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Abstract

This paper is concerned with the problem of deriving expressions
for the Bayesian predictive survival functions for the median of future
sample of generalized order statistics having odd and even sizes. Both of
the informative and future samples are drawn from a population whose
distribution is truncated type-I generalized logistic distribution TTIGL
(β, α, τ). Doubly type II censored data and two sample technique have
been used here. Bayesian prediction intervals using two independent
samples, based on informative prior is obtained. Bayesian prediction
intervals for: upper order statistics and upper records are considered as
special cases. Numerical computations based on simulation study are
given to illustrate the performance of the procedures.
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1 Introduction

In Kamps (1995) generalized order statistics (GOS) have been introduced

as a unified approach to several models of ordered random variables. Such mod-

els are ordinary order statistics (OOS) [David and Nagaraja (2003), Arnold,

Balakrishnan and Nagaraja (1992)], records [Ahsanullah (1994) and Arnold,

Balakrishnan and Nagaraja (1998)], sequential order statistics [Cramer and

Kamps (1996)] and ordering via truncated distributions and censoring schemes

[Kamps (1995)]. Kamps’s book (1995) gave several applications such as a vari-

ety of disciplines, recurrence relation for moments of order statistics and char-

acterizations. Several authors utilized the GOS in their work, such authors,

among others, are Ahsanullah (2000), Habibullah and Ahsanullah (2000),

Kamps and Gather (1997), Keseling (1999), Cramer and Kamps (2000), Pawlas

and Szynal (2001), Ahmad and Fawzy (2003), AL-Hussaini and Ahmad (2003a,b),

AL-Hussaini (2004),Ahmad (2007, 2010) and Jaheen (2002, 2005). Several au-

thors have predicted future order statistics and records from homogeneous and

heterogeneous populations that can be represented by single or finite mixtures

of distributions. For a good survey see, AL-Hussaini and Jaheen (1995, 1996,

1999), AL-Hussaini and Ahmad (2003b), Ali Mousa (2003) and AL-Hussaini

(1999, 2001). The logistic distribution is one of the oldest growth models. The

truncated logistic distribution plays a role in a variety of applications, also, the

type I generalized logistic distribution has applications in the theoretical and

practical fields. For more details on the logistic and half-logistic distributions,

see Balakrishnan (1985, 1992), Balakrishnan and Wang (1991) and Balakr-

ishnan and Chan (1992). AL-Angary (1997) introduced the truncated type

I generalized logistic distribution which was denoted by TTIGL(β, γ, α) and

described some of its properties. Some studies have discussed the truncated

type I generalized logistic distributions such as, AL-Hussaini and Ateya (2003,

2005) and AL-Hussaini et al.(2006). A random variable X is said to have

a truncated type I generalized logistic distribution with vector of parameters

Θ = (β, α, τ) if it’s probability density function (PDF) is given by

f(x; θ) =
α

τ(1− 2−α)
exp[−(x− β)/τ ][1 + exp[−(x− β)/τ ]]−(α+1),

x ≥ β, (β ≥ 0, τ > 0, α > 0).
(1)
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The reliability and hazard rate functions are given by

R(x) =
1− ω−α

1− 2−α
, (2)

rθ(x) =
α(ω − 1)ω−α−1

τ(1− ω−α)
, (3)

where ω = 1 + e−(x−β)/τ , x ≥ β. In our study we will take β = 0, then the

vector of parameters will be θ = (α, τ). For a value xi of the random variable

X, let

ωi = 1 + exp−
xi
r ,

εi(α, τ) = 1− ωi
−α,

ηi(α, τ) =
(ωi − 1)ωi

−α−1

εi(α, τ)
.

 (4)

So, (1), (2) and (3) can be written in the following forms (with β = 0) as

f(xi;α, τ) =
α

τ
(1− 2−α)−1εi(α, τ)ηi(α, τ), xi > 0, (τ > 0, α > 0). (5)

The reliability and hazard rate functions are given, respectively, by (6) and (7)

R(xi) = (1− 2−α)−1εi(α, τ), (6)

and

rθ(xi) =
α

τ
ηi(α, τ). (7)

We will write εi, ηi instead of εi(α, τ), ηi(α, τ). Suppose that X1, X2, . . . , Xn

is a random sample (rs) of size n drawn from a population whose cdf is F (x)

and pdf is f(x). Let X1;n,m,k, . . . , Xn;n,m,k be the corresponding GOS, where

m ≥ 1, k ≥ 1, see Kamps (1995). It was shown by Ahmad and Abu-Shal

(2008) that the joint PDF of the GOS Xr1;n,m,k, . . . , Xr`;n,m,k, can be written,

for 0 < r1 < · · · < r` < 1, r0 = 0, r`+1 = n+ 1, x0 = −∞, xr`+1 = ∞, as

fr1,...,r`
(xr1 , . . . , xr`

) = C(i; r`)[hm(Fθ(xr1))− hm(0)]r1−1[F θ(xr`
)]γr`

−1

×[
`−1∏
i=1

[F θ(xri
)]mfθ(xri

)][hm(Fθ(xri+1
))− hm(Fθ(xri

))]ri+1−ri−1]fθ(xr`
), (8)
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for F−1
θ (0+) < xr1 ≤ · · · ≤ xr`

< F−1
θ (1), where

C(i; r`) = Cr`−1/

`−1∏
i=0

(ri+1 − ri − 1)!

Cr`−1 =

r∏̀
i=1

γi, γi = k + (n− i)(m+ 1)

hm(z) = −(1− z)m+1/(m+ 1), m 6= −1

− ln(1− z), m = −1


. (9)

The joint PDF of the first r GOS X1;n,m,k, . . . , Xr;n,m,k, for 1 ≤ r ≤ n can be

obtained if we choose r1 = 1, r2 = 2, . . . , r` = r in (8), see Kamps (1995). If

we choose, in (8) and (9), r1 = s, r2 = s + 1, . . . , r` = s + ` − 1 ≡ r, we can

easily show that

fs,...,r(xs, . . . , xr) =
Cr−1

(s− 1)!
[hm(Fθ(xs))−hm(0)]s−1[

r−1∏
i=s

[F θ(xi)]
mfθ(xi)][F θ(xr)]

γr−1fθ(xr),

=
(−1)s−1Cr−1

(m+ 1)s−1(s− 1)!
[
r−1∏
i=s

[F θ(xi)]
mfθ(xi)]fθ(xr)[F θ(xr)]

γr−1

×
s−1∑
`=0

ω
(s)
` [F θ(xs)]

(s−`−1)(m+1), m 6= −1,

(−1)s−1kr

(s− 1)!
[ln(F θ(xs))]

s−1[F θ(xr)]
k−1 × fθ(xr)

r−1∏
i=s

rθ(xi), m = −1,

(10)

where ω
(s)
` = (−1)`

(
s−1

`

)
and γr = k + (m+ 1)(n− r).

Suppose that n items are simultaneously put on a life test and that for some

reasons, the first s − 1 failure times were not observed. The observed failure

times are start only from the sth to the rth failure time, 1 < s < r < n. These

ordered observations are referred to as a doubly type II censored data. Type

II censoring is obtained when s = 1 and the complete sample is obtained when

s = 1 and r = n. For more about doubly censored sample, reader is referred

to Khen et al. (2011, 2010), among others. Suppose that Xs < Xs+1 < · · · <
Xr,where 1 < s < r < n, where Xi ≡ Xi;n,m,k, i = 1, 2, ..., n be a doubly type-II

censored random sample (informative). Let Y1 < Y2 < · · · < YN ,where Yi ≡
Yi;N,M,K , i = 1, 2, . . . , N , M > 0, K > 0 be a second independent generalized
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ordered random sample (of size N) of future observations drawn from the same

distribution. Based on such a doubly type II censored observations, we want to

predict the future median (unobserved) YN ≡ Y ?
N . Then for ξ being a positive

integer ≥ 1 we have:

Y ?
N =

{
Yξ;N,M,K , N = 2ξ − 1
Yξ;N,M,K+Yξ+1;N,M,K

2
, N = 2ξ.

(11)

2 Density functions of future median

2.1 The case of odd N

In the case of the odd future sample size where N = 2ξ−1, ξ = 1, 2, 3, ..., N ,

let Y ?
N donete the median of future generalized order statistics. For a given θ,

the PDF of Y ?
N is given, see Kamps (1995), by

fY ?
N
(y|θ) =

C?
ξ−1

(ξ − 1)!(M + 1)!
[F θ(y)]

γ?
ξ−1fθ(y)g

ξ−1
M [Fθ(y)], (12)

where

C?
ξ−1 =

ξ∏
j=1

γ?
j , γ?

j = K + (N − j)(M + 1)

gM(y) = hM(y)− hM(0), y ∈ (0, 1)

hM(y) = −(1− y)M+1/(M + 1), M 6= −1

− ln(1− y), M = −1


. (13)

By substituting Eqn.(13) in Eq.(12), yields

fY ?
N
(y|θ) =

C?
ξ−1

(ξ − 1)!(M + 1)!
[F θ(y)]

γ?
ξ−1fθ(y)[hM(Fθ(y))− hM(Fθ(0))]ξ−1.

(14)

By expanding [hM(Fθ(y))−hM(Fθ(0))]
ξ−1 binomially, fY ?

N
(y|θ) can be written

as

fY ?
N
(y|θ) ∝ [F θ(y)]

γ?
ξ−1fθ(y)Σ

ξ−1
j=0w

(j)
ξ [hM(Fθ(y))]

j, (15)
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By making use of Eq.(13) and (15), we obtain

fY ?
N
(y|θ) ∝

[F θ(y)]
γ?

ξ−1fθ(y)Σ
ξ−1
j=0ω

(j)
ξ [F θ(y)]

j(M+1), M 6= −1

[F θ(y)]
K−1fθ(y)[ln(F θ(y))]

ξ−1, M = −1.
(16)

By substituting Eqn.(5),(6) and (7) in Eq.(16), we obtain.

fY ?
N (y|θ) ∝


α
τ
ηy[(1− 2−α)−1εy]

γ?
ξ ×

∑ξ−1
j=0 ω

(j)
ξ [(1− 2−α)−1εy]

j(M+1), M 6= −1

α
τ
ηy[(1− 2−α)−1εy]

K

×[ln[(1− 2−α)−1εy]]
ξ−1, M = −1.

(17)

where γ?
ξ = K + (N − ξ)(M + 1) and ω

(j)
ξ = (−1)j

(
ξ−1

j

)
.

2.2 The case of even N

It can be shown when N is even, that the PDF of the median Y ?
N for a

given θ, is given by

fY ?
N
(y|θ) ∝


∑ξ

j=0 ωj(ξ)ψj(y | θ), M 6= −1,

$(y | θ), M = −1,
(18)

where

ψj(y|θ) =

∫ y

0

[F θ(z)]
j(M+1)+M [1− Fθ(2y − z)]γ

?
ξ+1−1

× fθ(2y − z)fθ(Z)dz, M 6= −1,

$(y|θ) =

∫ y

0

Hθ(z)Hθ(2y − z)[S(z)]ξ−1

× [1− Fθ(2y − z)]Kdz, M = −1.


. (19)

By substituting Eqn.(4),(5) and (6) in Eq.(19), we obtain

ψj(y | θ) =

∫ y

0

α2

τ 2
[(1− 2−α)−1εz]

(M+1)(j+1)

× [(1− 2−α)−1ε2y−z]
γ?

ξ+1ηzη2y−zdz, M 6= −1,

$(y | θ) =

∫ y

0

α2

τ 2
[(1− 2−α)−1ε2y−z]

K

× [ln[(1− 2−α)−1εz(α, τ)]]
ξ−1ηzη2y−zdz, M = −1.


. (20)
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Based on the GOS Xs;n,m,k, Xs+1;n,m,k, . . . , Xr;n,m,k, for 0 ≤ s ≤ · · · ≤ r ≤
n, the likelihood function can be written, see Ahmad and Abu-Shal (2008), as

L(θ | x
¯
) ∝ [hm(Fθ(xs))− hm(0)]s−1[

r−1∏
i=s

[F θ(xi)]
mfθ(xi)][F θ(xr)]

γr−1fθ(xr)

=


[
∏r−1

i=s [F θ(xi)]
mfθ(xi)][F θ(xr)]

γr−1fθ(xr)

×
∑s−1

`=0 ω
(s)
` [F θ(xs)]

(s−`−1)(m+1), m 6= −1,

[ln(F θ(xs))]
s−1[F θ(xr)]

k−1

×fθ(xr)
∏r−1

i=s rθ(xi), m = −1,

(21)

where Θ = (α, τ) and x
¯

= (xs;n,m,k, xs+1;n,m,k, . . . , xr;n,m,k) = (xs, . . . , xr). Us-

ing Eqs.(4),(5),(6) and (7) in Eq.(21), we get

L(α, τ | x
¯
) ∝


(α

τ
)r−s+1

(1−2−α)γ1
[εr]

γr+1 [
∏r

i=s ε
m+1
i ηi]

∑s−1
`=0 ω

(s)
`

×(1− 2−α)`(m+1)ε
(m+1)(s−`−1)
s , m 6= −1,

(α
τ

)r−s+1

(1−2−α)k [ln εs

1−2−α ]s−1εk
r [

∏r
i=s ηi], m = −1.

(22)

Suppose that the conjugate prior density,which is measured by a function

π(α, τ) given by

π(α, τ) = π1(τ |α)π2(α). (23)

Suppose that π1(τ |α) is Gamma (c1, α),π2(α) is Gamma (c2, c3) with re-

spective densities

π1(τ | α) ∝ αc1τ c1−1 exp(−τα), α, τ > 0, (c1 > 0), (24)

π2(α) ∝ αc2−1 exp(−c3α), α > 0, (c2, c3 > 0). (25)

It then follows, by substituting (24) and (25) in (23), that the prior PDF

of α and τ is given by

π(α, τ) ∝ αc1+c2−1τ c1−1 exp[−α(τ + c3)], α, τ > 0, (c1, c2, c3 > 0), (26)

where c1, c2 and c3 are the prior parameters (or hyper-parameters).

Using the likelihood function (22) and the prior (26) the posterior proba-

bility density function of α and τ for given informative data, say, π?(α, τ | x
¯
)

is given by

π?(α, τ | x
¯
) ∝ L(α, τ ; x

¯
)π(α, τ). (27)
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Using the likelihood function (22) and the prior (26) the posterior pdf of α

and τ can be written using (27) as

π?(α, τ | x
¯
) ∝


α=τ℘[εr]

γr+1(1− 2−α)−γ1 exp[−α(τ + c3)][
∏r

i=s ε
m+1
i ηi]

×
∑s−1

`=0 ω
(s)
` (1− 2−α)`(m+1)ε

(m+1)(s−`−1)
s , m 6= −1

α=τ℘(1− 2−α)−k exp[−α(τ + c3)][ln
εs

1−2−α ]s−1

×εk
r [

∏r
i=s ηi], m = −1,

(28)

where = = c1 + c2 + r − s and ℘ = c1 − r + s− 2.

3 Bayesian prediction

3.1 The case of odd future sample size

By making use of Eqn.(28) and (17), yields the Bayes predictive density

function of the future median Y ?
N , N = 2ξ − 1, ξ = 1, 2, 3, ..., N , given the

(r − s+ 1) gos’s, denoted by hY
?
N(y|θ) as

hY ?
N
(y | x

¯
) =

∫
Θ

fY ?
N
(y|θ)π?(θ | x

¯
)dθ, y > xr. (29)

By making use of Eqs.(28) and (17)in (29), we obtain

fY ?
N
(y|θ)π?(θ | x

¯
) ∝



α=+1τ℘−1εγr+1
r ηy exp[−α(τ + c3)][Π

r
i=sε

m+1
i ηi][(1− 2−α)−1εy]

γξ?

×
∑ξ−1

j=0

∑s−1
`=0 ζ

(ξ,s)
`,j (1− 2−α)−γ`+1[(1− 2−α)−1εy]

j(M+1)

×ε(m+1)(s−`−1)
s , m 6= −1,M 6= −1,

α=+1τ℘−1ηy(1− 2−α)−k exp[−α(τ + c3)][(1− 2−α)−1εy]
K

×[ln εs

(1−2−α)
]s−1εk

r [Π
r
i=sηi][ln[(1− 2−α)−1εy]]

ξ−1, m = −1,M = −1,

(30)

where

ζ
(ξ,s)
`,j = (−1)`+j

(
s− 1

`

)(
ξ − 1

j

)
. (31)

To obtain (1− τ)100 Bayesian prediction interval BPI for a future general-

ized order statistic Y ?
N , say (L,U), we solve simultaneously the following two

nonlinear equations, numerically,

P [Y ?
N > L|x

¯
] =

∫ ∞

L

hY ?
N
(y|θ)dy = 1− τ

2
, (32)



Tahani A. Abushal 69

P [Y ?
N > U |x

¯
] =

∫ ∞

U

hY ?
N
(y | x

¯
)dy =

τ

2
. (33)

Equation (32) and (33), can be solved by using Newton-Raphson iteration form

as follows:

Lj+1 = Lj −

∫∞
Lj
hY ?

N
(y | x

¯
)dy − (1− τ

2
)

−hY ?
N
(Lj | x

¯
)

, (34)

Uj+1 = Uj −

∫∞
Uj
hY ?

N
(y | x

¯
)dy − τ

2

−hY ?
N
(Uj | x

¯
)

, (35)

where the initial values Lo,Uo can be taken equal to xr. The integrals in (34)

and (35) can be obtained using the routine QDAGI in IMSL.

3.1.1 Order statistics case

The Bayes prediction density function of the future median Y ?
N , N = 2ξ −

1, ξ = 1, 2, 3, ..., N , given the informative sample xs, . . . , xr, can be written

from (29) and (30), when m = 0, k = 1 ,M = 0 and K = 1 for as Y ?
N as

hY ?
N (y|θ) = A1

∫ ∞

0

∫ ∞

0

α=+1τ℘−1εn−r
r ηy exp−α(τ+c3)[Πr

i=sεiηi]

×[(1− 2−α)−1εy]
N−ξ+1

ξ−1∑
j=0

s−1∑
`=0

ζ
(ξ,s)
j,` (1− 2−α)−(n−`)

×[(1− 2−α)−1εy]
jεs−`−1

s dαdτ, (36)

where A1 is a normalizing constant. Using the iteration forms (34) and (35),

the routine QDAGI in IMSL to compute the double and triple integrals we

obtain the prediction bounds of Y ?
N .

3.1.2 Record values case

Making use of Eq.(30), yields the Bayes predictive density function of the

future median Y ?
N , N = 2ξ − 1, ξ = 1, 2, 3, ..., N when m = −1, k = 1,M = −1

and K = 1 for Y ?
N as

hY ?
N
(y | x

¯
) = A1

∫ ∞

0

∫ ∞

0

α=+1τ℘−1ηyεyεr(1− 2−α)−2 exp[−α(τ + c3)]

×[Πr
i=sηi][ln[(1− 2−α)−1εy]]

ξ−1[ln
εs

(1− 2−α)
]s−1dαdτ, (37)
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Using the iteration forms (34) and (35), the routine QDAGI in IMSL to

compute the double and triple integrals we obtain the prediction bounds of

Y ?
N .

3.2 The case of even future sample size

Substituting Eqs.(18) and (28) in the integrand of (29), with N = 2ξ, ξ =

1, 2, ..., N , we obtain

hY ?
N
(y | x

¯
) =

∫
Θ

fY ?
N
(y | x

¯
)π?(θ | x

¯
)dθ, y > 0, (38)

Where

fY ?
N
(y | x

¯
)π?(θ | x

¯
) ∝



∫ y

0
α=+2τ℘−2ηzη2y−z[εr]

γr+1(1− 2−α)−γ1 exp−α(τ+c3)

×[Πr
i=sε

m+1
i ηi][(1− 2−α)−1ε2y−z]

γ?
ξ
∑s−1

`=0

∑ξ
j=0 ζ

(ξ,s)
j,`

×[(1− 2−α)−1εz]
(M+1)(j+1)(1− 2−α)`(m+1)

ε
(m+1)(s−`−1)
s dz,m 6= −1,M 6= −1∫ y

0
α=+2τ℘−2ηzη2y−zε

k
r(1− 2−α)−k exp−α(τ+c3)

×[(1− 2−α)−1ε2y−z]
K [ln[(1− 2−α)−1εz]]

ξ−1

×[Πr
i=sηi][ln

εs

1−2−α ]s−1dz,m = −1,M = −1

(39)

3.2.1 Order statistics case

Making use of Eq.(39), the Bayes predictive density function of the future

median Y ?
N , N = 2ξ, ξ = 1, 2, 3, ..., N when m = 0, k = 1,M = 0, K = 1, for

Y ?
N is

hY ?
N
(y | x

¯
) = A1

∫ ∞

0

∫ ∞

0

α=+2τ℘−2ηzη2y−z(1− 2−α)−(n−1) exp−α(τ+c3)

×εn−r+2
r [Πr

i=sεiηi][(1− 2−α)−1ε2y−z]
N−ξ+1

×
s−1∑
`=0

ξ∑
j=0

ωj(ξ)ω`(s)× [(1− 2−α)−1εz]
j+1(1− 2−α)`εs−`−1

s dαdτ. (40)
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The Baysian prediction bounds of future order statistics in caseis case of

s = 1

hY ?
N
(y | x

¯
) = A1

∫ ∞

0

∫ ∞

0

[α=+2τ℘−2ηzη2y−zε
n−r+2
r (1− 2−α)−(n−1) exp−α(τ+c3)

×[Πr
i=sεiηi][(1− 2−α)−1ε2y−z]

N−ξ+1

ξ∑
j=0

ωj(ξ)[(1− 2−α)−1εZ ]j+1]dαdτ, (41)

Using the iteration forms (34) and (35), the routine QDAGI in IMSL to

compute the double and triple integrals we obtain the prediction bounds of

Y ?
N .

3.2.2 Record values case

Making use of Eq.(39), yields the Bayes predictive density function of the

future median Y ?
N , N = 2ξ− 1, ξ = 1, 2, 3, ..., N when m = −1, k = 1,M = −1,

K = 1 is

hY ?
N
(y | x

¯
) = A2

∫ ∞

0

∫ ∞

0

α=+2τ℘−2ηzη2y−zεr(1− 2−α)−1 exp−α(τ+c3)[Πr
i=sηi]

×[(1− 2−α)−1ε2y−z][ln[(1− 2−α)−1εz]]
ξ−1[ln

εs

1− 2−α
]s−1dαdτ, (42)

where

A−1
2 =

∫ y

0

∫ ∞

0

∫ ∞

0

α=+2τ℘−2ηzη2y−zεr(1− 2−α)−1 exp−α(τ+c3)[Πr
i=sηi]

×[(1− 2−α)−1ε2y−z][ln[(1− 2−α)−1εz]]
ξ−1[ln

εs

1− 2−α
]s−1dαdτdz. (43)

Using the iteration forms (34) and (35), the routine QDAGI in IMSL Li-

brary to compute the double and triple integrals we obtain the prediction

bounds of Y ?
N .

Remark 3.1. (1) It may be noted that if s = 1, we obtain a type II censored

sample technique and if we choose s = 1 and r = n, our results reduce to the

complete sample case.

(2) In some situtions one can not observe some initial values of any sample, so

he must be chosen the doubly type II censoring scheme.
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4 Numerical computations

In this section, we obtain the interval predictors of future median OOS

and ordinary upper record when the underlying population has TTIGL dis-

tribution according to the following steps.

4.1 OOS (m = 0, k = 1)

Based on a given doubly Type-II censored sample, We will consider here

the case which represents the OOS. The 95% Bayesian prediction bounds for

the future median, and their actual (simulated) prediction levels, are obtained

according to the following steps:

(1) A random sample of sizes (10, 30, 50) are generated from TTIGL distri-

bution. The sample is ordered and the upper 10%, 20%, 25%,30%,40% and

50% are censored where the future sample size N is fixed and set to 5, 8.

The computation are carried out for the hyper-parameters cases (c1, c2, c3)

are set to (0.7, 1.3, 0.85), the data generated from TTIGL (0, 0.977, 1.25) and

(0, 0.8, 2.239).

(2) Based on these doubly Type-II censored data, the 95% Bayesian prediction

bounds for the future (unobserved) are then calculated by solving Eqs.(34) and

(35) for the lower and upper bounds with τ = 95% for different values of N ,

when N = 2ξ − 1 is odd and N = 2ξ is even.

(3) For 10, 000 generated future ordered samples each of size N , from TTIGL

density, the simulated prediction levels of Y ?
N are then calculated. The predic-

tion are conducted on the basis of a doubly type II censored samples and type

II censored samples. The results are presented in Tables 1-2.
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Table 1: The lower limit (LL), the upper limit (UL), the length of the
BPI and the percentage coverage of the 95% BPI for the future median Y ∗

N

when N = 2ξ − 1 is odd or N = 2ξ from TTIGL(β = 0, α = 0.977, τ = 1.25).

s = 1 s = 2 s = 3
Case Y ?

N

(LL, UL) % (LL,UL) % (LL, UL) %
Length Length Length

n = 10 Y ?
3 (0.0115,1.5640) 91.7 (0.0059,1.7099) 88.5 (0.00342,1.8180) 85.7

r = 5 1.5525 1.7040 1.8146
Y ?

4 (0.01203,1.4843) 85.7 (0.0095,1.8716) 86.5 (0.01203,1.9940) 84.5
1.4843 1.8673 1.9820

n = 10 Y ?
3 (0.02450,1.4091) 91.8 (0.0115,1.5916) 92.8 (0.00368,1.7085) 90.7

r = 8 1.3846 1.5801 1.7048
Y ?

4 (0.01004,1.3105) 89.5 (0.01281,1.63011) 92.3 (0.0125,1.8145) 87.3
1.30054 1.6173 1.7420

n = 30 Y ?
5 (0.9042,1.9700) 88.7 (0.7163,1.8803) 87.4 (0.7542,1.9650) 89.3

r = 18 1.06583 1.1640 1.2108
Y ?

6 (0.08505,0.88645) 84.4 (0.0963,0.94552) 85.5 (0.08501,0.9885) 86.4
0.80340 0.84927 0.90342

n = 30 Y ?
5 (0.0421,0.9848) 92.7 (0.0050,1.0096) 92.5 (1.003,2.0093) 84.5

r = 22 0.9424 1.0046 1.0063
Y ?

6 (0.0904,0.8765) 89.5 (0.0800,0.8614) 88.2 (0.0904,0.9165) 87.2
0.7861 0.7814 0.8761

n = 30 Y ?
5 (0.0082,0.7944) 94.7 (0.0065,0.8570) 93.5 (1.0042,1.9199) 86.5

r = 27 0.8026 0.8505 0.9157
Y ?

6 (0.08014,0.76142) 95.5 (0.07404,0.8302) 97.2 (0.08605,0.8940) 97.2
0.6810 0.7562 0.8079

n = 50 Y ?
5 (0.0641,1.0930) 92.7 (0.0441,1.2135) 92.5 (0.0613,1.2187) 91.5

r = 25 1.0866 1.1694 1.2800
Y ?

6 (0.08001,0.86142) 84.5 (0.07114,0.9103) 88.2 (0.0850,0.9885) 84.2
0.7814 0.8392 0.9035

n = 50 Y ?
5 (0.0416,0.9289) 92.7 (1.0041,2.1350) 86.5 (1.0041,2.0408) 84.5

r=35 0.9705 1.1309 1.0367
Y ?

6 (0.06499,0.7723) 93.5 (0.0963,0.94552) 96.2 (0.07114,0.9103) 92.2
0.7073 0.8442 0.8392

n = 50 Y ?
5 (0.0910,0.8485) 95.7 (0.0631,1.0237) 96.5 (1.0043,2.0064) 87.5

r=40 0.7575 0.9606 1.0021
Y ?

6 (0.09625,0.7455) 92.5 (0.0800,0.7614) 92.2 (0.0672,0.7863) 84.2
0.6493 0.6814 0.7191
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Table 2: The lower limit (LL), the upper limit (UL), the length of the
BPI and the percentage coverage of the 95% BPI for the future median Y ∗

N

when N = 2ξ − 1 is odd or N = 2ξ from TTIGL (β = 0, α = 0.8, τ = 2.239).

s = 1 s = 2 s = 3
Case Y ?

N

(LL, UL) % (LL,UL) % (LL, UL) %
Length Length Length

n = 10 Y ?
3 (1.7371,5.0102) 90.7 (1.6711,5.8874) 91.5 (2.5870,6.5371) 84.11

r = 5 4.2730 4.2163 3.9501
Y ?

4 (1.4135,5.5819) 91.7 (1.5289,5.1217) 91.5 (2.0009,6.7622) 85.5
3.1684 3.5928 4.7613

n = 10 Y ?
3 (2.6371,5.6468) 88.3 (1.9007,5.0090) 85.8 (3.7371,6.4809) 96.7

r = 8 3.0097 3.1083 3.1438
Y ?

4 (2.10621,5.4787) 90.5 (2.5581,6.0617) 86.3 (3.0618,6.5305) 83.7
3.3725 3.5036 3.4732

n = 30 Y ?
5 (1.7986,5.3097) 86.7 (1.9800,6.0062) 89.4 (3.7986,8.6071) 87.7

r = 18 3.5111 4.0262 4.8085
Y ?

6 (1.01074,5.9458) 88.3 (0.01075,4.14680) 90.5 (3.0309,7.0049) 84.1
4.9351 4.1361 3.9740

n = 30 Y ?
5 (2.0905,6.0007) 87.2 (2.7987,6.3096) 92.5 (2.7301,7.1700) 81.5

r = 22 3.9102 3.5109 4.3714
Y ?

6 (1.6902,4.6411) 93.5 (1.0102,4.1037) 92.2 (2.0131,6.7056) 97.2
2.9509 3.0936 4.6925

n = 30 Y ?
5 (1.8960,4.0076) 92.7 (1.0780,3.5090) 92.5 (2.7180,5.2182) 92.5

r = 27 2.1116 2.4310 2.5002
Y ?

6 (1.0183,3.0450) 94.5 (1.1709,3.6460) 93.2 (2.0160,5.0060) 93.2
2.0267 2.4751 2.9900

n = 50 Y ?
5 (1.7006,5.0096) 96.7 (2.7987,6.4007) 96.5 (4.0310,10.3098) 96.5

r = 25 3.3090 3.6020 4.2788
Y ?

6 (2.01043,5.1247) 94.5 (2.02075,5.1068) 95.2 (5.01107,9.3580) 94.2
3.11414 3.08605 4.3469

n = 50 Y ?
5 (1.9003,3.9093) 96.7 (2.8087,6.0076) 96.5 (2.9007,6.2969) 96.5

r = 35 2.009 3.1989 3.3962
Y ?

6 (1.01178,3.2128) 94.5 (2.01074,5.1458) 96.2 (2.09572,6.9641) 97.2
2.2010 2.1351 4.8684

n = 50 Y ?
5 (1.7987,3.3096) 96.7 (1.1008,4.3607) 95.5 (2.8087,5.5666) 96.5

r = 40 1.5109 2.5620 2.7579
Y ?

6 (1.01074,3.1458) 96.5 (1.01142,3.1899) 97.2 (2.01075,4.1458) 83.2
2.1351 2.1785 2.4405
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4.2 OURV (m = −1, k = 1)

Our interest is in the median future recored, because generating of record

sample takes a relatively longer time than the OOS, we use n = 10, 15 from

TTIGL (α = 0.8, τ = 2.239) distribution and apply 20% and 50% censoring.

The future sample size N is fixed. The vector of hyperparameters (c1, c2, c3) are

same as in OOS example (0.7, 1.3, 0.85). Based on these doubly Type-II cen-

sored data, the 95% Bayesian prediction bounds for the future (unobserved)

are then calculated by solving Eqs.(3.6) and (3.7) for the lower and upper

bounds.

For 100, 000 generated future recored samples each of size N = 4, 5, from

TTIGL density, the percentage coverage for the simulated prediction levels of

Y ?
N are then calculated. The results are presented in Table 3.

Table 3: The lower limit (LL), the upper limit (UL), the length of BPI
and the percentage coverage of the 95% BPI for the future median Y ∗

N of
ordinary upper record values when N = 2ξ− 1 is odd or N = 2ξ from TTIGL
(β = 0, α = 0.8, τ = 2.239).

s = 1 s = 2
Case Y ?

N

(LL, UL) % (LL, UL) %
Length Length

n = 10 Y ?
3 (3.6035,7.5723) 88.7 (3.1134,7.1229) 89.1

r = 5 3.9688 4.0095
Y ?

2 (2.914889,7.09231) 92.5 (2.15007,6.4831) 90.4
4.1774 4.3330

n = 10 Y ?
3 (2.9617,6.7875) 93.6 (2.4493,6.1373) 89.7

r=8 3.8258 3.6880
Y ?

2 (3.9838,7.6229) 93.1 (3.1440,6.6493) 89.4
3.6391 3.5053

n = 15 Y ?
3 (1.2967,4.2712) 84.7 (2.2593,5.4408) 92.5

r = 7 2.9745 3.1815
Y ?

2 (1.3983,4.5923) 85.6 (2.8332,5.1774) 92.4
3.1940 3.3442

n = 15 Y ?
3 (2.1489,4.8712) 92.6 (2.6580,5.6841) 92.7

r=12 2.7223 3.0261
Y ?

2 (3.2004,5.3824) 94.1 (2.9058,5.7516) 93.5
2.1820 2.8458
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4.3 Concluding remarks

Based on the numerical results in Tables (1-3), it may be observed that:

(1) The generalized results obtained for the prediction of GOS enable us to

specialize to any of the other cases which are included in the GOS by appro-

priate choice of m and k.

(2) As τ increases the lengths of the intervals increase.

(3) Whether n is odd or even, shorter predictive intervals BPI and its per-

centage coverage could be obtained by increasing r, since more information is

introduced to the informative sample.

(4) from the tables we realize that for fixed value of n the percentage coverage

probability improve by using a large number of observed values.

IMSL Reference manual, institute of mathematical statistics library, IMSL,

Inc; Houston, TX, 1984.
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