Journal of Applied Mathematics & Bioinformatics, vol.2, no.3, 2012, 99-114 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2012

Harmonic multivalent meromorphic functions defined by an integral operator

Amit Kumar Yadav¹

Abstract

The object of this article is to study a class $M_H(p)$ of harmonic multivalent meromorphic functions of the form $f(z) = h(z) + \overline{g(z)}$, 0 < |z| < 1, where h and g are meromorphic functions. An integral operator is considered and is used to define a subclass $M_H(p, \alpha, m, c)$ of $M_H(p)$. Some properties of $M_H(p)$ are studied with the properties like coefficient condition, bounds, extreme points, convolution condition and convex combination for functions belongs to $M_H(p, \alpha, m, c)$ class.

Mathematics Subject Classification: 30C45, 30C50, 30C55 Keywords: Meromorphic Function, Starlike functions, Integral Operator

1 Introduction and Prelimnaries

A function f = u + iv, which is continuos complex-valued harmonic in a domain $D \subset \mathbb{C}$, if both u and v are real harmonic in D. Cluine and Sheil-

Article Info: *Received* : July 2, 2012. *Revised* : August 2, 2012 *Published online* : December 30, 2012

¹ Department of Information Technology Ibra College of Technology, PO Box : 327,

 $Postal\ Code:\ 400,\ Alsharqiyah,\ Ibra,\ Sultanate\ of\ Oman,\ e-mail:\ amitkumar@ict.edu.omitkumar$

small [3] investigated the family of all complex valued harmonic mappings f defined on the open unit disk U, which admits the representation $f(z) = h(z) + \overline{g(z)}$ where h and g are analytic univalent in U. Hengartner and Schober [4] considered the class of functions which are harmonic, meromorphic, orientation preserving and univalent in $\widetilde{U} = \{z : |z| > 1\}$ so that $f(\infty) = \infty$. Such functions admit the representation

$$f(z) = h(z) + \overline{g(z)} + A \log |z|, \qquad (1)$$

where

$$h(z) = \alpha z + \sum_{n=1}^{\infty} a_n z^{-n}, \quad g(z) = \beta z + \sum_{n=1}^{\infty} b_n z^{-n}$$

are analytic in $\widetilde{U} = \{z = |z| > 1\}$, $\alpha, \beta, A \in \mathbb{C}$ with $0 \le |\beta| \le |\alpha|$ and $w(z) = \overline{f_{\overline{z}}}/f_z$ is analytic with |w(z)| < 1 for $z \in \widetilde{U}$. \sum_{H}' denotes a class of functions of the form (1) with $\alpha = 1, \beta = 0$. The class \sum_{H}' has been studied in various research papers such as [5], [6] and [7].

Theorem 1.1. [4] If $f \in \sum_{H}'$, then the diameter D_f of $\mathbb{C} \setminus f(U)$, satisfies

$$D_f \ge 2 |1 + b_1|.$$

This estimate is sharp for

$$f(z) = z + b_1/\overline{z} + A\log|z|$$

whenever $|b_1| < 1$ and $|A| \leq (1 - |b_1|^2) / |1 + b_1|$, $|b_1| = 1$ and A = 0, or $b_1 = -1$ and $|A| \leq 2$.

A function is said to be meromorphic if poles are its only singularities in the complex plane \mathbb{C} .

Let M_p $(p \in \mathbb{N}_0 = \{1, 2, ...\})$ be a class of multivalent meromorphic functions of the form:

$$h(z) = \frac{a_{-p}}{z^p} + \sum_{n=1}^{\infty} a_{n+p-1} z^{n+p-1}, \ a_{-p} \ge 0, a_{n+p-1} \in \mathbb{C}, z \in \mathcal{U}^* = \mathcal{U} \setminus \{0\}.$$
(2)

Definition 1.2. A Bernardi type integral operator $I_{p,c}^m (m \ge 0, c > p)$ for meromorphic multivalent function $h \in M_p$ is defined as :

$$\begin{split} I^{0}_{p,c}h(z) &= h(z) \\ I^{1}_{p,c}h(z) &= \frac{c-p+1}{z^{c+1}} \int_{0}^{z} t^{c} I^{0}_{p,c}h(t) dt \\ I^{m}_{p,c}h(z) &= \frac{c-p+1}{z^{c+1}} \int_{0}^{z} t^{c} I^{m-1}_{p,c}h(t) dt, \ m \geq 1. \end{split}$$

The Series expansion of $I_{p,c}^m h(z)$ for h(z) of the form (2) is given by

$$I_{p,c}^{m}h(z) = \frac{a_{-p}}{z^{p}} + \sum_{n=1}^{\infty} \theta^{m}(n) \ a_{n+p-1} \ z^{n+p-1} \ (c > p, m \ge 0) , \qquad (3)$$

where

$$\theta^m(n) = \left(\frac{c-p+1}{n+p+c}\right)^m.$$
(4)

Note that $0 < \theta^m(n) < \theta^m(1) = \left(\frac{c-p+1}{1+p+c}\right)^m$. For fixed integer $p \ge 1$, denote by $M_H(p)$, a family of harmonic multivalent

For fixed integer $p \ge 1$, denote by $M_H(p)$, a family of harmonic multivalent meromorphic functions of the form

$$f(z) = h(z) + \overline{g(z)}, \ z \in \mathbf{U}^*,$$
(5)

where $h \in M_p$ with $a_{-p} > 0$ of the form (2) and $g \in M_p$ of the form

$$g(z) = \sum_{n=1}^{\infty} b_{n+p-1} z^{n+p-1}, b_{n+p-1} \in \mathbb{C}, \ z \in \mathbb{U}.$$
 (6)

In the expression (5), h is called a meromorphic part and g co-meromorphic part of f. The class $M_H(p)$ with its subclass has been studied in [1] and [8] for $a_{-p} = 1$. A quite similar to the above mentioned integral operator was used for harmonic analytic functions in [2].

In terms of the operator defined in Defininition 1.2, an operator $f \in M_H(p)$ is defined as follows:

Definition 1.3. Let $f = h + \overline{g}$ be of the form (5), the integral operator $I_{p,c}^m f(z)$ is defined as

$$I_{p,c}^{m}f(z) = I_{p,c}^{m}h(z) + (-1)^{m}\overline{I_{p,c}^{m}g(z)}, z \in U^{*}$$
(7)

the series expansions for $I_{p,c}^m h(z)$ is given by (3) with $a_{-p} > 0$ and for $I_{p,c}^m g(z)$ with g(z) of the form (6) is given as:

$$I_{p,c}^{m}g(z) = \sum_{n=1}^{\infty} \theta^{m}(n)b_{n+p-1}z^{n+p-1} \left(c > p, m \ge 0\right).$$
(8)

Involving operator $I_{p,c}^m$ define by (7), a class $M_H(p, \alpha, m, c)$ of functions $f \in M_H(p)$ is defined as follows:

Definition 1.4. A function $f \in M_H(p)$ is said to be in $M_H(p, \alpha, m, c)$ if and only if it satisfies

$$Re\left\{\frac{I_{p,c}^{m}f(z)}{I_{p,c}^{m+1}f(z)}\right\} > \alpha, \ z \in U^{*}, 0 \le \alpha < 1, \ c > p, \ m \in \mathbb{N}.$$
(9)

Let $M_{\overline{H}}(p, \alpha, m, c)$ be a subclass of $M_H(p, \alpha, m, c)$, consists of harmonic multivalent meromorphic functions $f_m = h_m + \overline{g_m}$, where h_m and g_m are of the form

$$h_m(z) = \frac{a_{-p}}{z^p} - \sum_{n=1}^{\infty} |a_{n+p-1}| \, z^{n+p-1}, \ a_{-p} > 0$$

and
$$g_m(z) = (-1)^{m+1} \sum_{n=1}^{\infty} |b_{n+p-1}| \, z^{n+p-1}.$$
 (10)

2 Some results for the class $M_H(p)$

In this section, some results for $M_H(p)$ class are derived.

Theorem 2.1. Let $f \in M_H(p)$ be of the form (5), then the diameter D_f of $clf(U^*)$ satisfies

$$D_f \ge 2 |a_{-p}|.$$

This estimate is sharp for $f(z) = a_{-p}z^{-p}$.

Proof. Let $D_f(r)$ denotes the diameter of $clf(\mathbf{U}_r^*)(r)$, where $\mathbf{U}_r^*(r) = \{z : 0 < |z| < r, \ 0 < r < 1\}$ and

$$D_f^*(r) := \max_{|z|=r} |f(z) - f(-z)|$$

Since $D_f^*(r) \ge D_f(r)$, it follows that

$$\begin{split} \left[D_{f}^{*}(r)\right]^{2} &\geq \frac{1}{2\pi} \int_{0}^{2\pi} \left|f(re^{i\theta}) - f(-re^{i\theta})\right|^{2} d\theta \\ &= 4 \left[\frac{|a_{-p}|^{2}}{r^{2p}} + \sum_{n=1}^{\infty} \left(|a_{2n+p-2}|^{2} + |b_{2n+p-2}|^{2}\right) r^{2(2n+p-2)}\right], \ p \text{ is odd} \\ &= 4 \left[\frac{|a_{-p}|^{2}}{r^{2p}} + \sum_{n=1}^{\infty} \left(|a_{2n+p-1}|^{2} + |b_{2n+p-1}|^{2}\right) r^{2(2n+p-1)}\right], \ p \text{ is even} \\ &\geq 4 \frac{|a_{-p}|^{2}}{r^{2p}}, \end{split}$$

noted that as $r \longrightarrow 1$, $D_f(r)$ decreases to D_f , which concludes the result. \Box

Remark 2.2. [4] Taking $p = 1, a_{-p} = 1$ and w(z) := f(1/z) in Theorem 2.1, same result as Theorem 1.1 has been obtained for w(z), which is of the form (1) with A = 0.

Theorem 2.3. If $f \in M_H(p)$ be of the form (5), then

$$\sum_{n=1}^{\infty} (n+p-1) \left(|a_{n+p-1}|^2 - |b_{n+p-1}|^2 \right) \ge p |a_{-p}|^2.$$

Equality occurs if and only if $C \setminus f(U^*)$ has zero area.

Proof. The area of the ommited set is

$$\lim_{r \to 1} \frac{1}{2i} \int_{|z|=r} \overline{f} df = \lim_{r \to 1} \left[\frac{1}{2i} \int_{|z|=r} \overline{h} h' dz + \frac{1}{2i} \int_{|z|=r} g \overline{g'} d\overline{z} \right] \\
= \pi \left[-p |a_{-p}|^2 + \sum_{n=1}^{\infty} (n+p-1) \left(|a_{n+p-1}|^2 - |b_{n+p-1}|^2 \right) \right] \\
\ge 0.$$

Remark 2.4. [4] Taking $p = 1, a_{-p} = 1$ and w(z) := f(1/z) in Theorem 2.3, then for $w \in \sum_{H}'$, with A = 0, it follows that

$$\sum_{n=1}^{\infty} n\left(|a_n|^2 - |b_n|^2\right) \le 1 + 2\Re b_1.$$

3 Coefficient Conditions

In this section, sufficient coefficient condition for a function $f \in M_H(p)$ to be in $M_H(p, \alpha, m, c)$ class is established and then it is shown that this coefficient condition is necessary for its subclass $M_{\overline{H}}(p, \alpha, m, c)$.

Theorem 3.1. Let $f(z) = h(z) + \overline{g(z)}$ be the form (5) and $\theta^m(n)$ is given by (4) if

$$\sum_{n=1}^{\infty} \theta^m(n) \left[\left(1 - \alpha \theta^1(n) \right) |a_{n+p-1}| + \left(1 + \alpha \theta^1(n) \right) |b_{n+p-1}| \right] \le (1 - \alpha) a_{-p}, \quad (11)$$

holds for $0 \leq \alpha < 1$ and $m \in \mathbb{N}$, then f(z) is harmonic in U^* and $f \in M_H(p, \alpha, m, c)$.

Proof. Let the function $f(z) = h(z) + \overline{g(z)}$ be the form (5) satisfying (11). In order to show $f \in M_H(p, \alpha, m, c)$, it suffices to show that

$$Re\left\{\frac{I_{p,c}^{m}f(z)}{I_{p,c}^{m+1}f(z)}\right\} > \alpha$$
(12)

or,

$$Re\left\{\frac{I_{p,c}^{m}h(z) + (-1)^{m}\overline{I_{p,c}^{m}g(z)}}{I_{p,c}^{m+1}h(z) + (-1)^{m+1}\overline{I_{p,c}^{m+1}g(z)}}\right\} > \alpha$$

where $z = re^{i\theta}$, $0 < r \le 1$, $0 \le \theta \le 2\pi$ and $0 \le \alpha < 1$. Let

$$A(z) := I_{p,c}^{m} h(z) + (-1)^{m} \overline{I_{p,c}^{m} g(z)}$$
(13)

and

$$B(z) := I_{p,c}^{m+1}h(z) + (-1)^{m+1}\overline{I_{p,c}^{m+1}g(z)}.$$
(14)

It is observed that (12) holds if

$$|A(z) + (1 - \alpha)B(z)| - |A(z) - (1 + \alpha)B(z)| \ge 0.$$
(15)

From (13) and (14), it follows that

$$\begin{split} |A(z) + (1 - \alpha)B(z)| \\ &= \left| I_{p,c}^{m}h(z) + (-1)^{m}\overline{I_{p,c}^{m}g(z)} + (1 - \alpha)\left(I_{p,c}^{m+1}h(z) + (-1)^{m+1}\overline{I_{p,c}^{m+1}g(z)}\right) \right| \\ &= \left| (2 - \alpha)\frac{a_{-p}}{z^{p}} + \sum_{n=1}^{\infty} \left[\theta^{m}(n) + (1 - \alpha)\theta^{m+1}(n) \right] a_{n+p-1}z^{n+p-1} \right| \\ &+ (-1)^{m}\sum_{n=1}^{\infty} \left[\theta^{m}(n) - (1 - \alpha)\theta^{m+1}(n) \right] \overline{b_{n+p-1}z^{n+p-1}} \right| \\ &\geq \frac{(2 - \alpha)a_{-p}}{|z|^{p}} - \sum_{n=1}^{\infty} \theta^{m}(n) \left[1 + (1 - \alpha)\theta^{1}(n) \right] |a_{n+p-1}| \, |z|^{n+p-1} \\ &- \sum_{n=1}^{\infty} \theta^{m}(n) \left[1 - (1 - \alpha)\theta^{1}(n) \right] |b_{n+p-1}| \, |z|^{n+p-1} \end{split}$$

and

$$\begin{split} |A(z) - (1+\alpha)B(z)| \\ &= \left| I_{p,c}^{m}h(z) + (-1)^{m}\overline{I_{p,c}^{m}g(z)} - (1+\alpha)\left(I_{p,c}^{m+1}h(z) + (-1)^{m+1}\overline{I_{p,c}^{m+1}g(z)}\right) \right| \\ &= \left| (-\alpha)\frac{a_{-p}}{z^{p}} + \sum_{n=1}^{\infty} \left[\theta^{m}(n) - (1+\alpha)\theta^{m+1}(n) \right] a_{n+p-1}z^{n+p-1} \right| \\ &+ (-1)^{m}\sum_{n=1}^{\infty} \left[\theta^{m}(n) + (1+\alpha)\theta^{m+1}(n) \right] \overline{b_{n+p-1}z^{n+p-1}} \right| \\ &= \left| \alpha\frac{a_{-p}}{z^{p}} - \sum_{n=1}^{\infty} \left[\theta^{m}(n) - (1+\alpha)\theta^{m+1}(n) \right] a_{n+p-1}z^{n+p-1} \right| \\ &- (-1)^{m}\sum_{n=1}^{\infty} \left[\theta^{m}(n) + (1+\alpha)\theta^{m+1}(n) \right] \overline{b_{n+p-1}z^{n+p-1}} \right| \\ &\leq \alpha\frac{a_{-p}}{|z|^{p}} + \sum_{n=1}^{\infty} \theta^{m}(n) \left[1 - (1+\alpha)\theta^{1}(n) \right] |a_{n+p-1}| \, |z|^{n+p-1} \\ &+ \sum_{n=1}^{\infty} \theta^{m}(n) \left[1 + (1+\alpha)\theta^{1}(n) \right] |b_{n+p-1}| \, |z|^{n+p-1} \, . \end{split}$$

Thus

$$\begin{aligned} |A(z) + (1 - \alpha)B(z)| - |A(z) - (1 + \alpha)B(z)| \\ &\geq \frac{2(1 - \alpha)a_{-p}}{|z|^{p}} - 2\sum_{n=1}^{\infty} \theta^{m}(n) \left[1 - \alpha\theta^{1}(n)\right] |a_{n+p-1}| |z|^{n+p-1} \\ &\quad -2\sum_{n=1}^{\infty} \theta^{m}(n) \left[1 + \alpha\theta^{1}(n)\right] |b_{n+p-1}| |z|^{n+p-1} \\ &\geq \frac{2}{|z|^{p}} \left\{ a_{-p}(1 - \alpha) - \sum_{n=1}^{\infty} \theta^{m}(n) \left[1 - \alpha\theta^{1}(n)\right] |a_{n+p-1}| |z|^{n-1} \\ &\quad -\sum_{n=1}^{\infty} \theta^{m}(n) \left[1 + \alpha\theta^{1}(n)\right] |b_{n+p-1}| |z|^{n-1} \right\} \\ &\geq 2 \left\{ (1 - \alpha)a_{-p} - \sum_{n=1}^{\infty} \theta^{m}(n) \left[(1 - \alpha\theta^{1}(n)) |a_{n+p-1}| + (1 + \alpha\theta^{1}(n)) |b_{n+p-1}| \right] \right\} \\ &\geq 0, \end{aligned}$$

if (11) holds. This proves the Theorem.

Theorem 3.2. Let $f_m = h_m + \overline{g_m}$ where h_m and g_m are of the form (10) then $f_m \in M_{\overline{H}}(p, \alpha, m, c)$ under the same parametric conditions taken in Theorem 3.1, if and only if the inequality (11) holds.

Proof. Since $M_{\overline{H}}(p, \alpha, m, c) \subset M_H(p, \alpha, m, c)$, if part is proved in Theorem 3.1. It only needs to prove the "only if" part of the Theorem. For this, it suffices to show that $f_m \notin M_{\overline{H}}(p, \alpha, m, c)$ if the condition (11) does not hold. If $f_m \in M_{\overline{H}}(p, \alpha, m, c)$, then writing corresponding series expansions in (9), it follows that $Re\left\{\frac{\xi(z)}{\eta(z)}\right\} \geq 0$ for all values of z in U^{*} where

$$\xi(z) = (1-\alpha)\frac{a_{-p}}{z^p} + \sum_{n=1}^{\infty} \theta^m(n) \left[1-\alpha\theta^1(n)\right] |a_{n+p-1}| z^{n+p-1} \\ -\sum_{n=1}^{\infty} \theta^m(n) \left[1+\alpha\theta^1(n)\right] |b_{n+p-1}| z^{n+p-1}$$

and

$$\eta(z) = \frac{a_{-p}}{z^p} + \sum_{n=1}^{\infty} \theta^{m+1}(n) |a_{n+p-1}| z^{n+p-1} - \sum_{n=1}^{\infty} \theta^{m+1}(n) |b_{n+p-1}| z^{n+p-1}.$$

Since

$$\left|\frac{\xi(z)}{\eta(z)}\right| \ge Re\left\{\frac{\xi(z)}{\eta(z)}\right\} \ge 0,$$

hence the condition $Re\left\{\frac{\xi(z)}{\eta(z)}\right\} \ge 0$ holds if

$$\frac{(1-\alpha)a_{-p} - \sum_{n=1}^{\infty} \theta^m(n) \left[(1-\alpha\theta^1(n)) \left| a_{n+p-1} \right| + (1+\alpha\theta^1(n)) \left| b_{n+p-1} \right| \right] r^{n+2p-1}}{a_{-p} + \sum_{n=1}^{\infty} \theta^{m+1}(n) \left| a_{n+p-1} \right| r^{n+2p-1} + \sum_{n=1}^{\infty} \theta^{m+1}(n) \left| b_{n+p-1} \right| r^{n+2p-1}} \ge 0$$
(16)

Now if the condition (11) does not holds then the numerator of above equation is non-positive for r sufficiently close to 1, which contradicts that $f_m \in M_{\overline{H}}(p, \alpha, m, c)$ and this proves the required result.

4 Bounds and Extreme Points

In this section, bounds for functions belonging to the class $M_{\overline{H}}(p, \alpha, m, c)$ are obtained and also provide extreme points for the same class.

Theorem 4.1. If $f_m = h_m + \overline{g_m} \in M_{\overline{H}}(p, \alpha, m, c)$ for $0 \le \alpha < 1, 0 < |z| = r < 1$, and $\theta^m(n)$ is given by (4), under the same parametric conditions taken in Theorem 3.1 then

$$\frac{a_{-p}}{r^p} - r^p \frac{(1-\alpha)a_{-p}}{[1-\alpha\theta^1(1)]} \le \left| I_{p,c}^m f_k(z) \right| \le \frac{a_{-p}}{r^p} + r^p \frac{(1-\alpha)a_{-p}}{[1-\alpha\theta^1(1)]}$$

Proof. Let $f_m = h_m + \overline{g_m} \in M_{\overline{H}}(p, \alpha, m, c)$. Taking the absolute value of $I_{p,c}^m f_m$ from (7), it follows that

$$\begin{aligned} \left| I_{p,c}^{m} f_{m}(z) \right| &= \left| \frac{a_{-p}}{z^{p}} + \sum_{n=1}^{\infty} \theta^{m}(n) \left| a_{n+p-1} \right| z^{n+p-1} + (-1)^{2m+1} \overline{\sum_{n=1}^{\infty} \theta^{m}(n) \left| b_{n+p-1} \right| z^{n+p-1}} \right| \\ &= \left| \frac{a_{-p}}{z^{p}} + \sum_{n=1}^{\infty} \theta^{m}(n) \left(\left| a_{n+p-1} \right| - \left| b_{n+p-1} \right| \right) z^{n+p-1} \right| \end{aligned}$$

Harmonic multivalent meromorphic functions...

$$\begin{aligned} \left| I_{p,c}^{m} f_{m}(z) \right| &\leq \frac{a_{-p}}{r^{p}} + r^{p} \sum_{n=1}^{\infty} \frac{\left[\theta^{m}(n) - \alpha \theta^{m+1}(n) \right]}{\left[\theta^{m}(n) - \alpha \theta^{m+1}(n) \right]} \theta^{m}(n) \left(|a_{n+p-1}| + |b_{n+p-1}| \right) \\ &\leq \frac{a_{-p}}{r^{p}} + r^{p} \sum_{n=1}^{\infty} \frac{\left[\theta^{m}(n) - \alpha \theta^{m+1}(n) \right]}{\theta^{m}(n) \left[1 - \alpha \theta^{1}(n) \right]} \theta^{m}(n) \left(|a_{n+p-1}| + |b_{n+p-1}| \right) \\ &\leq \frac{a_{-p}}{r^{p}} + \frac{r^{p}}{\left[1 - \alpha \theta^{1}(1) \right]} \sum_{n=1}^{\infty} \left[\theta^{m}(n) - \alpha \theta^{m+1}(n) \right] \left(|a_{n+p-1}| + |b_{n+p-1}| \right) \\ &\leq \frac{a_{-p}}{r^{p}} + \frac{r^{p}}{\left[1 - \alpha \theta^{1}(1) \right]} \left[\sum_{n=1}^{\infty} \theta^{m}(n) \left[\left(1 - \alpha \theta^{1}(n) \right) |a_{n+p-1}| \right] \right] \\ &\quad + \sum_{n=1}^{\infty} \theta^{m}(n) \left[\left(1 + \alpha \theta^{1}(n) \right) |b_{n+p-1}| \right] \right] \\ &\leq \frac{a_{-p}}{r^{p}} + r^{p} \frac{\left(1 - \alpha \right) a_{-p}}{\left[1 - \alpha \theta^{1}(1) \right]} \end{aligned}$$

and

$$\begin{aligned} \left| I_{p,c}^{m} f_{m}(z) \right| &= \left| \frac{a_{-p}}{z^{p}} + \sum_{n=1}^{\infty} \theta^{m}(n) \left| a_{n+p-1} \right| z^{n+p-1} + (-1)^{2m+1} \sum_{n=1}^{\infty} \theta^{m}(n) \left| b_{n+p-1} \right| z^{n+p-1} \right| \\ &= \left| \frac{a_{-p}}{z^{p}} + \sum_{n=1}^{\infty} \theta^{m}(n) \left(\left| a_{n+p-1} \right| - \left| b_{n+p-1} \right| \right) z^{n+p-1} \right| \end{aligned}$$

$$\begin{aligned} \left| I_{p,c}^{m} f_{m}(z) \right| &\geq \frac{a_{-p}}{r^{p}} - r^{p} \sum_{n=1}^{\infty} \frac{\left[\theta^{m}(n) - \alpha \theta^{m+1}(n) \right]}{\left[\theta^{m}(n) - \alpha \theta^{m+1}(n) \right]} \theta^{m}(n) \left(|a_{n+p-1}| + |b_{n+p-1}| \right) \\ &\geq \frac{a_{-p}}{r^{p}} - r^{p} \sum_{n=1}^{\infty} \frac{\left[\theta^{m}(n) - \alpha \theta^{m+1}(n) \right]}{\theta^{m}(n) \left[1 - \alpha \theta^{1}(n) \right]} \theta^{m}(n) \left(|a_{n+p-1}| + |b_{n+p-1}| \right) \\ &\geq \frac{a_{-p}}{r^{p}} - \frac{r^{p}}{\left[1 - \alpha \theta^{1}(1) \right]} \sum_{n=1}^{\infty} \left[\theta^{m}(n) - \alpha \theta^{m+1}(n) \right] \left(|a_{n+p-1}| + |b_{n+p-1}| \right) \end{aligned}$$

$$\geq \frac{a_{-p}}{r^{p}} - \frac{r^{p}}{[1 - \alpha \theta^{1}(1)]} \left[\sum_{n=1}^{\infty} \theta^{m}(n) \left[\left(1 - \alpha \theta^{1}(n) \right) |a_{n+p-1}| \right] + \sum_{n=1}^{\infty} \theta^{m}(n) \left[\left(1 + \alpha \theta^{1}(n) \right) |b_{n+p-1}| \right] \right]$$
$$\geq \frac{a_{-p}}{r^{p}} - r^{p} \frac{(1 - \alpha)a_{-p}}{[1 - \alpha \theta^{1}(1)]}$$

This proves the required result.

Corollary 4.2. Let $f_m = h_m + \overline{g_m} \in M_{\overline{H}}(p, \alpha, m, c)$, for $z \in U^*$ and $\theta^m(n)$ is given by (4), under the same parametric conditions taken in Theorem 3.1 then

$$\left\{w: |w| < a_{-p} - \frac{(1-\alpha)a_{-p}}{[1-\alpha\theta^1(1)]}\right\} \not\subseteq f(U^*).$$

Theorem 4.3. Let $f_m = h_m + \overline{g_m}$, where h_m and g_m are of the form (10) then $f_m \in M_{\overline{H}}(p, \alpha, m, c)$ and $\theta^m(n)$ is given by (4), under the same parametric conditions taken in Theorem 3.1, if and only if f_m can be expressed as:

$$f_m(z) = \sum_{n=0}^{\infty} \left(x_{n+p-1} h_{m_{n+p-1}}(z) + y_{n+p-1} g_{m_{n+p-1}}(z) \right), \tag{17}$$

where $z \in U^*$ and

$$h_{m_{p-1}}(z) = \frac{a_{-p}}{z^p}, \quad h_{m_{n+p-1}}(z) = \frac{a_{-p}}{z^p} + \frac{(1-\alpha)a_{-p}}{\theta^m(n) - \alpha\theta^{m+1}(n)} z^{n+p-1}, \tag{18}$$

$$g_{m_{p-1}}(z) = \frac{a_{-p}}{z^p}, \quad g_{m_{n+p-1}}(z) = \frac{a_{-p}}{z^p} + (-1)^{m+1} \frac{(1-\alpha)a_{-p}}{\theta^m(n) + \alpha\theta^{m+1}(n)} \overline{z^{n+p-1}}$$
(19)

for $n = 1, 2, 3, \dots, and$

$$\sum_{n=1}^{\infty} \left(x_{n+p-1} + y_{n+p-1} \right) = 1, \qquad x_{n+p-1}, \ y_{n+p-1} \ge 0.$$
 (20)

Proof. Let

$$f_{m}(z) = \sum_{n=0}^{\infty} \left(x_{n+p-1}h_{m_{n+p-1}}(z) + y_{n+p-1}g_{m_{n+p-1}}(z) \right)$$

$$= x_{p-1}h_{m_{p-1}} + y_{p-1}g_{m_{p-1}} + \sum_{n=1}^{\infty} x_{n+p-1} \left(\frac{a_{-p}}{z^{p}} + \frac{(1-\alpha)a_{-p}}{\theta^{m}(n) - \alpha\theta^{m+1}(n)} z^{n+p-1} \right)$$

$$+ \sum_{n=1}^{\infty} y_{n+p-1} \left(\frac{a_{-p}}{z^{p}} + (-1)^{m+1} \frac{(1-\alpha)a_{-p}}{\theta^{m}(n) + \alpha\theta^{m+1}(n)} \overline{z^{n+p-1}} \right)$$

$$f_{m}(z) = \sum_{n=0}^{\infty} \left(x_{n+p-1} + y_{n+p-1} \right) \frac{a_{-p}}{z^{p}} + \sum_{n=1}^{\infty} \left\{ \left(\frac{(1-\alpha)a_{-p}}{\theta^{m}(n) - \alpha\theta^{m+1}(n)} x_{n+p-1} \right) + (-1)^{m+1} \frac{(1-\alpha)a_{-p}}{\theta^{m}(n) + \alpha\theta^{m+1}(n)} y_{n+p-1} \right\} z^{n+p-1}.$$

Thus by Theorem 3.2, $f_m \in M_{\overline{H}}(p, \alpha, m, c)$, since,

$$\sum_{n=1}^{\infty} \left\{ \frac{\theta^m(n) - \alpha \theta^{m+1}(n)}{(1-\alpha)a_{-p}} \left(\frac{(1-\alpha)a_{-p}}{\theta^m(n) - \alpha \theta^{m+1}(n)} x_{n+p-1} \right) - \frac{\theta^m(n) + \alpha \theta^{m+1}(n)}{(1-\alpha)a_{-p}} \left(\frac{(1-\alpha)a_{-p}}{\theta^m(n) + \alpha \theta^{m+1}(n)} y_{n+p-1} \right) \right\}$$
$$= \sum_{n=1}^{\infty} \left(x_{n+p-1} + y_{n+p-1} \right) = \left(1 - x_{p-1} - y_{p-1} \right) \le 1.$$

Conversely, suppose that $f_m \in M_{\overline{H}}(p, \alpha, m, c)$, then (11) holds. Setting

$$x_{n+p-1} = \frac{\theta^m(n) - \alpha \theta^{m+1}(n)}{(1-\alpha)a_{-p}} |a_{n+p-1}|$$

$$y_{n+p-1} = \frac{\theta^m(n) + \alpha \theta^{m+1}(n)}{(1-\alpha)a_{-p}} |b_{n+p-1}|$$

which satisfy (20), thus

$$f_m(z) = \frac{a_{-p}}{z^p} + \sum_{n=1}^{\infty} |a_{n+p-1}| \, z^{n+p-1} + (-1)^{m+1} \sum_{n=1}^{\infty} |b_{n+p-1}| \, z^{n+p-1}$$
$$= \frac{a_{-p}}{z^p} + \sum_{n=1}^{\infty} \frac{(1-\alpha)a_{-p}}{\theta^m(n) + \alpha\theta^{m+1}(n)} x_{n+p-1} z^{n+p-1}$$
$$+ (-1)^{m+1} \sum_{n=1}^{\infty} \frac{(1-\alpha)a_{-p}}{\theta^m(n) + \alpha\theta^{m+1}(n)} y_{n+p-1} z^{n+p-1}$$

$$= \frac{a_{-p}}{z^{p}} + \sum_{n=1}^{\infty} \left[h_{m_{n+p-1}} - \frac{a_{-p}}{z^{p}} \right] x_{n+p-1} + \sum_{n=1}^{\infty} \left[g_{m_{n+p-1}} - \frac{a_{-p}}{z^{p}} \right] y_{n+p-1}$$

$$= \frac{a_{-p}}{z^{p}} \left[1 - \sum_{n=1}^{\infty} x_{n+p-1} - \sum_{n=1}^{\infty} y_{n+p-1} \right] + \sum_{n=1}^{\infty} h_{m_{n+p-1}} x_{n+p-1} + g_{m_{n+p-1}} y_{n+p-1}$$

$$= x_{p-1} h_{m_{p-1}} + y_{p-1} g_{m_{p-1}} + \sum_{n=1}^{\infty} h_{m_{n+p-1}} x_{n+p-1} + \sum_{n=1}^{\infty} g_{m_{n+p-1}} y_{n+p-1}$$

$$= \sum_{n=1}^{\infty} \left(x_{n+p-1} h_{m_{n+p-1}}(z) + y_{n+p-1} g_{m_{n+p-1}}(z) \right)$$

This proves the Theorem.

Remark 4.4. The extreme points for the class $M_{\overline{H}}(p, \alpha, m, c)$ are given by (18) and (19).

5 Convolution and Integral Convolution

In this section, convolution and integral convolution properties of the class $M_{\overline{H}}(p, \alpha, m, c)$ are established.

Let $f_m, F_m \in M_{\overline{H}}(p)$ be defined as follows:

$$f_m(z) = \frac{a_{-p}}{z^p} + \sum_{n=1}^{\infty} |a_{n+p-1}| \, z^{n+p-1} + (-1)^{m+1} \sum_{n=1}^{\infty} |b_{n+p-1}| \, z^{n+p-1}, \, z \in \mathbf{U}^*,$$
$$F_m(z) = \frac{a_{-p}}{z^p} + \sum_{n=1}^{\infty} |A_{n+p-1}| \, z^{n+p-1} + (-1)^{m+1} \sum_{n=1}^{\infty} |B_{n+p-1}| \, z^{n+p-1}, \, z \in \mathbf{U}^*.$$

The convolution of f_m and F_m for $m \in \mathbb{N}$, $z \in U^*$ is defined as:

$$(f_m \star F_m)(z) = f_m(z) \star F_m(z)$$

= $\frac{a_{-p}}{z^p} + \sum_{n=1}^{\infty} |a_{n+p-1}A_{n+p-1}| z^{n+p-1} + (21)$
 $+ (-1)^{m+1} \sum_{n=1}^{\infty} |b_{n+p-1}B_{n+p-1}| z^{n+p-1}.$

The integral convolution of f_m and F_m for $m \in \mathbb{N}$, $z \in U^*$ is defined as:

$$(f_m \Diamond F_m)(z) = f_m(z) \Diamond F_m(z)$$

= $\frac{a_{-p}}{z^p} + \sum_{n=1}^{\infty} \frac{p |a_{n+p-1}A_{n+p-1}|}{n+p-1} z^{n+p-1}$ (22)
 $+ (-1)^{m+1} \sum_{n=1}^{\infty} \frac{p |b_{n+p-1}B_{n+p-1}|}{n+p-1} \overline{z}^{n+p-1}.$

Theorem 5.1. For $0 \le \alpha < 1$, $m \in \mathbb{N}$. If $f_m, F_m \in M_{\overline{H}}(p, \alpha, m, c)$ and $\theta^m(n)$ is given by (4) then $(f_m \star F_m) \in M_{\overline{H}}(p, \alpha, m, c)$.

Proof. Since $F_m \in M_{\overline{H}}(p, \alpha, m, c)$, then by Theorem 3.2, $|A_{n+p-1}| \leq 1$ and $|B_{n+p-1}| \leq 1$, hence,

$$\sum_{n=1}^{\infty} \theta^{m}(n) \left[\left\{ \frac{1 - \alpha \theta^{1}(n)}{(1 - \alpha)a_{-p}} \right\} |A_{n+p-1}a_{n+p-1}| + \left\{ \frac{1 + \alpha \theta^{1}(n)}{(1 - \alpha)a_{-p}} \right\} |B_{n+p-1}b_{n+p-1}| \right]$$

$$\leq \sum_{n=1}^{\infty} \theta^{m}(n) \left[\left\{ \frac{1 - \alpha \theta^{1}(n)}{(1 - \alpha)a_{-p}} \right\} |a_{n+p-1}| + \left\{ \frac{1 + \alpha \theta^{1}(n)}{(1 - \alpha)a_{-p}} \right\} |b_{n+p-1}| \right]$$

$$\leq 1$$

as $f_m \in M_{\overline{H}}(p, \alpha, m, c)$. Thus by the Theorem 3.2, $(f_m \star F_m) \in M_{\overline{H}}(p, \alpha, m, c)$.

Theorem 5.2. For $0 \le \alpha < 1$, $m \in \mathbb{N}$. If $f_m, F_m \in M_{\overline{H}}(p, \alpha, m, c)$ and $\theta^m(n)$ is given by (4) then $(f_m \diamondsuit F_m) \in M_{\overline{H}}(p, \alpha, m, c)$.

Proof. Since $F_m \in M_{\overline{H}}(p, \alpha, m, c)$, then by Theorem 3.2, $|A_{n+p-1}| \leq 1$, $|B_{n+p-1}| \leq 1$ and $\frac{p}{n+p-1} \leq 1$ hence,

$$\sum_{n=1}^{\infty} \theta^{m}(n) \left[\left\{ \frac{1 - \alpha \theta^{1}(n)}{(1 - \alpha)a_{-p}} \right\} \frac{p |a_{n+p-1}A_{n+p-1}|}{n + p - 1} + \left\{ \frac{1 + \alpha \theta^{1}(n)}{(1 - \alpha)a_{-p}} \right\} \frac{p |b_{n+p-1}B_{n+p-1}|}{n + p - 1} \right]$$

$$\leq \sum_{n=1}^{\infty} \theta^m(n) \left[\left\{ \frac{1 - \alpha \theta^1(n)}{(1 - \alpha)a_{-p}} \right\} |a_{n+p-1}| + \left\{ \frac{1 + \alpha \theta^1(n)}{(1 - \alpha)a_{-p}} \right\} |b_{n+p-1}| \right]$$

$$\leq 1$$

as $f_m \in M_{\overline{H}}(p, \alpha, m, c)$. Thus by the Theorem 3.2, $(f_m \diamondsuit F_m) \in M_{\overline{H}}(p, \alpha, m, c)$.

6 Convex Combination

In this section, it is proved that the class $M_{\overline{H}}(p, \alpha, m, c)$ is closed under convex linear combination of its members.

Theorem 6.1. Let the functions $f_{m_j}(z)$ defined as:

$$f_{m_j}(z) = \frac{a_{-p}}{z^p} + \sum_{n=1}^{\infty} |a_{n+p-1,j}| \, z^{n+p-1} + (-1)^{m+1} \sum_{n=1}^{\infty} |b_{n+p-1,j}| \, z^{n+p-1}, \, z \in \mathbb{U}^*.$$
(23)

be in the class $M_{\overline{H}}(p, \alpha, m, c)$ for every j = 1, 2, 3..., then the function

$$\psi(z) = \sum_{j=1}^{\infty} c_j f_{m_j}(z)$$

is also in the class $M_{\overline{H}}(p, \alpha, m, c)$, where $\sum_{j=1}^{\infty} c_j = 1$ for $c_j \ge 0$ (j = 1, 2, 3...).

Proof. From the definition

$$\psi(z) = \frac{a_{-p}}{z^p} + \sum_{n=1}^{\infty} \left(\sum_{j=1}^{\infty} c_j \left| a_{n+p-1,j} \right| \right) z^{n+p-1} + (-1)^{m+1} \sum_{n=1}^{\infty} \left(\sum_{j=1}^{\infty} c_j \left| b_{n+p-1,j} \right| \right) z^{n+p-1}.$$

Since $f_{m_j}(z) \in M_{\overline{H}}(p, \alpha, m, c)$ for every j = 1, 2, 3..., then by Theorem 3.2, it follows that

$$\sum_{n=1}^{\infty} \theta^{m}(n) \left[\left\{ \frac{1 - \alpha \theta^{1}(n)}{(1 - \alpha)a_{-p}} \right\} \left(\sum_{j=1}^{\infty} c_{j} |a_{n+p-1,j}| \right) + \left\{ \frac{1 + \alpha \theta^{1}(n)}{(1 - \alpha)a_{-p}} \right\} \left(\sum_{j=1}^{\infty} c_{j} |b_{n+p-1,j}| \right) \right]$$
$$= \sum_{j=1}^{\infty} c_{j} \left(\sum_{n=1}^{\infty} \left\{ \frac{1 - \alpha \theta^{1}(n)}{(1 - \alpha)a_{-p}} \right\} |a_{n+p-1,j}| + \left\{ \frac{1 + \alpha \theta^{1}(n)}{(1 - \alpha)a_{-p}} \right\} |b_{n+p-1,j}| \right)$$

$$\leq \sum_{j=1}^{\infty} c_j . 1 \leq 1.$$

Hence $\psi(z) \in M_{\overline{H}}(p, \alpha, m, c)$, which is the desired result.

References

- H. Bostanci and M. Öztürk, New Classes of Salagean type Meromorphic Harmonic Functions, Int. J. Math. Sc., 2(1), (2008), 52-57.
- [2] L.I. Cotuirlua, Harmonic Multivalent Functions defined by Integral Operator, *Studia Univ. "Babes-Bolyai", Mathematica*, **LIV**(1), (March, 2009).
- [3] J. Clunie and T. Sheil-Small, Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Ser. AI Math., 9, (1984), 3-25.
- [4] W. Hengartner and G.Schober, Univalent Harmonic Functions, Trans. Amer. Math. Soc., 299(1), (1987), 1-31.
- [5] J.M. Jahangiri and H. Silverman, Harmonic Meromorphic Univalent Functions with negative Coefficients, Bull. Korean Math. Soc., 36(4), (1999), 763-770.
- [6] J.M. Jahangiri, Harmonic Meromorphic Starlike Functions, Bull. Korean Math. Soc., 37, (2001), 291-301.
- [7] J.M. Jahangiri and O.P. Ahuja, Multivalent Harmonic Starlike Functions, Ann. Univ. Marie Curie-Sklodowska, Sect. A. LVI, (2001), 1-13.
- [8] K.Al. Shaqsi and M. Darus, On Meromorphic Harmonic Functions with respect to k-Symmetric points, J. In. Ap., 2008, Art. 259205.