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Abstract 

This paper is devoted for the study of effects influences by heat source on 

unsteady free convection flow and heat transfer characteristic of a viscous 

incompressible and electrically conducting fluid between two heated vertical 

plates in the presence of a uniform magnetic field applied transversely to the flow. 

The leading momentum and energy equations are solved by the Laplace transform 

technique and solutions are presented through graphs for velocity and temperature 

distribution. 
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1  Introduction 

Transient free convection occurs in a fluid when the temperature changes 

cause density variations which gives rise to buoyancy forces. A lot of free 

convection heat transfer problems can be seen in literature. It is due to numerous 

applications in metallurgical engineering such as magnetic levitation or 

confinement, thermonuclear fusion etc. In the metallurgical industries magnetic 

fields are routinely [4] used to heat pump, stir and levitate the liquid metals. Free 

convection flows with heat transfer rates have found a substantial and permanent 

place in the world of material processing through MHD processes. Moreover, this 

type flows has parallel application in Astrophysics, Medical sciences, Geophysics, 

and Aerodynamics. Workers notably Brar, Teipel, Chaoudhury [3], Soundelgekar 

[10], Borkakati [2], Kafoussias [7], Deka, Panton Merkin [8], Biswal etc, did work 

on transient as well as on steady free convection flows. 

Most of them studied this type of flows in the presence of a magnetic field.  

Datta et al. [5] studied the problem of Magneto hydrodynamic unsteady free 

convection flow and heat transfer of a visco-elastic fluid past an impulsively 

started porous flat plate with heat sources/sinks. Ojha and Singh [9] analyzed the 

heat source/sink effects on free convection flow and mass transfer of visco-elastic 

fluid past an infinite vertical porous flat plate. Their studies has shown that the 

presence of heat generating sources or heat absorbing sinks in the fluid influence 

the flow field to a great extent as well as produce remarkable effects on the rate of 

heat transfer. Hence, owing to its numerous applications, in the paper of Gourla 

and Katoch [6], we have considered the effect of heat source for farther study. In 

section 2, the mathematical formulation; in section3, the solution of the equations; 

in section 4, results and discussion, and in section 5, the conclusions are given. 
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2  Mathematical Formulation 

      We assume that a viscous incompressible and electrically conducting fluid 

flows between two heated vertical long non-conducting plates. At time t 0 , the 

fluid is at rest and the plates are also at temperature 0T  (reference temperature). At 

time 0t , the motion of the fluids takes place and the temperature of the plate’s 

changes according as follows - 

                       tn
w eTTTT  10
/

0 , where n is the decay factor. 

 Here, x axis is taken along each plate which in the vertical upward direction 

and y axis is taken normal to the plate. We consider the origin of the axes at the 

middle point between the plates. A uniform magnetic field of strength 0B is applied 

in a direction transverse to the direction of the vertical plates. Therefore, action of 

the magnetic field is in the horizontal direction and thus perpendicular to the flow 

while of the fluid velocity field is in the vertical upward direction. 

We make the following assumptions to derive the governing equations of motion: 

1. The fluid is assumed to be of low conductivity, so that the induced magnetic  

        field is negligible. 

2. The fluid is isotropic and Newtonian. 

3. The strength of the magnetic field is not very large such that the generalized   

        Ohm’s law is negligible. 

4. For the boundary condition it is assured that there is no-slip at the wall. 

5. Viscous dissipation and Polarization effects are neglected. 

6. The viscous fluid flows with constant physical properties  pCk ,,, in  

         between two vertical walls, a distance 2h (- h < y < h) apart. 

7. It is assumed that the plates are very long in the x-direction so the  

        temperature  T   and velocity field )(u are functions of y  and talone, and  

        velocity components v  and w are zero. 

8. The pressure term is balanced by gravity force term to give rise buoyancy  
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        force term. 

Under the above assumption the governing equations of motion are as follows: 

        q


. = 0                                              (continuity equation)                            (1) 

       
t

u

 = 

2

2

y

u

  +   uBTTg  2

00         (momentum equation)           (2) 

        



t

T
C p k 

2

2

y

T


+  0TTS              (energy equation)                           (3) 

Here  is the density and   is the coefficient of volume expansion at 

temperature 0T . Also, here,     is the viscosity coefficient, g is the 

acceleration due to gravity,  is the electrical conductivity, k is the thermal 

conductivity, pC is the isobaric specific heat capacity 0B is the magnetic field 

component. In equation (2), the gradient of temperature is due to the weight of the 

fluid in the slit 





  g

dx

dp  and viscous forces are just balanced by the buoyancy 

forces [1] only. These equations are to be solved with the following initial and 

boundary conditions: 

       At     :0t    ,0u  0TT             hhy ,   

       At    :0t    ,0u       tn
w eTTTT  100      for  hy                (4) 

We now introduce the following dimensionless quantities 

       ,
h

y
y


   

  ,0
2 TTgh

u
u

w 




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  ,
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   ,
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 nh

n


   
0

0

TT

TT
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w 


  

and dimensionless characteristic numbers [11] 

      
k

C p
Pr   (Prandtl number),    


 22

0 hB
M       (Hartmann number) 

      (Heat Source)                                                                                                   (5) 

in equations (2) - (3) and boundary condition (4), and have the following 

dimensionless forms: 
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              MuT
y

u

t

u



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



2

2

                                                                                  (6) 

              ST
y

T

t

T









2

2

Pr

1
                                                                                  (7) 

               :0t      u = 0,    T = 0             1,1 y  

               :0t      u = 0,     nteT  1      for  1y                                         (8) 

 

 

3  Solution of the equations 

Taking Laplace transform [12] of equations (6) & (7), and boundary 

condition (8), get the following equations:  

                    TupM
dy

ud


2

2

                                                                           (9) 

                   0Pr
2

2

 TpS
dy

Td
                                                                        (10) 

                  t = 0:      ,0,1  pu        0.1  pT  

                  t = 0:     0,1  pu         pnp

n
pT


 ,1                                      (11)  

where         



0

,, dttyFepyF pt . 

The solution of the equation (10) subject to the boundary condition (11) is  

                    
 
 pS

ypS

npp

n
T







Prcos

Prcos
                                                         (12) 

Again solution of (9) with the help of boundary condition (11) is 
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Inverting (12) and (13), we get 
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4  Results and Discussion 

           Figure 1 has been obtained by plotting the temperature distribution T 

against y at different values of the heat source parameter S for fixed time (t = .2), 

decay factor (n =1), and Prandtl number (Pr = .025). As the values of S increases 

from 0 to 1, the values of T also increases at x – axis (i.e. the axis of parabola as 

the figure shows) from .607866 (approx) to .615325 (approx) (corrected upto six 

decimal places). Nevertheless, the curves are homogeneous parabolic with x – axis 

as its axis in each case. This shows that the temperature distribution is uniform – 

highest near the walls, and lowest in between the plates. 

          Figure 2 has been drawn to show the effect caused by Prandtl number (Pr) at 

different values for fixed values of t (= .2), n (= 5), S (= .5) on temperature 

distribution. It is seen that temperature distribution changes and gets its new shape 

according as the change of Prandtl number. For small values of Prandtl number 

the temperature distribution changes negligibly. But for Pr = 7, T changes 

remarkably, and it distributes with small change away from the plates. For Pr = 1, 

we have a fine parabolic curve. 

         Figure 3 depicts the temperature profiles for different values of n when t = 

.2, S = .5, Pr = .025. It is found form this figure that the temperature at any point 

inside the vertical channel increase uniformly with increase of n. 

          We have considered the figure 4 to show the temperature distribution T 

against y for different time at fixed values of Pr (= .025), n (= 5), S (= .5). It is 

seen that there is negligible change of distribution of temperature between the 

channel for time t = 1, 2, 3. But for t = .2, though this distribution curve is similar 

with earlier three, there is difference with earlier three values. In each of the above 

case all value of T is nearly equal to 1 and all T – curves are parallel to y - axis. 

         Figure 5 has been obtained by plotting the value of the velocity u against y at 

different magnetic Hartmann number M. Series1 & 2 are for t = .1 and n = 1. 

Series 3 & 4 are for t = .5 and n = 10. In every case we have considered Pr = .025, 

S = .05. It is seen that for small time (t = .1) the curves 1 & 2 are almost parallel to 
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the y-axis between the channel, and the values of u are positive zeros. For time t = 

.5 and n = 10, the distribution of velocity is like circular arc. At y = 0, the value of 

u is minimum, and at 1y , it is maximum. 

          Figure 6 is drawn for different values of heat source parameter S and for 

fixed n, Pr, M. Series1 & 2 for t = .1, and series 3 & 4 for t = .5. It is seen that for 

small time the flow of the velocity is not fully developed, but for time t = .5, the 

velocity field is seemed to be developed, and its shape are homogeneous right 

circular arc. In each case, near the walls the velocity is the highest while at the 

centre of the channel the fluid velocity is lowest. 

           The velocity profiles have been plotted against y for M = 1, S = .05, t = .1, 

n = 1 and for various values of Prandtl number Pr as shown in figure 7. This figure 

shows that the velocity profiles takes the shape of positive parabolic curves with 

x-axis as its axis in each case. It is seen that as Prandtl number increases the 

velocity curves turns from just forming parabolic to fine uniform and symmetric 

parabolic curves. Theses are symmetric in x-axis. This signifies the effect caused 

by different values of Prandtl number. 

         Figure 8 has been drawn for different values of decay factor n and at fixed 

values of Pr (= .025), S (= .05) and M (= .5). In series1 & 2, we have considered t 

= .1 whereas in series3 & 4, this value is .5. It is seen that for small time the value 

of the velocity is slightly greater than zero. But for time t = .5, the velocity 

distribution curve is right circular arc. Again, in each case, the value of the 

velocity is highest at the walls while it is lowest at the centre of the channel. 

           Figure 9 depicts the velocity profiles for different combinations of values of 

Prandtl number, magnetic Hartmann number and Heat Source Parameter at fixed 

values of t (= .5) and n (= 10). It is seen that in each case the curve is a right 

circular arc. This means that the velocity is highest near the walls and lowest at the 

centre position of the walls.           
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           Figure 1: T vs. y series1 for S=0, series2 for S=.05, series3 for S=.5,  
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Figure 3: T vs. y for n = 1, 5, 10, 20 at Pr = .025, S = .5, t = .2 
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     Figure 5: u vs. y; series1 for M = .5, series2 for M = 1 at t = .1, n = 1, S = .05,    
                    Pr = .025, Series3 for M = 2, series4 for M = 4 at t = .5, n =10,  
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Figure 6: u vs. y; series1 for S = 0, series2 for S = .05 at t = .1, M = .5, n = 1,  
               Pr = .025, series3 for S = .5, series4 for S = 1 at t = .5, M = .5, n = 1,  
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Figure 7: u vs. y for Pr = .025, .25, .5, .71 at M = 1, S = .05, t = .1, n = 1 
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       Figure 9: u vs. y; I for Pr = .25, M = 1, S = .5; II for Pr = .025, M = .5, S = .05 
                      III for Pr = .5, M = 2, S = 1; IV for Pr = .71, M = 4, S = 0 at t =.5,  
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5  Conclusions (0bservations) 

(1) Decay factor ‘n’ and magnetic field parameter ‘M’ has a balancing relation. 

The graphs drown in figure 5 for n = 1 and M = .5, 1, and also for n = 10 and M = 

2, 4; has shown this characteristic. When n is fixed and at the same time M 

increases, the values of the velocity decreases. We can also get the values of the 

velocity for equal values of n and M. But we cannot get a real value of u for the 

values of M which is higher than n. So, this is a restriction in our problem. 

(2) Naturally, the fluids are to flow in such a way that its velocity is the highest 

at the middle position of the channel. But in our case this phenomena is 

completely opposite. For ready reference the paper of Gourla and Katoch (that we 

have investigated), can be cited. We think that this is due to the Heat Source 

applied at the plate. 
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(3) The velocity distribution is sharp near the two plates than at the centre 

between the plates. 

(4) As time increases the temperature is also increases. As a result the value of 

the velocity also increases. This is seen in all figures. 

(5) In each case, the investigation is carried out for small time (t = .1, .5). So, 

the solution can be thought of as the onset of free convection. 

(6) We have studied the problem for the fluid with prandtl number less than 

unity. 

(7) This problem left scope for further study.    
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