Harmonic multivalent meromorphic functions defined by an integral operator

Amit Kumar Yadav ${ }^{1}$

Abstract

The object of this article is to study a class $M_{H}(p)$ of harmonic multivalent meromorphic functions of the form $f(z)=h(z)+\overline{g(z)}, 0<$ $|z|<1$, where h and g are meromorphic functions. An integral operator is considered and is used to define a subclass $M_{H}(p, \alpha, m, c)$ of $M_{H}(p)$. Some properties of $M_{H}(p)$ are studied with the properties like coefficient condition, bounds, extreme points, convolution condition and convex combination for functions belongs to $M_{H}(p, \alpha, m, c)$ class.

Mathematics Subject Classification: 30C45, 30C50, 30C55
Keywords: Meromorphic Function, Starlike functions, Integral Operator

1 Introduction and Prelimnaries

A function $f=u+i v$, which is continuos complex-valued harmonic in a domain $\mathrm{D} \subset \mathbb{C}$, if both u and v are real harmonic in D . Cluine and Sheil-

[^0]small [3] investigated the family of all complex valued harmonic mappings f defined on the open unit disk U , which admits the representation $f(z)=h(z)+$ $\overline{g(z)}$ where h and g are analytic univalent in U. Hengartner and Schober [4] considered the class of functions which are harmonic, meromorphic, orientation preserving and univalent in $\widetilde{\mathrm{U}}=\{z:|z|>1\}$ so that $f(\infty)=\infty$. Such functions admit the representation
\[

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}+A \log |z| \tag{1}
\end{equation*}
$$

\]

where

$$
h(z)=\alpha z+\sum_{n=1}^{\infty} a_{n} z^{-n}, \quad g(z)=\beta z+\sum_{n=1}^{\infty} b_{n} z^{-n}
$$

are analytic in $\widetilde{\mathrm{U}}=\{z=|z|>1\}, \alpha, \beta, A \in \mathbb{C}$ with $0 \leq|\beta| \leq|\alpha|$ and $w(z)=$ $\overline{f_{\bar{z}}} / f_{z}$ is analytic with $|w(z)|<1$ for $z \in \widetilde{\mathrm{U}} . \sum_{H}^{\prime}$ denotes a class of functions of the form (1) with $\alpha=1, \beta=0$. The class \sum_{H}^{\prime} has been studied in various research papers such as [5], [6] and [7].

Theorem 1.1. [4] If $f \in \sum_{H}^{\prime}$, then the diameter D_{f} of $\mathbb{C} \backslash f(U)$, satisfies

$$
D_{f} \geq 2\left|1+b_{1}\right|
$$

This estimate is sharp for

$$
f(z)=z+b_{1} / \bar{z}+A \log |z|
$$

whenever $\left|b_{1}\right|<1$ and $|A| \leq\left(1-\left|b_{1}\right|^{2}\right) /\left|1+b_{1}\right|, \quad\left|b_{1}\right|=1$ and $A=0$, or $b_{1}=-1$ and $|A| \leq 2$.

A function is said to be meromorphic if poles are its only singularities in the complex plane \mathbb{C}.

Let $M_{p}\left(p \in \mathbb{N}_{0}=\{1,2, \ldots\}\right)$ be a class of multivalent meromorphic functions of the form:

$$
\begin{equation*}
h(z)=\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty} a_{n+p-1} z^{n+p-1}, a_{-p} \geq 0, a_{n+p-1} \in \mathbb{C}, z \in \mathrm{U}^{*}=\mathrm{U} \backslash\{0\} . \tag{2}
\end{equation*}
$$

Definition 1.2. A Bernardi type integral operator $I_{p, c}^{m}(m \geq 0, c>p)$ for meromorphic multivalent function $h \in M_{p}$ is defined as :

$$
\begin{aligned}
I_{p, c}^{0} h(z) & =h(z) \\
I_{p, c}^{1} h(z) & =\frac{c-p+1}{z^{c+1}} \int_{0}^{z} t^{c} I_{p, c}^{0} h(t) d t \\
I_{p, c}^{m} h(z) & =\frac{c-p+1}{z^{c+1}} \int_{0}^{z} t^{c} I_{p, c}^{m-1} h(t) d t, m \geq 1
\end{aligned}
$$

The Series expansion of $I_{p, c}^{m} h(z)$ for $h(z)$ of the form (2) is given by

$$
\begin{equation*}
I_{p, c}^{m} h(z)=\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty} \theta^{m}(n) a_{n+p-1} z^{n+p-1}(c>p, m \geq 0) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta^{m}(n)=\left(\frac{c-p+1}{n+p+c}\right)^{m} \tag{4}
\end{equation*}
$$

Note that $0<\theta^{m}(n)<\theta^{m}(1)=\left(\frac{c-p+1}{1+p+c}\right)^{m}$.
For fixed integer $p \geq 1$, denote by $M_{H}(p)$, a family of harmonic multivalent meromorphic functions of the form

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}, z \in \mathrm{U}^{*} \tag{5}
\end{equation*}
$$

where $h \in M_{p}$ with $a_{-p}>0$ of the form (2) and $g \in M_{p}$ of the form

$$
\begin{equation*}
g(z)=\sum_{n=1}^{\infty} b_{n+p-1} z^{n+p-1}, b_{n+p-1} \in \mathbb{C}, z \in \mathrm{U} . \tag{6}
\end{equation*}
$$

In the expression (5), h is called a meromorphic part and g co-meromorphic part of f. The class $M_{H}(p)$ with its subclass has been studied in [1] and [8] for $a_{-p}=1$. A quite similar to the above mentioned integral operator was used for harmonic analytic functions in [2].

In terms of the operator defined in Defininition 1.2, an operator $f \in M_{H}(p)$ is defined as follows:

Definition 1.3. Let $f=h+\bar{g}$ be of the form (5), the integral operator $I_{p, c}^{m} f(z)$ is defined as

$$
\begin{equation*}
I_{p, c}^{m} f(z)=I_{p, c}^{m} h(z)+(-1)^{m} \overline{I_{p, c}^{m} g(z)}, z \in U^{*} \tag{7}
\end{equation*}
$$

the series expansions for $I_{p, c}^{m} h(z)$ is given by (3) with $a_{-p}>0$ and for $I_{p, c}^{m} g(z)$ with $g(z)$ of the form (6) is given as:

$$
\begin{equation*}
I_{p, c}^{m} g(z)=\sum_{n=1}^{\infty} \theta^{m}(n) b_{n+p-1} z^{n+p-1}(c>p, m \geq 0) \tag{8}
\end{equation*}
$$

Involving operator $I_{p, c}^{m}$ define by (7), a class $M_{H}(p, \alpha, m, c)$ of functions $f \in M_{H}(p)$ is defined as follows:

Definition 1.4. A function $f \in M_{H}(p)$ is said to be in $M_{H}(p, \alpha, m, c)$ if and only if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I_{p, c}^{m} f(z)}{I_{p, c}^{m+1} f(z)}\right\}>\alpha, z \in U^{*}, 0 \leq \alpha<1, c>p, m \in \mathbb{N} . \tag{9}
\end{equation*}
$$

Let $M_{\bar{H}}(p, \alpha, m, c)$ be a subclass of $M_{H}(p, \alpha, m, c)$, consists of harmonic multivalent meromorphic functions $f_{m}=h_{m}+\overline{g_{m}}$, where h_{m} and g_{m} are of the form

$$
\begin{align*}
& h_{m}(z)=\frac{a_{-p}}{z^{p}}-\sum_{n=1}^{\infty}\left|a_{n+p-1}\right| z^{n+p-1}, \quad a_{-p}>0 \\
& \quad \text { and } \tag{10}\\
& g_{m}(z)=(-1)^{m+1} \sum_{n=1}^{\infty}\left|b_{n+p-1}\right| z^{n+p-1} .
\end{align*}
$$

2 Some results for the class $M_{H}(p)$

In this section, some results for $M_{H}(p)$ class are derived.
Theorem 2.1. Let $f \in M_{H}(p)$ be of the form (5), then the diameter D_{f} of $\operatorname{clf}\left(U^{*}\right)$ satisfies

$$
D_{f} \geq 2\left|a_{-p}\right|
$$

This estimate is sharp for $f(z)=a_{-p} z^{-p}$.

Proof. Let $D_{f}(r)$ denotes the diameter of $\operatorname{clf}\left(\mathrm{U}_{r}^{*}\right)(r)$, where $\mathrm{U}_{r}^{*}(r)=\{z: 0<|z|<r, 0<r<1\}$ and

$$
D_{f}^{*}(r):=\max _{|z|=r}|f(z)-f(-z)| .
$$

Since $D_{f}^{*}(r) \geq D_{f}(r)$, it follows that

$$
\begin{aligned}
{\left[D_{f}^{*}(r)\right]^{2} } & \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)-f\left(-r e^{i \theta}\right)\right|^{2} d \theta \\
& =4\left[\frac{\left|a_{-p}\right|^{2}}{r^{2 p}}+\sum_{n=1}^{\infty}\left(\left|a_{2 n+p-2}\right|^{2}+\left|b_{2 n+p-2}\right|^{2}\right) r^{2(2 n+p-2)}\right], p \text { is odd } \\
& =4\left[\frac{\left|a_{-p}\right|^{2}}{r^{2 p}}+\sum_{n=1}^{\infty}\left(\left|a_{2 n+p-1}\right|^{2}+\left|b_{2 n+p-1}\right|^{2}\right) r^{2(2 n+p-1)}\right], p \text { is even } \\
& \geq 4 \frac{\left|a_{-p}\right|^{2}}{r^{2 p}}
\end{aligned}
$$

noted that as $r \longrightarrow 1, D_{f}(r)$ decreases to D_{f}, which concludes the result.

Remark 2.2. [4]Taking $p=1, a_{-p}=1$ and $w(z):=f(1 / z)$ in Theorem 2.1, same result as Theorem 1.1 has been obtained for $w(z)$, which is of the form (1) with $A=0$.

Theorem 2.3. If $f \in M_{H}(p)$ be of the form (5), then

$$
\sum_{n=1}^{\infty}(n+p-1)\left(\left|a_{n+p-1}\right|^{2}-\left|b_{n+p-1}\right|^{2}\right) \geq p\left|a_{-p}\right|^{2}
$$

Equality occurs if and only if $C \backslash f\left(U^{*}\right)$ has zero area.
Proof. The area of the ommited set is

$$
\begin{aligned}
\lim _{r \rightarrow 1} \frac{1}{2 i} \int_{|z|=r} \bar{f} d f & =\lim _{r \rightarrow 1}\left[\frac{1}{2 i} \int_{|z|=r} \bar{h} h^{\prime} d z+\frac{1}{2 i} \int_{|z|=r} g \overline{g^{\prime}} d \bar{z}\right] \\
& =\pi\left[-p\left|a_{-p}\right|^{2}+\sum_{n=1}^{\infty}(n+p-1)\left(\left|a_{n+p-1}\right|^{2}-\left|b_{n+p-1}\right|^{2}\right)\right] \\
& \geq 0
\end{aligned}
$$

Remark 2.4. [4]Taking $p=1, a_{-p}=1$ and $w(z):=f(1 / z)$ in Theorem 2.3, then for $w \in \sum_{H}^{\prime}$, with $A=0$, it follows that

$$
\sum_{n=1}^{\infty} n\left(\left|a_{n}\right|^{2}-\left|b_{n}\right|^{2}\right) \leq 1+2 \Re b_{1}
$$

3 Coefficient Conditions

In this section, sufficient coefficient condition for a functiom $f \in M_{H}(p)$ to be in $M_{H}(p, \alpha, m, c)$ class is established and then it is shown that this coefficient condition is necessary for its subclass $M_{\bar{H}}(p, \alpha, m, c)$.

Theorem 3.1. Let $f(z)=h(z)+\overline{g(z)}$ be the form (5) and $\theta^{m}(n)$ is given by (4) if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta^{m}(n)\left[\left(1-\alpha \theta^{1}(n)\right)\left|a_{n+p-1}\right|+\left(1+\alpha \theta^{1}(n)\right)\left|b_{n+p-1}\right|\right] \leq(1-\alpha) a_{-p} \tag{11}
\end{equation*}
$$

holds for $0 \leq \alpha<1$ and $m \in \mathbb{N}$, then $f(z)$ is harmonic in U^{*} and $f \in$ $M_{H}(p, \alpha, m, c)$.

Proof. Let the function $f(z)=h(z)+\overline{g(z)}$ be the form (5) satisfying (11). In order to show $f \in M_{H}(p, \alpha, m, c)$, it suffices to show that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I_{p, c}^{m} f(z)}{I_{p, c}^{m+1} f(z)}\right\}>\alpha \tag{12}
\end{equation*}
$$

or,

$$
\operatorname{Re}\left\{\frac{I_{p, c}^{m} h(z)+(-1)^{m} \overline{I_{p, c}^{m} g(z)}}{\overline{I_{p, c}^{m+1} h(z)+(-1)^{m+1}} \overline{I_{p, c}^{m+1} g(z)}}\right\}>\alpha
$$

where $z=r e^{i \theta}, 0<r \leq 1,0 \leq \theta \leq 2 \pi$ and $0 \leq \alpha<1$.
Let

$$
\begin{equation*}
A(z):=I_{p, c}^{m} h(z)+(-1)^{m} \overline{I_{p, c}^{m} g(z)} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
B(z):=I_{p, c}^{m+1} h(z)+(-1)^{m+1} \overline{I_{p, c}^{m+1} g(z)} . \tag{14}
\end{equation*}
$$

It is observed that (12) holds if

$$
\begin{equation*}
|A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \geq 0 \tag{15}
\end{equation*}
$$

From (13) and (14), it follows that

$$
\begin{aligned}
& |A(z)+(1-\alpha) B(z)| \\
& \begin{array}{l}
=\left|I_{p, c}^{m} h(z)+(-1)^{m} \overline{I_{p, c}^{m} g(z)}+(1-\alpha)\left(I_{p, c}^{m+1} h(z)+(-1)^{m+1} \overline{I_{p, c}^{m+1} g(z)}\right)\right| \\
= \\
\quad \left\lvert\,(2-\alpha) \frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty}\left[\theta^{m}(n)+(1-\alpha) \theta^{m+1}(n)\right] a_{n+p-1} z^{n+p-1}\right. \\
\\
\quad+(-1)^{m} \sum_{n=1}^{\infty}\left[\theta^{m}(n)-(1-\alpha) \theta^{m+1}(n)\right] \overline{b_{n+p-1} z^{n+p-1}} \mid \\
\geq \frac{(2-\alpha) a_{-p}}{|z|^{p}}-\sum_{n=1}^{\infty} \theta^{m}(n)\left[1+(1-\alpha) \theta^{1}(n)\right]\left|a_{n+p-1}\right||z|^{n+p-1} \\
\quad-\sum_{n=1}^{\infty} \theta^{m}(n)\left[1-(1-\alpha) \theta^{1}(n)\right]\left|b_{n+p-1}\right||z|^{n+p-1}
\end{array}
\end{aligned}
$$

and

$$
\begin{aligned}
& |A(z)-(1+\alpha) B(z)| \\
& \begin{aligned}
&=\left|I_{p, c}^{m} h(z)+(-1)^{m} \overline{I_{p, c}^{m} g(z)}-(1+\alpha)\left(I_{p, c}^{m+1} h(z)+(-1)^{m+1} \overline{I_{p, c}^{m+1} g(z)}\right)\right| \\
&= \left\lvert\,(-\alpha) \frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty}\left[\theta^{m}(n)-(1+\alpha) \theta^{m+1}(n)\right] a_{n+p-1} z^{n+p-1}\right. \\
& \quad+(-1)^{m} \sum_{n=1}^{\infty}\left[\theta^{m}(n)+(1+\alpha) \theta^{m+1}(n)\right] \overline{b_{n+p-1} z^{n+p-1}} \mid \\
&= \left\lvert\, \alpha \frac{a_{-p}}{z^{p}}-\sum_{n=1}^{\infty}\left[\theta^{m}(n)-(1+\alpha) \theta^{m+1}(n)\right] a_{n+p-1} z^{n+p-1}\right. \\
& \quad-(-1)^{m} \sum_{n=1}^{\infty}\left[\theta^{m}(n)+(1+\alpha) \theta^{m+1}(n)\right] \overline{b_{n+p-1} z^{n+p-1}} \mid \\
& \leq \alpha \frac{a_{-p}}{|z|^{p}}+\sum_{n=1}^{\infty} \theta^{m}(n)\left[1-(1+\alpha) \theta^{1}(n)\right]\left|a_{n+p-1}\right||z|^{n+p-1} \\
& \quad+\sum_{n=1}^{\infty} \theta^{m}(n)\left[1+(1+\alpha) \theta^{1}(n)\right]\left|b_{n+p-1}\right||z|^{n+p-1} .
\end{aligned}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& |A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \\
& \begin{array}{l}
\geq \frac{2(1-\alpha) a_{-p}}{|z|^{p}}-2 \sum_{n=1}^{\infty} \theta^{m}(n)\left[1-\alpha \theta^{1}(n)\right]\left|a_{n+p-1}\right||z|^{n+p-1} \\
\\
\quad-2 \sum_{n=1}^{\infty} \theta^{m}(n)\left[1+\alpha \theta^{1}(n)\right]\left|b_{n+p-1}\right||z|^{n+p-1} \\
\geq \\
\hline|z|^{p}\left\{a_{-p}(1-\alpha)-\sum_{n=1}^{\infty} \theta^{m}(n)\left[1-\alpha \theta^{1}(n)\right]\left|a_{n+p-1}\right||z|^{n-1}\right. \\
\left.\quad-\sum_{n=1}^{\infty} \theta^{m}(n)\left[1+\alpha \theta^{1}(n)\right]\left|b_{n+p-1}\right||z|^{n-1}\right\} \\
\geq \\
\geq
\end{array} \\
& \geq\left\{(1-\alpha) a_{-p}-\sum_{n=1}^{\infty} \theta^{m}(n)\left[\left(1-\alpha \theta^{1}(n)\right)\left|a_{n+p-1}\right|+\left(1+\alpha \theta^{1}(n)\right)\left|b_{n+p-1}\right|\right]\right\}
\end{aligned}
$$

if (11) holds. This proves the Theorem.

Theorem 3.2. Let $f_{m}=h_{m}+\overline{g_{m}}$ where h_{m} and g_{m} are of the form (10) then $f_{m} \in M_{\bar{H}}(p, \alpha, m, c)$ under the same parametric conditions taken in Theorem 3.1, if and only if the inequality (11) holds.

Proof. Since $M_{\bar{H}}(p, \alpha, m, c) \subset M_{H}(p, \alpha, m, c)$, if part is proved in Theorem 3.1. It only needs to prove the "only if" part of the Theorem. For this, it suffices to show that $f_{m} \notin M_{\bar{H}}(p, \alpha, m, c)$ if the condition (11) does not hold. If $f_{m} \in M_{\bar{H}}(p, \alpha, m, c)$, then writing corresponding series expansions in (9), it follows that $\operatorname{Re}\left\{\frac{\xi(z)}{\eta(z)}\right\} \geq 0$ for all values of z in U^{*} where

$$
\begin{aligned}
& \xi(z)=(1-\alpha) \frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty} \theta^{m}(n)\left[1-\alpha \theta^{1}(n)\right]\left|a_{n+p-1}\right| z^{n+p-1} \\
& \quad-\sum_{n=1}^{\infty} \theta^{m}(n)\left[1+\alpha \theta^{1}(n)\right]\left|b_{n+p-1}\right| z^{n+p-1}
\end{aligned}
$$

and

$$
\eta(z)=\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty} \theta^{m+1}(n)\left|a_{n+p-1}\right| z^{n+p-1}-\sum_{n=1}^{\infty} \theta^{m+1}(n)\left|b_{n+p-1}\right| z^{n+p-1} .
$$

Since

$$
\left|\frac{\xi(z)}{\eta(z)}\right| \geq \operatorname{Re}\left\{\frac{\xi(z)}{\eta(z)}\right\} \geq 0
$$

hence the condition $\operatorname{Re}\left\{\frac{\xi(z)}{\eta(z)}\right\} \geq 0$ holds if

$$
\begin{equation*}
\frac{(1-\alpha) a_{-p}-\sum_{n=1}^{\infty} \theta^{m}(n)\left[\left(1-\alpha \theta^{1}(n)\right)\left|a_{n+p-1}\right|+\left(1+\alpha \theta^{1}(n)\right)\left|b_{n+p-1}\right|\right] r^{n+2 p-1}}{a_{-p}+\sum_{n=1}^{\infty} \theta^{m+1}(n)\left|a_{n+p-1}\right| r^{n+2 p-1}+\sum_{n=1}^{\infty} \theta^{m+1}(n)\left|b_{n+p-1}\right| r^{n+2 p-1}} \geq 0 \tag{16}
\end{equation*}
$$

Now if the condition (11) does not holds then the numerator of above equation is non-positive for r sufficiently close to 1 , which contradicts that $f_{m} \in$ $M_{\bar{H}}(p, \alpha, m, c)$ and this proves the required result.

4 Bounds and Extreme Points

In this section, bounds for functions belonging to the class $M_{\bar{H}}(p, \alpha, m, c)$ are obtained and also provide extreme points for the same class.

Theorem 4.1. If $f_{m}=h_{m}+\overline{g_{m}} \in M_{\bar{H}}(p, \alpha, m, c)$ for $0 \leq \alpha<1,0<|z|=$ $r<1$, and $\theta^{m}(n)$ is given by (4), under the same parametric conditions taken in Theorem 3.1 then

$$
\frac{a_{-p}}{r^{p}}-r^{p} \frac{(1-\alpha) a_{-p}}{\left[1-\alpha \theta^{1}(1)\right]} \leq\left|I_{p, c}^{m} f_{k}(z)\right| \leq \frac{a_{-p}}{r^{p}}+r^{p} \frac{(1-\alpha) a_{-p}}{\left[1-\alpha \theta^{1}(1)\right]}
$$

Proof. Let $f_{m}=h_{m}+\overline{g_{m}} \in M_{\bar{H}}(p, \alpha, m, c)$. Taking the absolute value of $I_{p, c}^{m} f_{m}$ from (7), it follows that

$$
\begin{aligned}
\left|I_{p, c}^{m} f_{m}(z)\right| & =\left|\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty} \theta^{m}(n)\right| a_{n+p-1}\left|z^{n+p-1}+(-1)^{2 m+1} \sum_{n=1}^{\infty} \theta^{m}(n)\right| b_{n+p-1}\left|z^{n+p-1}\right| \\
& =\left|\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty} \theta^{m}(n)\left(\left|a_{n+p-1}\right|-\left|b_{n+p-1}\right|\right) z^{n+p-1}\right|
\end{aligned}
$$

$$
\begin{aligned}
\left|I_{p, c}^{m} f_{m}(z)\right| & \leq \frac{a_{-p}}{r^{p}}+r^{p} \sum_{n=1}^{\infty} \frac{\left[\theta^{m}(n)-\alpha \theta^{m+1}(n)\right]}{\left[\theta^{m}(n)-\alpha \theta^{m+1}(n)\right]} \theta^{m}(n)\left(\left|a_{n+p-1}\right|+\left|b_{n+p-1}\right|\right) \\
& \leq \frac{a_{-p}}{r^{p}}+r^{p} \sum_{n=1}^{\infty} \frac{\left[\theta^{m}(n)-\alpha \theta^{m+1}(n)\right]}{\theta^{m}(n)\left[1-\alpha \theta^{1}(n)\right]} \theta^{m}(n)\left(\left|a_{n+p-1}\right|+\left|b_{n+p-1}\right|\right) \\
& \leq \frac{a_{-p}}{r^{p}}+\frac{r^{p}}{\left[1-\alpha \theta^{1}(1)\right]} \sum_{n=1}^{\infty}\left[\theta^{m}(n)-\alpha \theta^{m+1}(n)\right]\left(\left|a_{n+p-1}\right|+\left|b_{n+p-1}\right|\right) \\
& \leq \frac{a_{-p}}{r^{p}}+\frac{r^{p}}{\left[1-\alpha \theta^{1}(1)\right]}\left[\sum_{n=1}^{\infty} \theta^{m}(n)\left[\left(1-\alpha \theta^{1}(n)\right)\left|a_{n+p-1}\right|\right]\right. \\
& \leq \frac{a_{-p}}{r^{p}}+r^{p} \frac{(1-\alpha) a_{-p}}{\left[1-\alpha \theta^{1}(1)\right]}
\end{aligned}
$$

and

$$
\begin{aligned}
&\left|I_{p, c}^{m} f_{m}(z)\right|=\left|\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty} \theta^{m}(n)\right| a_{n+p-1}\left|z^{n+p-1}+(-1)^{2 m+1} \sum_{n=1}^{\infty} \theta^{m}(n)\right| b_{n+p-1}\left|z^{n+p-1}\right| \\
&=\left|\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty} \theta^{m}(n)\left(\left|a_{n+p-1}\right|-\left|b_{n+p-1}\right|\right) z^{n+p-1}\right| \\
&\left|I_{p, c}^{m} f_{m}(z)\right| \geq \frac{a_{-p}}{r^{p}}-r^{p} \sum_{n=1}^{\infty} \frac{\left[\theta^{m}(n)-\alpha \theta^{m+1}(n)\right]}{\left[\theta^{m}(n)-\alpha \theta^{m+1}(n)\right]} \theta^{m}(n)\left(\left|a_{n+p-1}\right|+\left|b_{n+p-1}\right|\right) \\
& \geq \frac{a_{-p}}{r^{p}}-r^{p} \sum_{n=1}^{\infty} \frac{\left[\theta^{m}(n)-\alpha \theta^{m+1}(n)\right]}{\theta^{m}(n)\left[1-\alpha \theta^{1}(n)\right]} \theta^{m}(n)\left(\left|a_{n+p-1}\right|+\left|b_{n+p-1}\right|\right) \\
& \geq \frac{a_{-p}}{r^{p}}-\frac{r^{p}}{\left[1-\alpha \theta^{1}(1)\right]} \sum_{n=1}^{\infty}\left[\theta^{m}(n)-\alpha \theta^{m+1}(n)\right]\left(\left|a_{n+p-1}\right|+\left|b_{n+p-1}\right|\right) \\
& \geq \frac{a_{-p}}{r^{p}}-\frac{r^{p}}{\left[1-\alpha \theta^{1}(1)\right]}\left[\sum_{n=1}^{\infty} \theta^{m}(n)\left[\left(1-\alpha \theta^{1}(n)\right)\left|a_{n+p-1}\right|\right]\right. \\
& \geq \frac{a_{-p}}{r^{p}}-r^{p} \frac{(1-\alpha) a_{-p}}{\left[1-\alpha \theta^{1}(1)\right]}
\end{aligned}
$$

This proves the required result.

Corollary 4.2. Let $f_{m}=h_{m}+\overline{g_{m}} \in M_{\bar{H}}(p, \alpha, m, c)$, for $z \in U^{*}$ and $\theta^{m}(n)$ is given by (4), under the same parametric conditions taken in Theorem 3.1 then

$$
\left\{w:|w|<a_{-p}-\frac{(1-\alpha) a_{-p}}{\left[1-\alpha \theta^{1}(1)\right]}\right\} \nsubseteq f\left(U^{*}\right)
$$

Theorem 4.3. Let $f_{m}=h_{m}+\overline{g_{m}}$, where h_{m} and g_{m} are of the form (10) then $f_{m} \in M_{\bar{H}}(p, \alpha, m, c)$ and $\theta^{m}(n)$ is given by (4), under the same parametric conditions taken in Theorem 3.1, if and only if f_{m} can be expressed as:

$$
\begin{equation*}
f_{m}(z)=\sum_{n=0}^{\infty}\left(x_{n+p-1} h_{m_{n+p-1}}(z)+y_{n+p-1} g_{m_{n+p-1}}(z)\right) \tag{17}
\end{equation*}
$$

where $z \in U^{*}$ and

$$
\begin{gather*}
h_{m_{p-1}}(z)=\frac{a_{-p}}{z^{p}}, \quad h_{m_{n+p-1}}(z)=\frac{a_{-p}}{z^{p}}+\frac{(1-\alpha) a_{-p}}{\theta^{m}(n)-\alpha \theta^{m+1}(n)} z^{n+p-1}, \tag{18}\\
g_{m_{p-1}}(z)=\frac{a_{-p}}{z^{p}}, \quad g_{m_{n+p-1}}(z)=\frac{a_{-p}}{z^{p}}+(-1)^{m+1} \frac{(1-\alpha) a_{-p}}{\theta^{m}(n)+\alpha \theta^{m+1}(n)} \overline{z^{n+p-1}} \tag{19}
\end{gather*}
$$

for $n=1,2,3, \ldots \ldots$, and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(x_{n+p-1}+y_{n+p-1}\right)=1, \quad x_{n+p-1}, y_{n+p-1} \geq 0 . \tag{20}
\end{equation*}
$$

Proof. Let

$$
\begin{aligned}
& f_{m}(z)= \sum_{n=0}^{\infty}\left(x_{n+p-1} h_{m_{n+p-1}}(z)+y_{n+p-1} g_{m_{n+p-1}}(z)\right) \\
&= x_{p-1} h_{m_{p-1}}+y_{p-1} g_{m_{p-1}}+\sum_{n=1}^{\infty} x_{n+p-1}\left(\frac{a_{-p}}{z^{p}}+\frac{(1-\alpha) a_{-p}}{\theta^{m}(n)-\alpha \theta^{m+1}(n)} z^{n+p-1}\right) \\
&+\sum_{n=1}^{\infty} y_{n+p-1}\left(\frac{a_{-p}}{z^{p}}+(-1)^{m+1} \frac{(1-\alpha) a_{-p}}{\theta^{m}(n)+\alpha \theta^{m+1}(n)} \overline{z^{n+p-1}}\right) \\
& f_{m}(z)=\sum_{n=0}^{\infty}\left(x_{n+p-1}+y_{n+p-1}\right) \frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty}\left\{\left(\frac{(1-\alpha) a_{-p}}{\theta^{m}(n)-\alpha \theta^{m+1}(n)} x_{n+p-1}\right)\right. \\
&\left.\quad+(-1)^{m+1} \frac{(1-\alpha) a_{-p}}{\theta^{m}(n)+\alpha \theta^{m+1}(n)} y_{n+p-1}\right\} z^{n+p-1} .
\end{aligned}
$$

Thus by Theorem 3.2, $f_{m} \in M_{\bar{H}}(p, \alpha, m, c)$, since,

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left\{\frac{\theta^{m}(n)-\alpha \theta^{m+1}(n)}{(1-\alpha) a_{-p}}\left(\frac{(1-\alpha) a_{-p}}{\theta^{m}(n)-\alpha \theta^{m+1}(n)} x_{n+p-1}\right)\right. \\
& \left.\quad-\frac{\theta^{m}(n)+\alpha \theta^{m+1}(n)}{(1-\alpha) a_{-p}}\left(\frac{(1-\alpha) a_{-p}}{\theta^{m}(n)+\alpha \theta^{m+1}(n)} y_{n+p-1}\right)\right\} \\
= & \sum_{n=1}^{\infty}\left(x_{n+p-1}+y_{n+p-1}\right)=\left(1-x_{p-1}-y_{p-1}\right) \leq 1 .
\end{aligned}
$$

Conversly, suppose that $f_{m} \in M_{\bar{H}}(p, \alpha, m, c)$, then (11) holds.
Setting

$$
\begin{aligned}
& x_{n+p-1}=\frac{\theta^{m}(n)-\alpha \theta^{m+1}(n)}{(1-\alpha) a_{-p}}\left|a_{n+p-1}\right| \\
& y_{n+p-1}=\frac{\theta^{m}(n)+\alpha \theta^{m+1}(n)}{(1-\alpha) a_{-p}}\left|b_{n+p-1}\right|
\end{aligned}
$$

which satisfy (20), thus

$$
\begin{aligned}
& f_{m}(z)=\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty}\left|a_{n+p-1}\right| z^{n+p-1}+(-1)^{m+1} \sum_{n=1}^{\infty}\left|b_{n+p-1}\right| z^{n+p-1} \\
& =\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty} \frac{(1-\alpha) a_{-p}}{\theta^{m}(n)+\alpha \theta^{m+1}(n)} x_{n+p-1} z^{n+p-1} \\
& +(-1)^{m+1} \sum_{n=1}^{\infty} \frac{(1-\alpha) a_{-p}}{\theta^{m}(n)+\alpha \theta^{m+1}(n)} y_{n+p-1} z^{n+p-1} \\
& =\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty}\left[h_{m_{n+p-1}}-\frac{a_{-p}}{z^{p}}\right] x_{n+p-1}+\sum_{n=1}^{\infty}\left[g_{m_{n+p-1}}-\frac{a_{-p}}{z^{p}}\right] y_{n+p-1} \\
& =\frac{a_{-p}}{z^{p}}\left[1-\sum_{n=1}^{\infty} x_{n+p-1}-\sum_{n=1}^{\infty} y_{n+p-1}\right]+\sum_{n=1}^{\infty} h_{m_{n+p-1}} x_{n+p-1}+g_{m_{n+p-1}} y_{n+p-1} \\
& =x_{p-1} h_{m_{p-1}}+y_{p-1} g_{m_{p-1}}+\sum_{n=1}^{\infty} h_{m_{n+p-1}} x_{n+p-1}+\sum_{n=1}^{\infty} g_{m_{n+p-1}} y_{n+p-1} \\
& =\sum_{n=1}^{\infty}\left(x_{n+p-1} h_{m_{n+p-1}}(z)+y_{n+p-1} g_{m_{n+p-1}}(z)\right)
\end{aligned}
$$

This proves the Theorem.

Remark 4.4. The extreme points for the class $M_{\bar{H}}(p, \alpha, m, c)$ are given by (18) and (19).

5 Convolution and Integral Convolution

In this section, convolution and integral convolution properties of the class $M_{\bar{H}}(p, \alpha, m, c)$ are established.

Let $f_{m}, F_{m} \in M_{\bar{H}}(p)$ be defined as follows:

$$
\begin{aligned}
& f_{m}(z)=\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty}\left|a_{n+p-1}\right| z^{n+p-1}+(-1)^{m+1} \sum_{n=1}^{\infty}\left|b_{n+p-1}\right| z^{n+p-1}, z \in \mathrm{U}^{*}, \\
& F_{m}(z)=\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty}\left|A_{n+p-1}\right| z^{n+p-1}+(-1)^{m+1} \sum_{n=1}^{\infty}\left|B_{n+p-1}\right| z^{n+p-1}, z \in \mathrm{U}^{*} .
\end{aligned}
$$

The convolution of f_{m} and F_{m} for $m \in \mathbb{N}, z \in \mathrm{U}^{*}$ is defined as:

$$
\begin{align*}
\left(f_{m} \star F_{m}\right)(z)= & f_{m}(z) \star F_{m}(z) \\
= & \frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty}\left|a_{n+p-1} A_{n+p-1}\right| z^{n+p-1}+ \tag{21}\\
& +(-1)^{m+1} \sum_{n=1}^{\infty}\left|b_{n+p-1} B_{n+p-1}\right| z^{n+p-1} .
\end{align*}
$$

The integral convolution of f_{m} and F_{m} for $m \in \mathbb{N}, z \in \mathrm{U}^{*}$ is defined as:

$$
\begin{align*}
\left(f_{m} \diamond F_{m}\right)(z)= & f_{m}(z) \diamond F_{m}(z) \\
= & \frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty} \frac{p\left|a_{n+p-1} A_{n+p-1}\right|}{n+p-1} z^{n+p-1} \tag{22}\\
& \quad+(-1)^{m+1} \sum_{n=1}^{\infty} \frac{p\left|b_{n+p-1} B_{n+p-1}\right|}{n+p-1} \bar{z}^{n+p-1} .
\end{align*}
$$

Theorem 5.1. For $0 \leq \alpha<1, m \in \mathbb{N}$. If $f_{m}, F_{m} \in M_{\bar{H}}(p, \alpha, m, c)$ and $\theta^{m}(n)$ is given by (4) then $\left(f_{m} \star F_{m}\right) \in M_{\bar{H}}(p, \alpha, m, c)$.

Proof. Since $F_{m} \in M_{\bar{H}}(p, \alpha, m, c)$, then by Theorem 3.2, $\left|A_{n+p-1}\right| \leq 1$ and $\left|B_{n+p-1}\right| \leq 1$, hence,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \theta^{m}(n)\left[\left\{\frac{1-\alpha \theta^{1}(n)}{(1-\alpha) a_{-p}}\right\}\left|A_{n+p-1} a_{n+p-1}\right|\right. \\
& \left.+\left\{\frac{1+\alpha \theta^{1}(n)}{(1-\alpha) a_{-p}}\right\}\left|B_{n+p-1} b_{n+p-1}\right|\right] \\
\leq & \sum_{n=1}^{\infty} \theta^{m}(n)\left[\left\{\frac{1-\alpha \theta^{1}(n)}{(1-\alpha) a_{-p}}\right\}\left|a_{n+p-1}\right|\right. \\
& \left.+\left\{\frac{1+\alpha \theta^{1}(n)}{(1-\alpha) a_{-p}}\right\}\left|b_{n+p-1}\right|\right]
\end{aligned}
$$

as $f_{m} \in M_{\bar{H}}(p, \alpha, m, c)$. Thus by the Theorem 3.2, $\left(f_{m} \star F_{m}\right) \in M_{\bar{H}}(p, \alpha, m, c)$.

Theorem 5.2. For $0 \leq \alpha<1, m \in \mathbb{N}$. If $f_{m}, F_{m} \in M_{\bar{H}}(p, \alpha, m, c)$ and $\theta^{m}(n)$ is given by (4) then $\left(f_{m} \diamond F_{m}\right) \in M_{\bar{H}}(p, \alpha, m, c)$.

Proof. Since $F_{m} \in M_{\bar{H}}(p, \alpha, m, c)$, then by Theorem 3.2, $\left|A_{n+p-1}\right| \leq 1$, $\left|B_{n+p-1}\right| \leq 1$ and $\frac{p}{n+p-1} \leq 1$ hence,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \theta^{m}(n)\left[\left\{\frac{1-\alpha \theta^{1}(n)}{\left.(1-\alpha) a_{-p}\right\}}\right\} \frac{p\left|a_{n+p-1} A_{n+p-1}\right|}{n+p-1}\right. \\
& \left.\quad+\left\{\frac{1+\alpha \theta^{1}(n)}{(1-\alpha) a_{-p}}\right\} \frac{p\left|b_{n+p-1} B_{n+p-1}\right|}{n+p-1}\right] \\
& \leq \sum_{n=1}^{\infty} \theta^{m}(n)\left[\left\{\frac{1-\alpha \theta^{1}(n)}{\left.(1-\alpha) a_{-p}\right\}}\left|a_{n+p-1}\right|\right.\right. \\
& \left.\quad+\left\{\frac{1+\alpha \theta^{1}(n)}{(1-\alpha) a_{-p}}\right\}\left|b_{n+p-1}\right|\right]
\end{aligned}
$$

as $f_{m} \in M_{\bar{H}}(p, \alpha, m, c)$. Thus by the Theorem 3.2, $\left(f_{m} \diamond F_{m}\right) \in M_{\bar{H}}(p, \alpha, m, c)$.

6 Convex Combination

In this section, it is proved that the class $M_{\bar{H}}(p, \alpha, m, c)$ is closed under convex linear combination of its members.

Theorem 6.1. Let the functions $f_{m_{j}}(z)$ defined as:

$$
\begin{equation*}
f_{m_{j}}(z)=\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty}\left|a_{n+p-1, j}\right| z^{n+p-1}+(-1)^{m+1} \sum_{n=1}^{\infty}\left|b_{n+p-1, j}\right| z^{n+p-1}, z \in \mathbb{U}^{*} . \tag{23}
\end{equation*}
$$

be in the class $M_{\bar{H}}(p, \alpha, m, c)$ for every $j=1,2,3 \ldots$, then the function

$$
\psi(z)=\sum_{j=1}^{\infty} c_{j} f_{m_{j}}(z)
$$

is also in the class $M_{\bar{H}}(p, \alpha, m, c)$, where $\sum_{j=1}^{\infty} c_{j}=1$ for $c_{j} \geq 0(j=1,2,3 \ldots)$.
Proof. From the definition
$\psi(z)=\frac{a_{-p}}{z^{p}}+\sum_{n=1}^{\infty}\left(\sum_{j=1}^{\infty} c_{j}\left|a_{n+p-1, j}\right|\right) z^{n+p-1}+(-1)^{m+1} \sum_{n=1}^{\infty}\left(\sum_{j=1}^{\infty} c_{j}\left|b_{n+p-1, j}\right|\right) z^{n+p-1}$.
Since $f_{m_{j}}(z) \in M_{\bar{H}}(p, \alpha, m, c)$ for every $j=1,2,3 \ldots$, then by Theorem 3.2 , it follows that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \theta^{m}(n)\left[\left\{\frac{1-\alpha \theta^{1}(n)}{(1-\alpha) a_{-p}}\right\}\left(\sum_{j=1}^{\infty} c_{j}\left|a_{n+p-1, j}\right|\right)\right. \\
& \left.\quad+\left\{\frac{1+\alpha \theta^{1}(n)}{(1-\alpha) a_{-p}}\right\}\left(\sum_{j=1}^{\infty} c_{j}\left|b_{n+p-1, j}\right|\right)\right] \\
& =\sum_{j=1}^{\infty} c_{j}\left(\sum_{n=1}^{\infty}\left\{\frac{1-\alpha \theta^{1}(n)}{(1-\alpha) a_{-p}}\right\}\left|a_{n+p-1, j}\right|\right. \\
& \left.\quad+\left\{\frac{1+\alpha \theta^{1}(n)}{(1-\alpha) a_{-p}}\right\}\left|b_{n+p-1, j}\right|\right) \\
& \leq \sum_{j=1}^{\infty} c_{j} .1 \leq 1 .
\end{aligned}
$$

Hence $\psi(z) \in M_{\bar{H}}(p, \alpha, m, c)$, which is the desired result.

References

[1] H. Bostanci and M. Öztürk, New Classes of Salagean type Meromorphic Harmonic Functions, Int. J. Math. Sc., 2(1), (2008), 52-57.
[2] L.I. Cotuirlua, Harmonic Multivalent Functions defined by Integral Operator, Studia Univ. "Babes-Bolyai", Mathematica, LIV(1), (March, 2009).
[3] J. Clunie and T. Sheil-Small, Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Ser. AI Math., 9, (1984), 3-25.
[4] W. Hengartner and G.Schober, Univalent Harmonic Functions, Trans. Amer. Math. Soc., 299(1), (1987), 1-31.
[5] J.M. Jahangiri and H. Silverman, Harmonic Meromorphic Univalent Functions with negative Coefficients, Bull. Korean Math. Soc., 36(4), (1999), 763-770.
[6] J.M. Jahangiri, Harmonic Meromorphic Starlike Functions, Bull. Korean Math. Soc., 37, (2001), 291-301.
[7] J.M. Jahangiri and O.P. Ahuja, Multivalent Harmonic Starlike Functions, Ann. Univ. Marie Curie-Sklodowska, Sect. A. LVI, (2001), 1-13.
[8] K.Al. Shaqsi and M. Darus, On Meromorphic Harmonic Functions with respect to k-Symmetric points , J. In. Ap., 2008, Art. 259205.

[^0]: ${ }^{1}$ Department of Information Technology Ibra College of Technology, PO Box : 327,
 Postal Code: 400, Alsharqiyah, Ibra, Sultanate of Oman, e-mail: amitkumar@ict.edu.om

