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Radiatic Dimension of a Graph

K.N. Meera1 and B. Sooryanarayana2

Abstract

Let G(V,E) be a simple, finite, connected graph. An injective

mapping f : V (G) → Z+ such that for every two distinct vertices

u, v ∈ V (G), |f(u) − f(v)| ≥ diam(G) + 1 − d(u, v) is called a radio

labeling of G. The radio number of f , denoted by rn(f) is the max-

imum number assigned to any vertex of G. The radio number of G,

is the minimum value of rn(f) taken over all radio labelings f of G.

A graph G on n vertices is radio graceful if and only if rn(G) = n.

In this paper, we define the radiatic dimension of G to be the small-

est positive integer k, such that the sequence of injective functions fi :

V (G) → {1, 2, 3, . . . , n}, 1 ≤ i ≤ k, satisfy the condition that for every

two distinct vertices u, v ∈ V (G), |fi(u)−fi(v)| ≥ diam(G)+1−d(u, v)

for some i and denote it by rd(G). Hence a graph is radio graceful if

and only if rd(G) = 1. In this paper we study the radiatic dimension

of some standard graphs and characterize graphs of diameter 2 that are

radio graceful.
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1 Introduction

All the graphs considered here are undirected, finite, connected and simple.

We use standard terminology, the terms not defined here may be found in

[13, 14, 15]. A radio labeling of a graph G is an injection f : V (G) → Z+

such that for all u, v ∈ V (G), |f(u) − f(v)| ≥ diam(G) + 1 − d(u, v). The

radio number of f , denoted by rn(f) is the maximum number assigned to any

vertex of G. The radio number of G, is the minimum value of rn(f) taken

over all radio labelings f of G. A radio labeling of C10, with radio number 18

is shown in the Figure 1. A graph G on n vertices is radio graceful if and only

if rn(G) = n. An example of a radio graceful graph is shown in the Figure 2.

Radio labeling was originally introduced in 2001 by G. Chartrand, David

Erwin, Ping Zhang and F. Hararay [6]. In this paper they showed that if G

is a connected graph of order n and diameter 2, then n ≤ rn(G) ≤ 2n − 2,

and that for every pair k, n of integers with n ≤ k ≤ 2n − 2, there exists a

connected graph of order n and diameter 2 with rn(G) = k. Also, in the same

paper a characterization of connected graphs of order n and diameter 2 with

prescribed radio number is presented. The upper and lower bounds for the

radio number of cycles was discussed by Ping Zhang [7] in 2002. The bounds

are shown to be tight for certain cycles. In 2004, Liu and Xie [2] investigated

the radio number of square of cycles. The results obtained by Zhang [7] were

shown to be inaccurate and and independent proof for the results of [2] with

better bounds was given by B. Sooryanarayana and P. Raghunath [11].
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Figure 1: A radio labeling of C10
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Figure 2: A radio graceful graph

In 2005, D.D.F. Liu and X. Zhu [4] completely determined radio numbers

of paths and cycles. In 2007, D.D.F. Liu [1] obtained lower bounds for the
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radio number of trees, and characterized the trees achieving this bound. The

results of D.D.F. Liu [1] generalizes the radio number for paths obtained by

D.D.F. Liu and X. Zhu [4]. Further in [3], D.D.F. Liu and M. Xie obtained

radio labeling of square path. The radio labeling of cube and fourth power of

cycles have been discussed by B. Sooryanarayana and P. Raghunath in [9, 10].

The radio number of cube and fourth power of a path was obtained by B.

Sooryanarayana et al in [12] and [5] respectively. The radio labeling of kth

power of a path is discussed by B. Sooryanarayana et al in [16].

2 Radiatic dimension of a graph

Definition 2.1. Let G(V,E) be a graph on n vertices. We define the Radi-

atic dimension of G to be the smallest positive integer k such that the sequence

of injective functions, fi : V (G) → {1, 2, 3, . . . , n}, 1 ≤ i ≤ k, satisfy the

condition that for every u, v ∈ V (G),

|fi(u)− fi(v)| ≥ diam(G) + 1− d(u, v)

for some i and denote it as rd(G).

Remark 2.2. By the Definition of radiatic dimension, it follows that a

graph G is radio graceful if and only if rd(G) = 1. The graph shown

in the Figure 2 is a radio graceful graph as there exists a single function

f1 : V (G) → {1, 2, 3, 4, 5} satisfying the condition :

|f1(u)− f1(v)| ≥ diam(G) + 1− d(u, v)

for every u, v ∈ V (G). In this paper we determine the radiatic dimension of

some standard graphs and characterize graphs of diameter two that are radio

graceful.

We recall the Definition of Distance graphs introduced by B.Sooryanarayana

in [8]. Let G be a graph on n vertices and D be the set of all distances between

any two vertices in G. Then D = {1, 2, 3, ..., diam(G)}, where diam(G) is the
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Figure 3: A graph G and its distance graph D(G, {2}) and D(G, {1, 3})

diameter of G. Let T be a subset of D. The set T is called distance subset of

G. The distance graph of G associated with the distance subset T , denoted by

D(G, T ), is defined on the vertices of G with the relation that two vertices u

and v are adjacent in D(G, T ) whenever d(u, v) ∈ T in G. The Figure 3

shows a graph G and its distance graphs D(G, {2}) and D(G, {1, 3}).

A graph is said to be semi-hamiltonian if it contains a hamiltonian path.

3 Radiatic dimension of some standard graphs

Theorem 3.1. All complete graphs are radio graceful.

1�

2 �

5 �

4 �
3 �

v3

2
v �

5
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4
v �

1
v �

Figure 4: A labeling to show rd(K5) = 1

Proof. Let Kn be the complete graph on the n vertices {v1, v2, . . . , vn}. Then,

as every pair of distinct vertices in Kn are adjacent, we have diam(Kn) = 1.
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Define a function f1 : V (Kn) → {1, 2, . . . , n} as;

f1(vi) = i, ∀i, 1 ≤ i ≤ n

Obviously, f1 is injective. Also, for 1 ≤ i, j ≤ n, i 6= j, we get;

|f1(vi)− f1(vj)| = |i− j| ≥ 1

= 1 + 1− 1 = diam(Kn) + 1− d(vi, vj)

Observation 3.2. Let G be a graph of diameter 2 and

f1 : V (G) → {1, 2, . . . , n}

be any injective function.

If d(u, v) = 2 then

|f1(u)− f1(v)| ≥ diam(G) + 1− d(u, v) = 2 + 1− 2 = 1

always holds.

If d(u, v) = 1 then

|f1(u)− f1(v)| ≥ diam(G) + 1− d(u, v) = 2 + 1− 1 = 2

must hold for G to be radio graceful. Hence to show that a graph G of diameter

2 is radio graceful it suffices to check if

|f1(u)− f1(v)| ≥ 2

for every uv ∈ E(G).

Theorem 3.3. For any two positive integers m ≥ 1, n ≥ 1,

rd(Km,n) =

{

1, if m = 1 and n = 1

2, otherwise
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Proof. The case m = n = 1 follows by the Theorem 3.1. We first take the

case n > m ≥ 1. Let V (Km,n) = V1

⋃

V2 with V1 = {u1, u2, . . . um} and

V2 = {v1, v2, . . . vn}.

Necessity: If possible, suppose rd(Km,n) = 1, then by Observation 3.2 there

exists an injective function

f1 : V (Km,n) → {1, 2, . . . m+ n}

such that

|f1(ui)− f1(vj)| ≥ diam(Km,n) + 1− d(ui, vj) = 2 + 1− 1 = 2 (1)

for all i, j, 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Without loss of generality we may assume f1(u1) = 1 (similar argument holds

for the case f1(v1) = 1 also). Then f1(vj) 6= 2 for any j, 1 ≤ j ≤ n. But as f1

is injective f1(ui) = 2 must hold for some i, 2 ≤ i ≤ m.

Again without loss of generality we may assume f1(u2) = 2. Then f1(vj) 6= 3

for any j, 1 ≤ j ≤ n. Proceeding this way we see that f1(ui) = i for all i,

1 ≤ i ≤ m.

Now since f1 is injective m + 1 must be assigned to some vertex, say vj in

V2. Then |f1(um) − f1(vj)| = 1, a contradiction to the Equation (1). Hence

rd(Km,n) ≥ 2.

Sufficiency: We now prove that rd(Km,n) = 2.

Define:

f1 : V (Km,n) → {1, 2, . . . ,m+ n}

as
f1(ui) = i, 1 ≤ i ≤ m

f1(vj) = m+ j, 1 ≤ j ≤ n

and

f2 : V (Km,n) → {1, 2, . . . ,m+ n}

as

f2(ui) = i, 1 ≤ i ≤ m

and

f2(vj) =











m+ 2, if j = 1

m+ 1, if j = 2

m+ j, 3 ≤ j ≤ n
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By the Definition it is obvious that both f1 and f2 are injective functions.

Further, for all 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n, and for i = m and 2 ≤ j ≤ n we get;

|f1(vj)− f1(ui)| = |m+ j − i| ≥ 2

Also,

|f2(um)− f2(v1)| = |m− (m+ 2)| = 2.

Hence in all cases we get; |fk(ui)− fk(vj)| ≥ 2 for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n

either for k = 1 or k = 2. The proof for the case of m ≥ n follows similarly.

Hence rd(Km,n) = 2 for all positive integers m ≥ 1, n ≥ 2.

1, 1

2, 2

4, 4

3 ,3

5 ,6

6, 5

7,7

u2

v1

u1

u4

u3

v3

v2

Figure 5: A labeling to show rd(K4,3) = 2

As a result of the above Theorem 3.3 we have the following Corollary :

Corollary 3.4. The radiatic dimension of the star graph K1,n where n ≥ 2

is 2.

Remark 3.5. Theorem 3.1, Theorem 3.3 and Corollary 3.4 show that the

complete bipartite graph Km,n is radio graceful if and only if m = 1 and n = 1.

Theorem 3.6. For any integer n ≥ 3,

rd(W1,n) =

{

1, if n = 3

2, otherwise
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Proof. The case of n = 3 has been proved in Theorem 3.1. We now consider

the case of n ≥ 4. Let v1 be the central vertex and vi, 2 ≤ i ≤ n + 1 be the

rim vertices of the wheel.

Necessity: If possible, suppose rd(W1,n) = 1, then, by Observation 3.2, there

exists an injective function

f1 : V (W1,n) → {1, 2, . . . n+ 1}

such that |f1(vi) − f1(vj)| ≥ diam(W1,n) + 1 − 1 = 2 + 1 − 1 = 2 for all

vivj ∈ E(W1,n).

As v1 is the central vertex it is adjacent to vi, for all i, 2 ≤ i ≤ n+ 1.

Suppose f1(v1) = 1, then f1(vi) 6= 2 for any i, 2 ≤ i ≤ n+ 1.

Suppose f1(v1) = n+ 1, then f1(vi) 6= n for any i, 2 ≤ i ≤ n+ 1.

Suppose f1(v1) = l where 2 ≤ l ≤ n, then f1(vi) 6= l±1 for any i, 2 ≤ i ≤ n+1.

This means at least two vertices of the graph must be assigned the same label

a contradiction to the fact that f1 is injective. Hence rd(W1,n) ≥ 2.

Sufficiency: We next prove that rd(W1,n) = 2 in two cases.

Case(1): n is even, n ≥ 4.

For n = 4 define

f1(v1) = 1, f1(v2) = 2, f1(v3) = 4, f1(v4) = 3, f1(v5) = 5 and

f2(v1) = 1, f2(v2) = 3, f2(v3) = 2, f2(v4) = 4, f2(v5) = 5. From the Figure 6

�
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4,3 �

2,4 �
3,2 �

Figure 6: A labeling to show rd(W1,4) = 2

it can be easily seen that |fk(vi) − fk(vj)| ≥ 2 whenever k = 1 or k = 2 and

vivj ∈ E(W1,4).Hence by Observation 3.2 rd(W1,4) = 2.



K.N. Meera and B. Sooryanarayana 117

For n ≥ 6, define

f1 : V (W1,n) → {1, 2, . . . n+ 1}

as

f1(vi) =























1, if i = 1

2i− 2, if 2 ≤ i ≤ n+2
2

2i− n− 1, if n+4
2

≤ i ≤ n+ 1

and

f2 : V (W1,n) → {1, 2, . . . n+ 1}

as

f2(vi) =















































1, if i = 1

3, if i = 2

2i− 2, if 3 ≤ i ≤ n+2
2

2, if i = n+4
2

2i− n− 1, if n+6
2

≤ i ≤ n+ 1

It can be easily verified that f1 and f2 are injective functions. We now make

the following simple observations :

1. For 2 ≤ i ≤ n
2
,

|f1(vi)− f1(vi+1)| = |(2i− 2)− (2i+ 2− 2)| = 2.

2. If i = n+2
2

then i+ 1 = n+4
2
. So,

|f1(vi)− f1(vi+1)| = |[(2(n+2
2
)− 2]− [2(n+4

2
)− n− 1]|

= |n− 3| ≥ 3 , as n ≥ 6

3. For n+4
2

≤ i ≤ n,

|f1(vi)− f1(vi+1)| = |(2i− n− 1)− (2i+ 2− n− 1)| = 2.

4. |f1(vn+1)− f1(v2)| = |(2n+ 2− n− 1)− 2| = n− 1 ≥ 5.
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5. For all i, 3 ≤ i ≤ n+2
2
,

|f1(v1)− f1(vi)| = |3− 2i| ≥ |n− 1| ≥ 5

6. For all i, n+4
2

≤ i ≤ n+ 1,

|f1(v1)− f1(vi)| = |2− 2i+ n| ≥ n ≥ 6

7. Also |f2(v1)− f2(v2)| = |1− 3| = 2.

Therefore |fk(vi)− fk(vj)| ≥ 2 for k = 1 or k = 2 whenever vivj ∈ E(W1,n).

Hence by Observation 3.2, rd(W1,n) = 2 when n is even and n ≥ 6.

Case (2): When n is odd and n ≥ 3.

The case of n = 3 has been dealt in Theorem 3.1 .

We now consider the case of n ≥ 5.

Define f1 : V (W1,n) → {1, 2, . . . n+ 1}

f1(vi) =























1, if i = 1

2i− 2, if 2 ≤ i ≤ n+3
2

2i− n− 2, if n+5
2

≤ i ≤ n+ 1

and

f2 : V (W1,n) → {1, 2, . . . n+ 1}

as

f2(vi) =















































1, if i = 1

3, if i = 2

2i− 2, if 3 ≤ i ≤ n+3
2

2, if i = n+5
2

2i− n− 2, if n+7
2

≤ i ≤ n+ 1

It can be easily verifed that f1 and f2 are injective functions.

We now make the following simple observations :

1. For 2 ≤ i ≤ n+1
2
,

|f1(vi)− f1(vi+1)| = |(2i− 2)− (2i+ 2− 2)| = 2
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2. If i = n+3
2

then i+ 1 = n+5
2

As n ≥ 5,

|f1(vi)− f1(vi+1)| = |(2(
n+ 3

2
)− 2)− (2(

n+ 5

2
)− n− 2)| = n− 2 ≥ 3

3. For n+5
2

≤ i ≤ n,

|f1(vi)− f1(vi+1)| = |(2i− n− 2)− (2i+ 2− n− 2)| = 2

4. As n ≥ 5,

|f1(vn+1)− f1(v2)| = |(2n+ 2− n− 2)− 2| = n− 2 ≥ 3

5. For all i, 3 ≤ i ≤ n+3
2
,

|f1(v1)− f1(vi)| = |3− 2i| ≥ n ≥ 5

6. Also |f2(v1)− f2(v2)| = |1− 3| = 2

So |fk(vi)− fk(vj)| ≥ 2 for k = 1 or k = 2 whenever vivj ∈ E(W1,n).Therefore

by Observation 3.2, rd(W1,n) = 2 for all odd integers n ≥ 5. Hence from both

cases we see that for all positive integers n ≥ 4, rd(W1,n) = 2.

�

8
v �

1
v

�

7
v �

6
v �

5
v �

4
v �

3
v �

2
v �

6,6 �

9
v �

1,1 �

9,9 �

7,7 �

3,2 �

5,5 �

2,3 �

8,8 �

4,4 �

Figure 7: A labeling to show

rd(W1,8) = 2

6
v �

5
v �

4
v �

3
v �

2
v � 3,2 �

5,5 �

6,6 �

4,4 �

�

1,1

1
v �

2,3 �

Figure 8: A labeling to show

rd(W1,5) = 2

Remark 3.7. Theorem 3.1 and Theorem 3.6 show that the Wheel graph

W1,n is radio graceful if and only if n = 3.
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Theorem 3.8. For any positive integer n ≥ 1,

rd(Pn) =

{

n, for n = 1, 2

n− 1, for n ≥ 3

Proof. The cases of n = 1 and n = 2 have already been proved in Theorem

3.1 and the case of n = 3 has been dealt in Theorem 3.3 and its Corollary 3.4.

We now consider the case of n ≥ 4.

Let Pn be a path on n vertices, n ≥ 4, with V (Pn) = {v1, v2, . . . vn} and vi is

adjacent to vj if and only if |i− j| = 1.

Necessity: We now prove that rd(Pn) ≥ n− 1.

Suppose rd(Pn) = n− 2. Then there exists a sequence of injective functions

fk : V (Pn) → {1, 2, . . . n}, 1 ≤ k ≤ n− 2

such that

|fk(vi)− fk(vj)| ≥ diam(Pn) + 1− d(vi, vj) (2)

holds for all i, j, 1 ≤ i, j ≤ n, i 6= j for some k, 1 ≤ k ≤ n− 2.

As diam(Pn) = n− 1, for all vivj ∈ E(Pn) Equation (2) implies

|fk(vi)− fk(vj)| ≥ n− 1 + 1− 1 = n− 1 (3)

for some k, 1 ≤ k ≤ n−2. But as the set of labels is {1, 2, . . . n} the maximum

label difference that can be achieved is n − 1. Therefore equation (3) implies

|fk(vi)− fk(vj)| = n− 1 for some k, 1 ≤ k ≤ n− 2, for all vivj ∈ E(Pn).

This possible if either

fk(vi) = n and fk(vj) = 1

or

fk(vi) = 1 and fk(vj) = n

holds for some k, 1 ≤ k ≤ n− 2, for all vivj ∈ E(Pn).

Without loss of generality we define fk(vk) = 1 and fk(vk+1) = n for all k,

1 ≤ k ≤ n − 2. Now consider the edge vn−1vn. Suppose there exists some k,

1 ≤ k ≤ n − 2, such that fk(vn−1) = 1 and fk(vn) = n, then as each fk is

injective

fk(vk) = fk(vn−1) = 1 ⇒ vk = vn−1 ⇒ k = n− 1

Similarly,

fk(vk+1) = fk(vn) = n ⇒ vk+1 = vn ⇒ k + 1 = n ⇒ k = n− 1
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a contradiction.

For the same reason we cannot have fk(vn−1) = n and fk(vn) = 1 for any k,

1 ≤ k ≤ n− 2. Hence rd(Pn) ≥ n− 1 when n ≥ 4.

Sufficiency: Next we show that rd(Pn) = n− 1 .

Define a sequence of functions fk : V (G) → {1, 2, . . . n} as follows :

1. For all k, 1 ≤ k ≤ n− 1, fk(vk) = 1

2. For all k, 1 ≤ k ≤ n− 1 and for all i, 1 ≤ i ≤ n− k

define fi(vi+k) = n− k + 1

3. For all k, 1 ≤ k ≤ n− 2 and for all i, n− k ≤ i ≤ n− 1

define fi(vi−n+k+1) = n− k.

It can be easily verified that for all k, 1 ≤ k ≤ n−1, fk is an injective function.

Now for all k, 1 ≤ k ≤ n− 1, d(vi, vi+k) = k in Pn.

By the Definition of fk given above it is easy to observe that

for all k, 1 ≤ k ≤ n− 1 and for all i, 1 ≤ i ≤ n− k,

|fi(vi)− fi(vi+k)| = |1− (n− k + 1)|

= n− k

= (n− 1) + 1− d(vi, vk)

= diam(Pn) + 1− d(vi, vk)

Hence for every pair of vertices vi, vj ∈ V (Pn) the condition

|fk(vi) − fk(vj)| ≥ diam(Pn) + 1 − d(vi, vj) holds for some k, 1 ≤ k ≤ n − 1.

Hence rd(Pn) = n− 1.

5,4,3,2,1 1,6,5,4,3 6,5,4,3,22,1,6,5,44,3,2,1,6

5
v

4
v3

v 6
v

2
v

1
v

3,2,1,6,5

Figure 9: A labeling to show rd(P6) = 5.

Remark 3.9. Theorem 3.1 and Theorem 3.8 show that the path Pn is radio

graceful if and only if n ≤ 2.
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Theorem 3.10. For any positive integer n ≥ 1,

rd(Pn +K1) =

{

1, for n = 1, 2

2, for n ≥ 3

Proof. The case of n = 1, 2 has been proved in Theorem 3.1. We now consider

the cases of n ≥ 3. Let v1 ∈ V (K1) and vi ∈ V (Pn), n ≥ 3 where 2 ≤ i ≤ n+1.

Necessity : We now prove that rd(Pn +K1) ≥ 2. Suppose rd(Pn +K1) = 1.

Then by Observation 3.2 there exists an injective function

f1 : V (Pn +K1) → {1, 2, . . . n+ 1} such that

|f1(vi)− f1(vj)| ≥ diam(Pn +K1) + 1− d(vi, vj) = 2 + 1− 1 = 2

for all vivj ∈ E(Pn +K1). The vertex v1 is adjacent to all vi for all i,

2 ≤ i ≤ n+ 1.

Suppose f1(v1) = 1 then f1(vi) 6= 2 for any i, 2 ≤ i ≤ n.

Suppose f1(v1) = n+ 1 then f1(vi) 6= n for any i, 2 ≤ i ≤ n.

Suppose f1(v1) = l, where 2 ≤ l ≤ n then f1(vi) 6= l± 1, for any i, 2 ≤ i ≤ n.

This means at least two vertices have to be assigned the same label, a con-

tradiction to the fact that f1 is injective. Hence rd(Pn +K1) ≥ 2 for n ≥ 3.

Sufficiency : For n = 3 define

f1(v1) = 1, f1(v2) = 3,

f1(v3) = 2, f1(v4) = 4,

f2(v1) = 4, f2(v2) = 3,

f2(v3) = 1, f2(v4) = 2.

as shown in the Figure 10. Therefore,|fk(vi)− fk(vj)| ≥ 2 holds, for all vivj ∈

E(P3 +K1) whenever k = 1 or k = 2. Hence rd(P3 + k1) = 2.

For n ≥ 4, define f1 : V (Pn +K1) → {1, 2, . . . n+ 1} as

f1(vi) =























1, if i = 1

2i− 1, if 2 ≤ i ≤ bn
2
c+ 1

2i− 2bn
2
c − 2, if bn

2
c+ 2 ≤ i ≤ n+ 1

and

f2 : V (Pn +K1) → {1, 2, . . . n+ 1}
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4,1

1,23,3 2,44
v3

v
2

v

1
v

Figure 10: A labeling to show rd(P3 +K1) = 2

as

f2(vi) =















































1, if i = 1

2, if i = 2

2i− 1, if 3 ≤ i ≤ bn
2
c+ 1

3, if i = bn
2
c+ 2

2i− 2bn
2
c − 2, if bn

2
c+ 3 ≤ i ≤ n+ 1

It can be easily verified that f1 and f2 are injective functions.

We now make the following simple observations :

1. For 2 ≤ i ≤ bn
2
c+ 1, we have |f1(vi)− f1(v1)| = |2i− 2| ≥ 2

2. For bn
2
c+ 3 ≤ i ≤ n+ 1,

|f1(vi)− f1(v1)| = |2i− 2b
n

2
c − 3| (4)

i ≥ b
n

2
c+ 3 ⇒ |2i− 2b

n

2
c − 3| ≥ |2b

n

2
c+ 6− 2b

n

2
c − 3| = 3 (5)

Equations (4) and (5) imply |f1(vi)− f1(v1)| ≥ 3.

3. For 2 ≤ i ≤ bn
2
c,

|f1(vi)− f1(vi+1)| = |(2i− 1)− (2(i+ 1)− 1)| = 2.

4. For bn
2
c+ 2 ≤ i ≤ n

|f1(vi)− f1(vi+1)| = |(2i− 2b
n

2
c − 2)− (2(i+ 1)− 2b

n

2
c − 2)| = 2.
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5. For i = bn
2
c+ 1, we have |f1(vi)− f1(vi+1)| = |2bn

2
c − 1|

Now, n ≥ 4 =⇒ bn
2
c ≥ 2 =⇒ |2bn

2
c − 1| ≥ 3.

Hence |f1(vi)− f1(vi+1)| ≥ 3.

6. |f2(v1)− f2(vbn

2
c+2)| = |1− 3| = 2.

Therefore

|fk(vi)− fk(vj)| ≥ 2

= 2 + 1− 1

= diam(Pn +K1) + 1− d(vi, vj)

for k = 1 or k = 2, whenever vivj ∈ E(Pn +K1).

Hence by Corollary 3.2 rd(Pn +K1) = 2 for all n ≥ 3.

1,1

3,22,3 5,5 6,64,4

5
v

4
v3

v
6

v2
v

1
v

7,7 9,9

7
v 8

v 9
v

8,8

Figure 11: A labeling to show rd(P8 +K1) = 2

Remark 3.11. Theorem 3.1 and Theorem 3.10 show that the Fan Pn +K1

is radio graceful if and only if n ≤ 2.

Theorem 3.12. For any positive integer n ≥ 3, the radiatic dimension of

a cycle on n vertices rd(Cn) = 1 if and only if n = 3 or n = 5.

Proof. The case of n = 3 has already been proved in Theorem 3.1. Labeling

the vertices of C5 as shown in the Figure 12 it is obvious that rd(C5) = 1.

We now prove that rd(Cn) > 1, when n ≥ 4, n 6= 5. Let Cn be a cycle on n

vertices, n ≥ 4, n 6= 5 with V (Cn) = {v1, v2, . . . vn} and E(Cn) = {v1vn, vivi+1}

where 1 ≤ i ≤ n− 1.



K.N. Meera and B. Sooryanarayana 125

5
v

�

3 �

2 �

5 �

1�

4 �

1
v

4
v �

3
v �

2
v �

Figure 12: A labeling to show rd(C5) = 1

Suppose rd(Cn) = 1 for n ≥ 4, n 6= 5. Then, as diam(Cn) = bn/2c, there

exists an injective function

f1 : V (G) → {1, 2, ...n}

such that

|f1(vi)− f1(vj)| ≥ b
n

2
c+ 1− d(vi, vj) (6)

holds for all vi, vj ∈ V (Cn).

Case(1): n is even and n ≥ 4.

As n is even the condition (6) becomes

|f1(vi)− f1(vj)| ≥
n

2
+ 1− d(vi, vj). (7)

As f1 is injective and n
2
∈ {1, 2 . . . n}, without loss of generality we may take

f1(v1) =
n
2
.

As d(v1, v2) = 1, the inequality (7) implies

|f1(v2)− f1(v1)| = |f1(v2)−
n
2
| ≥ n

2

⇒ (f1(v2)−
n
2
) ≤ −n

2
or (f1(v2)−

n
2
) ≥ n

2

⇒ f1(v2) ≤ 0 or f1(v2) ≥ n

By Definition of f1 we get;

f1(v2) = n (8)

As d(v1, vn) = 1, the inequality (7) implies

|f1(vn)− f1(v1)| = |f1(vn)−
n
2
| ≥ n

2

⇒ (f1(vn)−
n
2
) ≤ −n

2
or (f1(vn)−

n
2
) ≥ n

2

⇒ f1(vn) ≤ 0 or f1(vn) ≥ n
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By Definition of f1 we get;

f1(vn) = n (9)

Equations (8)and (9) ⇒ f1(v2) = f1(vn) = n, a contradiction to the fact that

f1 is injective.

Hence rd(Cn) ≥ 2 when n is even and n ≥ 4.

Case(2): n is odd and n ≥ 7.

As f1 is injective and dn
2
e ∈ {1, 2, . . . n}, without loss of generality, we may

assume f1(v1) = dn
2
e.

As d(v1, v2) = 1, the inequality (6) implies

|f1(v2)− f1(v1)| = |f1(v2)− dn
2
e| ≥ bn

2
c

⇒ (f1(v2)− dn
2
e) ≤ −bn

2
c or (f1(v2)− dn

2
e) ≥ bn

2
c

⇒ f1(v2) ≤ 1 or f1(v2) ≥ n

By Definition of f1 we get;

f1(v2) = 1 or f1(v2) = n (10)

As d(v1, vn) = 1, the inequality (6) implies

|f1(vn)− f1(v1)| = |f1(vn)− dn
2
e| ≥ bn

2
c

⇒ (f1(vn)− dn
2
e) ≤ −bn

2
c or (f1(vn)− dn

2
e) ≥ bn

2
c

⇒ f1(vn) ≤ 1 or f1(vn) ≥ n

By Definition of f1 we get;

f1(vn) = 1 or f1(vn) = n (11)

By Equations (10) and (11) without loss of generality we may take;

f1(v2) = 1 and f1(vn) = n.

Now f1(v3) must satisfy the following:

As f1 is injective and f1(v1) = dn
2
e,

f1(v3) 6= d
n

2
e (12)

and as f1(v2) = 1, f1(vn) = n

2 ≤ f1(v3) ≤ (n− 1) (13)
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As d(v1, v3) = 2, by inequality (6)

|f1(v3)− f1(v1)| ≥ bn
2
c+ 1− d(v1, v3)

⇒ |f1(v3)− dn
2
e| ≥ bn

2
c − 1

⇒ (f1(v3)− dn
2
e) ≤ −(bn

2
c − 1) or (f1(v3)− dn

2
e) ≥ bn

2
c − 1

⇒ f1(v3) ≤ 2 or f1(v3) ≥ n− 1 (14)

contradicting the Equation (13). Hence the result.

Remark 3.13. Theorem 3.1 and Theorem 3.12 show that the cycle Cn,

n ≥ 3 is radio graceful if and only if n = 3 or n = 5.

4 Radiatic dimension of graphs of diameter 2

Theorem 4.1. If a graph G on n ≥ 3 vertices with diameter 2 is radio

graceful then the maximum degree of a vertex in G cannot exceed n − 2 and

there exists at most 2 vertices in G whose degree is n− 2.

Proof. Let G be a radio graceful graph on n ≥ 3 vertices with diam(G) = 2.

Then by Observation 3.2 there exists an injective mapping

f : V (G) → {1, 2, . . . n}

such that |f(u)− f(v)| ≥ 2 for all uv ∈ E(G).

If f(u) = 1 then f(v) 6= 1, 2

If f(u) = n then f(v) 6= n, n− 1.

If f(u) = l, where 2 ≤ l ≤ n− 1 then f(v) 6= l, l − 1, l + 1.

Suppose deg(u) ≥ (n− 1).

If f(u) = 1, we may possibly assign the n − 2 labels {3, 4, . . . n} to n − 2

neighbors of u. But there exists at least one more neighbor (say) v of u to

which no label can be assigned.

If f(u) = n, we may possibly assign the n− 2 labels {1, 2, . . . n− 2} to n− 2
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neighbors of u. But there exists at least one more neighbor (say) v of u to

which no label can be assigned.

Similarly, if f(u) = l, where 2 ≤ l ≤ n − 1 then we may possibly assign the

n− 3 labels {1, 2, . . . l− 2, l+2, . . . n} to n− 3 neighbors of u. But there exists

at least one more neighbor (say) v of u to which no label can be assigned.

Hence deg(u) ≤ (n− 2).

Further, suppose deg(u) = n − 2 and f(u) = l where 2 ≤ l ≤ n − 1, then

we may possibly assign the n − 3 labels {1, 2, . . . l − 2, l + 2, . . . n} to n − 3

neighbors of u. But there exists at least one more neighbor (say) v of u to

which no label can be assigned. Hence if u ∈ V (G) is such that deg(u) = n−2,

then f(u) = 1 or f(u) = n.

Suppose u1, u2, u3 ∈ V (G) are such that

deg(u1) = deg(u2) = deg(u3) = (n− 2).

Then f(u1), f(u2), f(u3) ∈ {1, n} a contradiction to the fact that f is injective.

Hence at most 2 vertices of G can have degree n− 2.

Corollary 4.2. If a graph G on n ≥ 3 vertices with diam(G) = 2 is radio

graceful then G has at most
(n−2)(n−1)

2
edges.

Proof. By the previous Theorem 4.1, the maximum degree of a vertex in G is

n − 2 and at most two vertices (say) v1, v2 ∈ V (G) can attain the maximum

degree of n−2. The remaining n−2 vertices have degree n−3 or less. Hence,

n
∑

i=1

d(vi) ≤ 2(n− 2) + (n− 2)(n− 3)

≤ (n− 2)(n− 1)

As
∑n

i=1 d(vi) = 2|E(G)|, we get |E(G)| ≤ (n−2)(n−1)
2

.

Remark 4.3. The converse of the above Corollary 4.2 is not true. The

graph K2,3 serves as a counter example.
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Theorem 4.4. A graph G on n ≥ 3 vertices and diameter 2 is radio graceful

if and only if D(G, {2}) is semi-hamiltonian.

Proof. Suppose D(G, {2}) is semi-hamiltonian. Then there exists a hamilto-

nian path say {v1, v2, . . . vn} in D(G, {2}).

Define f(vi) = i for all i, 1 ≤ i ≤ n. Then

|f(vi)− f(vj)| ≥ 2, for all 1 ≤ i, j ≤ n, |i− j| ≥ 2.

Let vi, vj ∈ D(G, {2}) where 1 ≤ i, j ≤ n, |i − j| ≥ 2 and d(vi, vj) 6= 1, in

D(G, {2}). Then by Definition of D(G, {2}), d(vi, vj) 6= 2, in G.

Since diam(G) = 2, it is obvious that d(vi, vj) = 1 in G and by the Definition

of f , |f(vi)−f(vj)| ≥ 2, as required. Therefore G is radio graceful. Conversely,

suppose G is radio graceful. Then there exists a function

f : V (G) → {1, 2, . . . n}

such that |f(u)− f(v)| ≥ 2 whenever uv ∈ E(G).

Relabel the vertices of G such that f(vi) = i, for all i, 1 ≤ i ≤ n.

Now for 1 ≤ i ≤ n − 1 we have, |f(vi) − f(vi+1)| = 1. Hence vivi+1 is not an

edge in G or d(vi, vi+1) 6= 1 in G.

Since diam(G) = 2, d(vi, vi+1) = 2 in G for all i, 1 ≤ i ≤ n − 1, we

have d(vi, vi+1) = 1 in D(G, {2}) and hence there exists a path with edges

v1v2, v2v3, . . . vn−1vn in D(G, {2}) or D(G, {2}) is semi hamiltonian.

5 Conclusion

The radio gracefulness of several standard graphs have been investigated

in this paper and a characterization of graphs with at least three vertices and

diameter two has been found. We are now working towards finding whether

there exists a radio graceful graph with a given number of vertices and a given

diameter.
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