case, the speed of

adjustment of the deposit rate back to equilibrium in the next period is higher
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than in regime one, where less extreme positive changes and negative changes

in the market rate occur. In other words, when the deposit rate is too low

comparing to its equilibrium level, banks adjust their deposit rates with a

higher speed to close the gap and to reestablish the equilibrium spread to the

market rates.

In the other 2 out of 9 cases we found significant negative threshold in

changes in the market rate. As it was also found in the case of the SNB in

the previous section, regime one delimitates the cases where extreme negative

changes in the market rate occur and, consequently, the deposit rate is too

high with respect to its equilibrium level. In these cases, the speed of deposit

rate adjustment back to equilibrium increases in case of more extreme positive

disequilibria.

The lagged changes in the deposit rate are significant over our data sets

and over the two regimes. An asymmetric adjustment can also be concluded

from the fact that, in most cases, the coefficients of the lagged changes show

a higher magnitude in the second regime.

Similarly, we found a significant threshold value in the error correction

term in 7 cases (see results in Table 12). A positive significant threshold is

found in 5 out of the 7 cases. In these situations, regime two represents the

cases where the error correction term is above the threshold value, meaning

that the deposit rate is too high comparing to its equilibrium level. In this

case, the rate is adjusted with a significantly higher speed back to equilibrium

than in regime one, where less extreme positive disequilibria or negative ones

occur. Thus, the error correction term coefficient which is overall significant

has a much larger magnitude in the second regime, showing evidence of strong

asymmetric adjustment.

The lagged changes in the deposit rate and the error correction term are

also in this case overall significant and show an asymmetric pattern between

the two regimes.

Finally, in 2 out of 7 cases with significant threshold we found a negative

threshold value in the EC term (data sets 4 and 6). These results confirm our

previous findings that the larger the deviations from the deposit rate equilib-

rium value is, the larger the speed of adjustment back to equilibrium. Thus,

regime one represents the more extreme negative disequilibria, and the speed

of adjustment of the deposit rate to the EC term is significantly higher than
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in regime 2.

However, between the data sets, we obtain different locations for the thresh-

old values. Thus, Swiss banks have different strategies in adjusting the deposit

rates to market rates in the sense of different risk aversion levels in fixing the

tolerable spreads of their deposit rates to the representative market rate.

7 Modeling the rigidity of deposit rates

In the literature overview section we have given the economical interpreta-

tion of the rigidity pattern of the client rates. Many of the papers cited in the

literature overview apply rigidity models to describe the patterns of mortgage

rates. However, it is known that mortgage and deposit rates in banks (named

generically “‘client rates”) move in parallel and share the same patterns: asym-

metric adjustment to market rates, discrete changes, stickiness and incomplete

adjustment. Therefore the models describing prime/mortgage rates can also

be applied to describe the deposit rates.

Friction models are based on the idea that a client rate adjustment is only

done when the benefit of the client rate adjustment exceeds its costs. As em-

phasized by [13], in the presence of the strong rigidity pattern observed for

client rates, the ”Ordinary Least Squares estimator can no longer be used be-

cause of the temporary independence of the client rates from the market rates”.

This is actually the theory behind friction models. They assume that changes

in the client rate are linear functions of the spread between its lagged value and

exogenous rates. The main feature of this relationship is a range of spread val-

ues for which the client rate remains unchanged, it increases (decreases) only

when the spread exceeds (falls below) certain limits ([13]). Obviously, this is

useful to incorporate stickiness. [5] and [28] model changes in the product rate

as function of the accumulated margin since the last adjustment. If it crosses

certain boundaries, the product rate is updated in discrete steps, whose size

depends on the magnitude of the current margin. A potential drawback of

the approach is that it requires large samples that contain a sufficient num-

ber of “jumps” in order to obtain significant results as the client rate remains

unchanged for a long time. With the different threshold parameters a large

number of parameters need to be estimated and a computationally expensive
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non-linear optimization method is required.

The literature offers several models combining asymmetric and nonlinear

adjustment. Recent examples are [11], [17] and [29]. However, these papers do

not relate to client rates and therefore we skip here a discussion.

In this section we apply the friction model of [13] to the deposit rates from

our 10 Swiss banks and we show that, accounting only for rigidity, the model

is unrealistic in explaining the dynamics of Swiss deposit rates. However,

we extend the original model by allowing for asymmetric adjustment and we

obtain a realistic model for deposit rates.

7.1 Data

In Figure 16 we illustrate the deposit rate paid by one of our investigated

Swiss Banks for deposit accounts versus Libor 3 months and Swap 5 year rate

as a representative example. We observe, on the one hand, that retail banks

are slow to adjust the deposit rate when market rates go up, but they follow

closely the descending trend of the market. In this context, we talk about the

deposit rate asymmetry: “retail banks exercise their market power to optimize

their margins by delaying the pass-through of higher market rates to clients”

(de Haan and Sterken 2011). On the other hand, we observe that since changes

in the market rates occur each month, the deposit rate remains for longer pe-

riods unchanged. This is accounted in the literature as deposit rate “rigidity”:

banks have only an incentive for adjustments when the administrative costs

are smaller than the costs for not changing the rates.

7.2 Initial rigidity model

The friction model specification for the deposit rate, follows [13]:

∆CRt = Y1t + εt if (Y1t + εt > 0)

∆CRt = 0 if (Y1t + εt < 0) and (Y2t + εt > 0)

∆CRt = Y2t + εt if (Y2t + εt < 0) (8)

where Y1t = a1 + b ∗ (CRt−1 − MRt), Y2t = a2 + b ∗ (CRt−1 − MRt) and εt

is a random error with zero mean and variance σ2 (CR represents the deposit



296 Adjustment Policy of Deposit Rates ...

rate, MR is a market rate).

The positive segment of Y1t represents expected increases in the deposit

rate, the negative segment of Y2t expected decreases, and the difference between

the intercepts a1 and a2 delimitates the range of no-changes. When the spread

between the lagged deposit rate and the current market rate crosses these

bounds, a positive or negative change occurs. In the original model of [13], the

speed of adjustment is equal for upward or downward adjustments of the rate.

7.3 Estimation procedure

We estimate our model parameters using maximum likelihood. Let yt :=

∆CRt, φx1t := Y1t, φx2t := Y2t. From the model specification we have εt as a

random error with zero mean and variance σ2. The likelihood function for a

sample of changes in the deposit rates which has p positive, r negative and q

zero observations is written:

L =

p∏
n=1

1√
2πσ2

exp

{
−1

2
σ2(yn − φx1n)2

}

×
q∏

m=1

[F (φx2m, σ2)− F (φx1m, σ2)]

×
r∏

k=1

1√
2πσ2

exp

{
−1

2
σ2(yk − φx2k)

2

}
where

F (φxjt, σ
2) =

∫ φxjt

−∞

1√
2πσ2

exp

{
−1

2
(λ/σ)2

}
dλ.

In the following log-likelihood function, F (φxjt, σ
2) will be written as Fjt:

log(L) =

q∑
m=1

log(F2m − F1m)− (p + r)

2
log(2πσ2)

−
(1

2
σ−2

) p∑
n=1

(yn − φx1n)2 −
(1

2
σ−2

) r∑
k=1

(yk − φx2k)
2 (9)

We estimate the model proposed by [13], using the average deposit rate

data for the Swiss savings accounts as displayed in Figure 16. We show the
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results with using the Swap 5 year rate as relevant market rate to calculate the

spread. Also other market rates were investigated, however, the results do not

change significantly. Table 2 summarizes the results. In Figure 17 we display

the model fit.

Table 2: Friction model estimation results
Coefficient t-stat

a1 -1.52 -10.10

a2 -0.01 -0.40

b -0.41 -2.74

σ 0.35 2.65

R2 0.012

We observe that the model leads to unrealistic results. The constant a2

is not significant, so the bounds of the non-rejection region are not correctly

delimitated. In fact, accordingly to these estimates, the modeled deposit rate

stays only within the no-rejection region. That is because, as observed in

Figure 18, the term Y1 takes only once a positive value, while the Y2 becomes

only once negative, which means that the modeled deposit rate would only

change twice over the investigated sample (see Figure 18). This is, of course,

implausible. Our results are in line with the findings of [37].

The cause of these biased results is that the model assumes the same speed

of adjustment of the deposit rate to upwards or downwards movements in the

spread to market rates. In the following section we propose an extension of

the [13] rigidity model specification, which takes into account different speeds

of deposit rate adjustments and we show the importance of this additional

assumption.

The cause of these biased results is that the model assumes the same speed

of adjustment of the deposit rate to upwards or downwards movements in the

spread to market rates. In the following section we propose an extension of the

Forbes and Mayne 1989 rigidity model specification, which takes into account

the asymmetric adjustment and we show the importance of this additional

assumption.

7.4 Allowing for asymmetry

The model described above was applied by [13] for the prime rate. Their
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friction model assumes the same speed of adjustment of the prime rate to

positive and negative changes in the market rate. That is, the model accounts

for rigidity, but it does not account also for asymmetric adjustment of the

deposit rate to market rates. In case of savings accounts, the importance

of modeling the deposit rate asymmetry was discussed above. Therefore, we

extend the specification of equation (8) by allowing for different speeds of

adjustment of the deposit rate to its spread to one relevant market rate, for

positive vs. negative adjustments. Thus, Y1t = a1 + b1 ∗ (CRt−1 − MR),

Y2t = a2 + b2 ∗ (CRt−1 − MR) and εt is a random error with zero mean

and variance σ2. The graphical representation of the friction model assuming

asymmetric adjustment is illustrated in Figure 1. The interpretation is: The

larger the spread between the constant coefficients a1 and a2, the larger the

range of no changes; the slope of negative changes is steeper than the slope

of positive changes, as one would expect deposit rate to adjust with a higher

speed downwards than upwards; when the spread of deposit rate to the market

rate is too narrow/large (in absolute values), then a negative/positive change

in the deposit rate occurs.

Figure 1: Hypothetical relation between changes in the deposit rate and its

spread to market rates

We apply the maximum likelihood estimation procedure to obtain our
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model coefficients (equation 9). Table 3 summarizes the results.

Table 3: Friction model estimation results
Coefficient t-stat

a1 -0.07 3.43

a2 -0.12 12.37

b1 -0.05 6.41

b2 -0.08 7.31

σ 0.04 4.54

|a1 − a2| 0.05 3.41

R2 0.892

We observe that the deposit rate is adjusted with a higher speed down-

wards than upwards. The difference between a1 and a2 emphasizes the rigidity

pattern of the deposit rate. The model fit is illustrated in Figure 19. We ob-

serve a realistic fit of the extended friction model to the data, while accounting

for asymmetric adjustment (R2 improved considerably, to 89% explained vari-

ation). The friction model fit for the SNB deposit rate has turned out to

be the best when the spread to the Swap 5 year rate is used as explanatory

variable. We investigated the goodness of the model with respect to all liquid

market rates. In Figure 20 we display the rigidity model performance when

the Libor 3 month is used as market rate. One can clearly see that in this case

the model underperforms the realistic fit obtained with the Swap 5 year rate

(Figure 19). This is due to the frequent changes in the short rate which, in

reality, are not followed by changes in the deposit rate.

We have extended the analysis over all other 9 data sets and in all cases

the Swap 5 year rate is the maturity which offers the best fit. In case one

assumes that the Swiss deposit rates are set accordingly to the dynamics of

a single swap rate, one may conclude that, in general, Swiss banks use the

Swap 5 year rate as a relevant benchmark. Table 13 summarizes the results.

We obtain evidence for the rigidity of deposit rates reflected in the difference

between the two constant terms a1 and a2. The difference between a1 and a2

varies quite much between the data sets, namely between 1.2 bp and 8.6 bp.

This diversity emphasizes the different strategies among the banks to fix their

“tolerable bounds”, e.g., the range of no changes for the deposit rates. We

obtain clear evidence for an asymmetric adjustment of the deposit rate to its

spread to the Swap 5 year rate. Overall, the speed of adjustment to the deposit

rate is higher in the case of negative adjustments than for positive ones. Thus,
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the coefficient b2 is overall higher in absolute value than b1. The R2 values

vary between 75% and 90.2% and imply a good performance of the friction

model to explain the deposit rate data.

One of the characteristics of the NMA deposit rates is to remain unchanged

while exogenous rates fluctuate; therefore, “the usual least-square estimator,

based on the assumption of linearity, is inappropriate (biased and inconsistent)

in this case” (see [13]). Instead, the deposit rate must be represented as a lim-

ited dependent variable whose value is at times unrelated to exogenous rates.

By modeling deposit rate rigidity with a friction model we are able to fit both

short and long term dynamics of the deposit rate. On short-term horizon, the

friction models reflect the non-linearity of Swiss banks’ behavior in adjusting

the deposit rates to exogenous rates. At the same time, the model allows de-

posit rates to follow in the long run the evolution of market rates. Starting

from the specification of the friction model of [13], we extend the model by

allowing for asymmetric adjustment of the deposit rate to market rates. Our

results show that indeed the deposit rate is decreased with a higher speed to

changes in market rates than it is increased. We also found evidence for the

rigidity of the Swiss deposit rate, expressed by the difference between the con-

stant terms of the two regression lines for positive and for negative changes.

The friction model describes more realistically the deposit rate pattern than

the other investigated models in the previous chapters. Thus, the R2 is with

up to 30% higher than in the case of the other two investigated model types.

However, in the case of the two little number of ascending discrete adjustment

steps in our client rate data an out of sample test for the rigidity model is

difficult here.

8 Conclusion

This paper explains the adjustment policy of Swiss banks in the case of

the problematic non-maturing savings accounts. To our knowledge, this is

the first study in the context of the literature which refers to Swiss bank-

individual client rate data, and not only to aggregate data which are publicly

available. We derived and tested many econometric models and discussed

their advantages and disadvantages. This study reveals different strategies of
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Swiss banks to adjust their client rate in normal and stress regimes. In times

of market stress, Swiss banks are tight to market rates; however, in normal

regimes this is not observed. We also provide a strong evidence for both

asymmetric adjustment and rigidity patterns which are typically ignored in

practice by retail banks. This is insofar surprising, as the asymmetric deposit

rate adjustment affects the pricing of embedded options for NMA. In this work

we contribute to the elimination of these inconsistencies.

Our modeling efforts take into account essential characteristics of the sav-

ings deposits: their cash-flows uncertainty as a consequence of the embedded

options that both banks and clients bear. On one hand, clients have the option

to withdraw money at any time, while banks are free to adjust deposit rates

at any time.

We applied cointegration analysis and show that, on long-term, the Swiss

banks keep an equilibrium relation with market rates. Furthermore, we found

that Swiss deposit rates are stronger cointegrated with a longer market rate

than with a short rate. In fact, the strongest cointegration is found in relation

to the Swap 5 year rate. Changes in the long rates are more stable (less

volatile) and therefore they play a higher role for the deposit rate adjustment

decision. We further derived a model in error correction form and we get the

first insights that individual changes in the market rates are not reflected in

the deposit rate adjustment. This result is due to the fact that linear models

fail to explain the deposit rate tardiness and asymmetric patterns: a change

in the market rate occurs every month, but the deposit rate is adjusted only

when significant changes occur on the market. In this case, the Ordinary

Least Squares estimation fails in explaining the consecutive “zero changes”

which characterize real deposit rates. However, we observe that the deposit

rate is sensitive to its deviations from the long-run equilibrium level derived

in relation to the Swap 5 year rate.

To account for asymmetric adjustments, we derive a threshold model in er-

ror correction form and we find that the Swiss deposit rates are regime depen-

dent. Two cases of threshold model are investigated. In the first case we iden-

tify market rates regimes, by fixing the threshold variable in the Swap 5 year

rate changes. In this way, we obtain clear evidence for asymmetric adjustment

of the deposit rate to changes in market rates: moderate changes in the mar-

ket rates are not reflected in the deposit rates adjustment; however, when the
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market rates change significantly, Swiss banks adjust also the deposit rates ac-

cordingly. In other words, in times of market stress Swiss banks are tighter to

market rates. Our threshold model which identifies the market rates regimes

helps to explain in- and out-of-sample extreme movements in the Swiss deposit

rates in the analyzed period, including the one which occurred in the financial

crisis. No significant threshold is found in the Libor 3 month rate, meaning

that Swiss banks adjust deposit rates linearly to the short rate. In the second

case we derive regimes in the disequilibrium level of the deposit rates. This

model helps us to keep in equilibrium on long-run the deposit rate and reveals

the adjustment strategy of the Swiss banks in normal regimes.

We obtain a strong evidence for rigidity in the adjustment of the Swiss

deposit rates. Beside this, we found that Swiss banks have different strategies

to fix their “tolerable bounds”, e.g., the range of no changes for the deposit

rates. We obtain a model which takes into account simultaneously the two

major characteristics of the deposit rate: asymmetry and rigidity. This is of

major importance for banks’ decision to adjust deposit rate, given the admin-

istrative costs associated with a change versus the potential loss in volume due

to depositors’ withdrawal option.

The different econometric models investigated help us to describe deposit

rates of the Swiss banks from different perspectives. For example, the threshold

model helps us to determine the limits which differentiate normal from extreme

deposit rate adjustment regimes, while the friction model helps us to determine

the range of no changes and to emphasize the rigidity of the deposit rates.

Using the simple linear model without taking into consideration asymmetry

and rigidity, we fail in explaining large shocks which occurred on the market.

With the asymmetry and the rigidity on the level of an individual bank, one

can derive the price of the imbedded withdrawals option that these banks’

depositors bear. Moreover, threshold and friction models should form the

sound basis for managing and measuring the liquidity risk associated to the

NMA.

A further extension of the research would be to explore the relationship

between deposit rates and volumes. A bank may offer more favorable deposit

rates to attract more costumers and, thereby, increase its market share. How-

ever, this requires availability of volume data from individual banks which were

not at our disposal for the current study.
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Figure 2: Model in error correction form performance

-0.4000

-0.3000

-0.2000

-0.1000

0.0000

0.1000

0.2000

0.3000

0.4000

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

Residuals OLS

Figure 3: Model in error correction form residuals
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Figure 4: Sample split with threshold variable changes in Swap 5 year rate.

Confidence interval construction for threshold

Figure 5: Sample split with threshold variable the error correction term. Con-

fidence interval construction for threshold
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Figure 12: Deposit rate model with threshold variable changes in the

Swap 5 year rate - out-of-sample test, split in Dec 2005
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Table 4: Augmented Dickey-Fuller test statistic - deposit rate
ADF-test SNB S1 S2 S3 S4 S5

t statistic -0.395 -0.110 -0.333 -0.426 -0.363 -1.273

1% level -3.425 -3.435 -3.464 -3.476 -3.484 -3.459

5% level -2.872 -2.872 -2.872 -2.873 -2.872 -2.883

10% level -2.572 -2.572 -2.572 -2.573 -2.572 -2.578

p-values 0.907 0.947 0.918 0.894 0.918 0.659

*MacKinnon (1996) one-sided p-values.

ADF-test S6 S7 S8 S9 S10

t statistic -1.281 -0.121 -1.599 -0.559 -0.816

1% level -3.499 -3.435 -3.441 -3.543 -3.967

5% level -2.883 -2.872 -2.879 -2.902 -3.429

10% level -2.578 -2.573 -2.576 -2.588 -3.138

p-values 0.669 0.944 0.501 0.864 0.963

*MacKinnon (1996) one-sided p-values.

Table 5: Augmented Dickey-Fuller test statistic - market rates
Libor 3m Swap 5y

ADF-test Libor 3m Swap 5y
Mov.Avg. Mov. Avg.

t statistic -1.070 -0.876 -1.518 -2.857

1% level -3.455 -3.454 -3.455 -4.002

5% level -2.872 -2.872 -2.872 -3.431

10% level -2.572 -2.572 -2.573 -3.139

p-values 0.728 0.795 0.523 0.179

*MacKinnon (1996) one-sided p-values.
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Table 6: Cointegration analysis, cointegrating vector

SNB S1 S2 S3 S4 S5

Deposit rate 1 1 1 1 1 1

MRshort -0.68 -0.691 -0.673 -0.681 -0.745 -0.505

(std error) 0.048 0.053 0.046 0.043 0.036 0.12

Constant 0.281 1.752 0.213 0.246 0.43 -0.036

(std error) 0.174 0.159 0.159 0.13 0.18 0.167

Deposit rate 1 1 1 1 1 1

MRlong -0.977 -0.979 -0.925 -0.951 -1.007 -0.696

(std error) 0.033 0.034 0.03 0.029 0.041 0.067

Constant 1.817 1.721 1.612 1.748 1.938 1.320

(std error) 0.150 0.149 0.132 0.13 0.18 0.221

Deposit rate 1 1 1 1 1 1

MRshort -0.195 0.084 -0.089 -0.165 -0.144 -0.029

(std error) 0.085 0.146 0.131 0.086 0.126 0.062

MRlong -0.693 -1.108 -0.799 -0.736 -0.831 -0.671

(std error) 0.123 0.101 0.091 0.125 0.182 0.106

Constant 1.379 1.932 1.431 1.413 1.705 1.295

(std error) 0.232 0.273 0.245 0.246 0.332 0.281

S6 S7 S8 S9 S10

Deposit rate 1 1 1 1 1.000

MRshort -0.651 -0.561 -0.784 -0.154 -0.638

(std error) 0.138 0.048 0.217 0.072 0.054

Constant 0.269 -0.648 0.681 -0.435 0.249

(std error) 0.211 0.168 0.401 0.102 0.152

Deposit rate 1 1 1 1 1.000

MRlong -0.887 -0.925 -0.947 -0.644 -0.935

(std error) 0.087 0.044 0.125 0.076 0.045

Constant 2.049 1.586 1.786 1.242 1.782

(std error) 0.283 0.205 0.352 0.23 0.178

Deposit rate 1 1 1 1 1.000

MRshort 0.137 -0.159 0.435 -0.029 -0.123

(std error) 0.089 0.071 0.155 0.056 0.119

MRlong -1.085 -0.639 -1.453 -0.512 -0.724

(std error) 0.147 0.122 0.226 0.124 0.171

Constant 2.424 0.906 2.425 0.911 1.434

(std error) 0.383 0.331 0.415 0.322 0.312
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Table 7: Estimation of the EC model
SNBD S1 S2 S3 S4

Constant 0.0008 −0.0003 -0.0002 -0.0007 -0.000

Std. Error (0.004) (0.0075) (0.006) (0.006) (0.006)

∆CRt−1 0.101 −0.153 -0.190 -0.132 -0.242

(0.078) (0.047) (0.041) (0.052) (0.053)

∆MRt−1 0.035 0.027 0.043 -0.084 0.056

(0.014) (0.047) (0.029) (0.036) (0.023)

ECt−1 -0.054 −0.087 -0.095 -0.096 -0.073

(0.0007) (0.024) (0.017) (0.019) (0.015)

R2 0.551 0.255 0.635 0.685 0.230

S5 S6 S7 S8 S9 S10

Constant -0.002 -0.013 -0.009 -0.003 -0.001 -0.005

Std. Error (0.005) (0.006) (0.005) (0.006) (0.005) (0.004)

∆CRt−1 -0.068 -0.060 -0.250 -0.095 -0.055 -0.151

(0.030) (0.020) (0.053) (0.040) (0.022) (0.051)

∆MRt−1 -0.098 0.004 -0.017 -0.078 -0.063 -0.049

(0.043) (0.067) (0.049) (0.032) (0.051) (0.027)

ECt−1 -0.135 -0.085 -0.076 -0.065 -0.136 -0.063

(0.039) (0.031) (0.021) (0.016) (0.060) (0.017)

R2 0.299 0.151 0.286 0.149 0.286 0.252

Table 8: Threshold model in-sample performance
Case 1: ω = ∆rlong

t−1 Case 2: ω = ECt−1

Regime1: ∆S5y ≤ −0.520 Regime1: EC ≤ 1.027

Parameter Estimate St Error Parameter Estimate St Error

Constant 0.269 0.026 Constant 0.002 0.002

CR1 -0.286 0.129 CR1 0.236 0.081

L3m -0.140 0.019 L3m 0.031 0.011

S5y 0.590 0.038 S5y -0.010 0.013

EC -0.073 0.008 EC -0.039 0.006

Residual Variance: 0.001 Residual Variance: 0.001

R-squared: 0.959 R-squared: 0.515

Observations: 10% Observations: 80%

Regime2: ∆S5y > −0.520 Regime2: EC > 1.027

Constant 0.001 0.003 Constant 0.009 0.104

CR1 0.161 0.069 CR1 -0.069 0.111

L3m 0.026 0.012 L3m -0.158 0.059

S5y -0.008 0.021 S5y 0.044 0.067

EC -0.050 0.007 EC -0.109 0.062

Residual Variance: 0.002 Residual Variance: 0.006

R-squared: 0.543 R-squared: 0.319

Observations: 90% Observations: 20%
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Table 9: Threshold model coefficients up to January 1998
Case 1: ω = ∆rlong

t−1 Case 2: ω = ECt−1

Regime1: ∆S5y ≤ −0.17 Regime1: EC ≤ 1.2788

Parameter Estimate St Error Parameter Estimate St Error

Constant 0.0155 0.0158 Constant 0.0062 0.0043

CR1 -0.0542 0.1698 CR1 0.1519 0.1000

L3m -0.0864 0.0317 L3m 0.0255 0.0119

S5y 0.1048 0.0415 S5y -0.0199 0.0195

EC -0.0851 0.0164 EC -0.0505 0.0100

Residual Variance: 0.0028 Residual Variance: 0.0020

R-squared: 0.6927 R-squared: 0.5754

Observations: 30% Observations: 85%

Regime2: ∆S5y > −0.17 Regime2: EC > 1.2788

Constant 0.0058 0.0054 Constant 0.0248 0.1195

CR1 0.0733 0.0917 CR1 -0.0887 0.1293

L3m 0.0390 0.0137 L3m -0.1598 0.0583

S5y -0.0464 0.0319 S5y 0.0358 0.0758

EC -0.0608 0.0121 EC -0.1218 0.0774

Residual Variance: 0.0026 Residual Variance: 0.0068

R-squared: 0.6126 R-squared: 0.3039

Observations: 70% Observations: 15%

Table 10: Threshold model coefficients up to December 2005
Case 1: ω = ∆rlong

t−1 Case 2: ω = ECt−1

Regime1: ∆S5y ≤ −0.520 Regime1: EC ≤ 1.205

Parameter Estimate St Error Parameter Estimate St Error

Constant 0.432 0.076 Constant 0.004 0.003

CR1 -0.569 0.167 CR1 0.204 0.086

L3m -0.100 0.025 L3m 0.023 0.010

S5y 0.721 0.092 S5y -0.009 0.013

EC -0.100 0.012 EC -0.044 0.008

Residual Variance: 0.0007 Residual Variance: 0.001

R-squared: 0.971 R-squared: 0.531

Observations: 10% Observations: 90%

Regime2: ∆S5y > −0.520 Regime2: EC > 1.205

Constant 0.003 0.003 Constant 0.009 0.104

CR1 0.117 0.074 CR1 -0.069 0.111

L3m 0.019 0.011 L3m -0.158 0.059

S5y -0.006 0.015 S5y 0.044 0.067

EC -0.057 0.008 EC -0.109 0.062

Residual Variance: 0.002 Residual Variance: 0.006

R-squared: 0.564 R-squared: 0.319

Observations: 90% Observations: 10%
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Table 11: Sample split with threshold in changes in the market rate variable
Threshold in changes in the market rate

SNB S1 S2 S3 S4 S5

Threshold value -0.520* 0.040* -0.182 0.172* 0.087* -0.582*

p value 0.049 (0.093) (0.858) 0.088 0.058 0.073

Regime 1: ∆MRt−1 < Threshold

Constant 0.434* 0.020* -0.005 0.006 0.004

Std. Error (0.075) (0.010) (0.005) (0.006) (0.007)

∆CRt−1 -0.666* -0.161* -0.207* -0.045* -0.027

(0.052) (0.056) (0.023) (0.023) (0.055)

∆MRt−1 0.792* 0.049 0.056* -0.036 0.132*

(0.093) (0.043) (0.029) (0.045) (0.032)

ECt−1 -0.101* -0.077* -0.062* -0.094* -0.063*

(0.051) (0.025) (0.018) (0.039) 0.025

R2 0.972 0.252 0.183 0.225 0.212

Nr. Obs 20% 60% 80% 70% 70%

Regime 2: ∆MRt−1 > Threshold

Constant 0.000 -0.023* 0.033 -0.042 0.033

Std. Error (0.003) (0.013) (0.042) (0.031) (0.025)

∆CRt−1 0.072 -0.203* -0.362* -0.043* -0.005

(0.078) (0.061) (0.144) (0.009) (0.039)

∆MRt−1 0.035* -0.008 -0.043 0.043

(0.015) (0.065) (0.134) (0.160) -0.292*

ECt−1 -0.054* -0.115* -0.121* -0.195* -0.083*

(0.008) (0.027) (0.045) (0.077) (0.030)

R2 0.562 0.317 0.305 0.346 0.347

Nr. Obs 80% 40% 20% 30% 30%

S6 S7 S8 S9 S10

Threshold value -0.582* 0.167* -0.093* 0.087* 0.077*

p value 0.027 0.038 0.069 0.075 0.024

Regime 1: ∆MRt−1 < Threshold

Constant 0.364* 0.005 -0.092 0.0007 0.002

Std. Error (0.093) (0.006) (0.260) (0.006) (0.007)

∆CRt−1 -0.212* -0.083* 0.074* -0.045* -0.163*

(0.036) (0.029) (0.020) (0.017) (0.061)

∆MRt−1 0.049 0.056* -0.036 0.132*

(0.105) (0.042) (0.095) (0.040) (0.097)

ECt−1 -0.213* -0.052* -0.034 -0.076* -0.053*

(0.023) (0.012) (0.163) (0.031) (0.021)

R2 0.911 0.292 0.801 0.0282 0.243

Nr. Obs 10% 83% 36% 70.5% 55.5%

Regime 2: ∆MRt−1 > Threshold

Constant -0.003 -0.131* -0.012* -0.065 -0.033*

Std. Error 0.003 (0.036) (0.004) (0.041) (0.016)

∆CRt−1 -0.322* -0.016 -0.061* -0.124 -0.107*

(0.005) (0.111) (0.011) (0.157) (0.049)

∆MRt−1 -0.091* 0.273* 0.185* 0.179 0.045

(0.039) (0.116) (0.016) (0.177) (0.061)

ECt−1 -0.073* -0.122* -0.002 -0.295* -0.088*

(0.021) ( 0.025) (0.026) (0.142) (0.032)

R2 0.175 0.509 0.605 0.355 0.277

Nr. Obs 90% 17% 64% 29.5% 44.5%
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Table 12: Sample split with threshold in the error correction term (the thresh-

old value for strategies 7,8,9 is not significant)

Threshold in the error correction term

SNB S1 S2 S3 S4 S5 S6 S10

Threshold 0.750* 0.843* 1.528* 1.33* -1.415* 0.621* -0.5* 0.681*

p value 0.015 0.078 0.015 0.027 0.081 0.064 0.005 0.066

Regime 1: ECt−1 < Threshold

Constant 0.001 -0.001 0.0002 -0.0002 -1.495* -0.003 -0.179 0.003

(0.002) (0.003) (0.006) (0.006) (0.162) (0.005) (0.109) (0.004)

∆CRt−1 0.211* -0.047* -0.155* -0.210* -1.182* -0.042* -0.213* -0.027*

(0.108) (0.019) (0.038) (0.050) (0.101) (0.018) (0.098) (0.015)

∆MRt−1 0.025* -0.010 -0.034* -0.075* -0.003 0.015 -0.193* -0.016

(0.012) (0.016) (0.018) (0.039) (0.082) (0.052) (0.089) (0.023)

ECt−1 -0.037* -0.035* -0.084* -0.105* -0.982* -0.075* -0.237* -0.026*

(0.007) (0.009) (0.017) (0.026) ( 0.058) (0.029) (0.116) (0.010)

R2 0.522 0.279 0.349 0.256 0.736 0.305 0.533 0.253

Nr. Obs 70% 87% 90% 87% 20% 80% 20% 75%

Regime 2: ECt−1 > Threshold

Constant 0.065 0.0005 1.873* 0.269 -0.002 -1.259* -0.011* -0.085*

(0.067) (0.083) (0.296) (0.183) (0.005) (0.478) (0.004) (0.027)

∆CRt−1 -0.227* -0.375* -0.752* -0.695* -0.232* -1.775* -0.655* -0.217*

(0.121) (0.115) (0.137) (0.203) (0.057) (0.467) (0.047) (0.077)

∆MRt−1 0.136* 0.256* -0.806* -0.286* 0.050* -0.506* 0.028 -0.175*

(0.036) (0.098) (0.182) (0.111) (0.023) (0.183) (0.047) (0.067)

ECt−1 -0.145* -0.095* -1.28* -0.225* -0.069* 1.188* -0.072* -0.678*

(0.050) (0.041) (0.187) (0.112) (0.014) (0.577) (0.020) (0.039)

R2 0.354 0.509 0.475 0.300 0.207 0.588 0.478 0.147

Nr. Obs 30% 13% 10% 13% 80% 20% 80% 25%

Table 13: Rigidity model - robustness test

S1 S2 S3 S4 S5 S6 S7 S8 S9

a1 -0.092* -0.092* -0.045* -0.094* -0.147* -0.016* -0.04* -0.036* -0.031*

(s.e.) (0.003) (0.005) (0.013) (0.023) (0.006) (0.008) (0.006) (0.008) (0.011)

a2 -0.121* -0.104* -0.082* -0.070* -0.119* -0.068* -0.08* -0.057* -0.117*

(-0.022) (-0.013) (-0.019) (-0.026) (-0.011) (-0.013) (-0.021) (-0.019) (-0.031)

b1 -0.053* -0.051* -0.028* -0.032* -0.056* -0.023* -0.03* -0.028* -0.020*

(0.005) (0.008) (0.006) (0.003) (0.007) (0.009) (0.008) (0.008) (0.005)

b2 -0.055* -0.053* -0.037* -0.050* -0.073* -0.033* -0.04* -0.056* -0.055*

(0.016) (0.018) (0.009) (0.015) (0.019) (0.013) (0.015) (0.019) (0.018)

σ 0.453* 0.548* 0.186* 0.404* 0.476* 0.661∗ 0.43* 0.294* 0.501*

(0.031) (0.026) (0.035) (0.033) (-0.019) (0.027) (0.031) (0.033) (0.028)

R2 0.83 0.75 0.81 0.865 0.798 0.81 0.832 0.765 0.902

|a1 − a2| 0.029 0.012 0.037 0.024 0.028 0.052 0.04 0.021 0.086

(0.001) (0.007) (0.015) (0.004) (0.005) (0.021) (0.002) (0.001) (0.031)
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[7] J. Crespo-Cuaresma, B. Égert and T. Reininger, Interest Rate Pass-

Through in New EU Member States: The Case of the Czech Republic,

Hungary and Poland Unpublished results, (2004).

[8] F. De Jong and J. Wielhouwer, The valuation and hedging of variable

rate savings accounts, Astin Bulletin, 33, 383-397, (2003).

[9] H. Dewachter, M. Lyrio and K. Maes, A multi-factor model for the valu-

ation and risk management of demand deposits, Working paper research,

83, National Bank of Belgium, (2006).

[10] M. Duecker, Are prime rate changes asymmetric? Federal Reserve Bank

of St. Louis Review, (2000), 33-40.

[11] W. Enders and P. Siklos, Cointegration and threshold adjustment Journal

of Business and Economic Statistics, 19, (2001), 166-176.



Florentina Paraschiv 321

[12] O. Entrop, A. Krombach, C. Memmel and M. Wilkens, Non-maturing

assets and liabilities of banks: Valuation and risk measurement, Working

paper, Catholic University of Eichstätt-Ingolstadt, Unpublished results,

(2009).

[13] S. Forbes and L. Mayne, A friction model of the prime, Journal of Banking

and Finance, 13, (1989), 127-135.

[14] K. Frauendorfer and M. Schürle, Dynamic modeling and optimization

of non-maturing accounts, In L. Matz, P. Neu, eds. Liquidity Risk –

Measurement and Management, Wiley, pp. 327–359, 2007.

[15] D. Frost and R. Bowden, An asymmetric generator for error-correction

mechanisms, with application to bank mortgage-rate dynamics, Journal

of Business and Economic Statistics, 17, (1999), 253-263.

[16] L. Gambacorta, How do banks set interest rates?, Working paper, 10295,

National Bureau of Economic Research, (2004).

[17] B.K. Goodwin and D.C. Harper, Price transmission, threshold behaviour,

and asymmetric adjustment in the U.S. pork sector Journal of Agricultural

and Applied Economics, 32, (2000), 543-553.

[18] L. de Haan and E. Sterken, Bank-Specific Daily Interest Rate Adjustment

in the Dutch Mortgage Market, Journal Financ Services Research, (2011),

145-159.

[19] T. Hannan and A. Berger, The rigidity of prices: Evidence from the

banking industry, American Economic Review, 81, (1991), 938-945.

[20] B. Hansen, Inference when a nuisance parameter is not identified under

the null hypothesis, Econometrica, (1996).

[21] B. Hansen, Sample splitting and threshold estimation, Econometrica, 68,

(2000).

[22] B. Hansen & B. Seo, Testing for threshold cointegration in vector error

correction models, Working Paper, (2000).



322 Adjustment Policy of Deposit Rates ...

[23] D.E. Hutchison, Retail bank deposit pricing: An intertemporal asset pric-

ing approach, Journal of Money, Credit, and Banking, 27, (1995), 217-

231.

[24] T. Janosi, R. Jarrow and F. Zullo, An Empirical Analysis of the Jarrow-

van Deventer Model for Valuing Non-Maturity Demand Deposits, Journal

of Derivatives, 7, (1999), 8-31.

[25] R.A. Jarrow and D.R. van Deventer, The arbitrage-free valuation and

hedging of demand deposits and credit card loans, Journal of Banking

and Finance, 22, (1998), 249-272.

[26] C. Kahn, G. Pennacchi and B. Sopranzetti, Bank deposit clustering: The-

ory and empirical evidence, Journal of Finance, 54, (1999), 2185-2214.

[27] M. Kalkbrener and J. Willing, Risk management of non-maturing liabili-

ties, Journal of Banking and Finance, 28, (2004), 1547-1568.

[28] S. Leithner and S. Michaelsen, Variable Hypothekensätze in der Schweiz,

Finanzmarkt und Portfolio Management, 7, (1993),170-188.

[29] H. Leon and S. Najarian, Asymmetric adjustment and nonlinear dynamics

in real exchange rates, International Journal of Finance and Economics,

10(7), (2005),15-39.

[30] G. Lim, Bank interest rate adjustments: Are they asymmetric? Econom-

cic Record, 77, (2001), 135-147.

[31] L.J. Mester and A. Saunders, When does the prime rate change? Journal

of Banking and Finance, 19, (1995), 743-764.

[32] Mizen P. and B. Hofman, Base rate pass-through: evidence from banks’

and building societies’ retail rates, Working Paper, 170, Bank of England,

(2002).

[33] H. Nehls, The interest rate pass-through in german banking groups,
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