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Abstract 

Data clustering is a common technique for statistical data analysis in including 

machine learning, data mining, pattern recognition, image analysis and 

bioinformatics. The computational task of classifying the data set into k clusters is 

often referred to as k-clustering. K-Means and Expectation-Maximization 

algorithms are part of the commonly employed methods in clustering of data in 

relational databases. Results findings in some related work revealed that both 

algorithms have been found to be characterized with shortcomings. K-means was 

established not to guarantee convergence while Expectation-Maximization’s quick 

and premature convergence doesn’t assure optimality of results. As such, both 

algorithms are not efficient and effective enough; hence, there arises a need for a 

proposed algorithm that could both guarantee convergence and optimality of 
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results in discovering knowledge in very large database. A hybrid of K-means and 

Expectation-Maximization (KEM) was developed for this purpose.  

The proposed hybrid approach was evaluated with both K-means and Expectation-

Maximization algorithms using time (rate of convergence), space complexities and 

the number of iterations. The computational results showed that the developed 

algorithm guarantees both optimality and convergence over K-Means and 

Expectation Maximization clustering algorithms.  

 

Keywords: K-Means, Expectation Maximization, hybrid K-Means-Expectation 

Maximization and, Data Clustering 

 

 

1  Introduction 

Clustering algorithms partition a dataset into several groups such that points 

in the same group are close (similar) to each other and points across groups are far 

(different) from each other [2]. 

The commonly used clustering techniques include AGNES (Agglomerative 

Nesting), DIANA (Divisive Analysis), CLARA (Clustering Large Applications), 

PAM (Partitioning Around Medoids), BIRCH (Balanced Iterative Reducing and 

Clustering using Hierarchies), K-Means and EM (Expectation-Maximization) 

algorithms [1]. 

The k-means algorithm [3] is a very popular algorithm for data clustering 

because of its simplicity. Originally developed for and applied to the task of vector 

quantization, k-means has been used in a wide assortment of applications. It has 

been proven to be a good approach to classify data.  

However, K-means does not assure the best representation or fit for the data in the 

model because it uses distances from the centers of clusters to determine which 

sample belongs to which class. Also, it has been shown that, with K-Means, there 
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is no guarantee for optimal clustering, since the convergence depends on the initial 

number of clusters selected. In addition, K-means is not considered as the best 

choice for clustering due to its time performance and requirements. K-means 

typically requires that clusters be spherical, that the data be free of noise and that 

its operation be properly initialized. This makes it inefficient for major industrial 

clustering problems [6]. 

EM is a model based approach to solving clustering problems. It is an 

iterative algorithm that is used in problems where data is incomplete or considered 

incomplete. Unlike distance based or hard membership algorithms (such as K-

Means), EM is known to be an appropriate optimization algorithm for constructing 

proper statistical models of the data. EM is widely used in applications such as 

computer vision, speech processing and pattern recognition. EM aims at finding 

clusters such that maximum likelihood of each clusters parameters is obtained.  

In EM, each observation belongs to each cluster with a certain probability. 

EM clusters data, in a manner different than K-means.  EM starts with an initial 

estimate for the missing variables and iterates to find the maximum likelihood 

(ML) for these variables. Maximum likelihood methods estimate the parameters 

by values that maximize the sample’s probability for an event. 

EM is typically used with mixture models. Unlike in K-means, in clustering 

via EM, the number of clusters that are desired are predetermined. It is initialized 

with values for unknown (hidden) variables. Since EM uses maximum likelihood 

it most likely converges to local maxima, around the initial values. Hence 

selection of initial values is critical for EM. However, the EM algorithm works 

well on clustering data when the number of clusters is known [4]. 

This approach combines the two clustering algorithms above to come up 

with a hybrid clustering algorithm for better clustering. The initial clusters centers 

are found using K-means algorithm. These give centers that are widely spread 

within the data. EM takes these centers as its initial variables and iterates to find 

the local maxima. Hence, clusters that are well distributed using K-means and 
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clusters that are compact using EM are obtained. Educational database, which is a 

good benchmark for classification problems, is used to test the algorithms. 

 

 

2  Research methodology  

2.1 K-Means 

K-means which uses weighted average was used instead of the ordinary 

mean, to get new cluster centers. Let },...,{ 1 pxx be a set of P real numbers. The 

number of iteration is given as r. The weighted average (WA) is given by [5]. 

                                            ( 1) ( )

1,
, 0,1,...r r

p pp p
w x r 


                              (1) 

An initial mean is taken and a Gaussian is centered over the mean and 

weight, wp is obtained for xP. Feature vectors are assigned to each cluster point, 

empty or small sets are eliminated. Cluster centers are replaced with weighted 

averages and feature vectors are reassigned. This process is repeated until 

convergence. 

K-Means performance function: 

The algorithm partitions the data set into K clusters, S = (S1,……,SK), by putting 

each data point into the cluster represented by the center nearest to the data point. 

K-Means algorithm finds a local optimal set of centers that minimizes the total 

within cluster variance, which is K-means performance function [5]:  
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where the kth center, mk, is the centroid of the kth partition. The double summation 

in (2) can instead be expressed as a single summation over all data points, adding 

only the distance to the nearest center expressed by the MIN function below [5]: 
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The K-Means algorithm starts with an initial set of centers and then iterates 

through the following steps:  

1. For each data item, find the closest mk and assign the data item to the kth 

cluster. (The current mk’s are not updated until the next phase). 

2. Recalculate all the centers. The kth center becomes the centroid of the kth 

cluster. 

3. Iterate through 1 and 2 until the clusters no longer change significantly 

After each phase, the performance value never increases and the algorithm 

converges to a local optimum.  

The algorithm should reach a stable partition in a finite number of steps for finite 

datasets. The cost per iteration is O(K·dim·N). 

 

 
 

2.2 Expectation Maximization (EM) clustering algorithm 

The EM algorithm is an unsupervised clustering method, that is, it doesn’t 

require a training phase, based on mixture models. It follows an iterative approach 

(sub-optimal), which tries to find the parameters of the probability distribution that 

have the maximum likelihood of its attributes. 

The algorithm's inputs are the data set (x), the total number of clusters (M), 

the accepted error to converge (e) and the maximum number of iterations. First, 

the algorithm goes through the initialization stage, where the parameter vectors are 

initialized and then iterates through both the Expectation and Maximization stages 

until convergence. For each iteration, first is executed the E-Step (E-xpectation), 

that estimates the probability of each point belonging to each cluster, followed by 

the M-step (M-aximization), that re-estimates the parameter vector of the 

probability distribution of each class. The algorithm terminates when the 

distribution parameters converge or reach the maximum number of iterations. 
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Initialization 

Each class j, of M classes (or clusters), is constituted by a parameter vector (θ), 

composed by the mean (μj) and by the covariance matrix (Pj), which represent the 

features of the Gaussian probability distribution (Normal) used to characterize the 

observed and unobserved entities of the data set x. 

                                                M...1j,)t(P,)t()t( jj                                  (4) 

On the initial instant (t = 0), the implementation can generate randomly the initial 

values of mean (μj) and of covariance matrix (Pj). The EM algorithm aims to 

approximate the parameter vector (θ) of the real distribution. Another alternative 

offered by MCLUST is to initialize EM with the clusters obtained by a 

hierarchical clustering technique. 

E-Step 

This step is responsible to estimate the probability of each element belong to each 

cluster (P(Cj | xk) ). Each element is composed by an attribute vector (xk). The 

relevance degree of the points of each cluster is given by the likelihood of each 

element attribute in comparison with the attributes of the other elements of cluster 

Cj  [4]. 
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M-Step 

This step is responsible for the estimation of the parameters of the probability 

distribution of each class for the next step.  

First is computed the mean (μj) of classes j obtained through the mean of all 

points in function of the relevance degree of each point. 
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Secondly, the covariance matrix for the next iteration is computed by 

applying the Bayes Theorem which implies that P(A | B) = P(B | A) * P(A)P(B), 

based on the conditional probabilities of the class occurrence. 
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Thirdly, the probability of occurrence of each class is computed through the 

mean of probabilities (Cj) in function of the relevance degree of each point from 

the class. 
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The attributes represent the parameter vector, θ that characterize the probability 

distribution of each class that will be used in the next algorithm iteration [4]. 

Steps for the implementation of EM 

The steps for the implementation of EM are as follows;  

A guess has to be initialized for the mean and standard deviation. 

Initialization step: initialize the hypothesis θ0 =  0
k

0
2

0
1 ,...,,   

                                                 0
k

0
k                                                                   (9) 

 Where K is the current number of Gaussians, σ is the standard deviation, θ0 is the 

estimate at 0th iteration, μ is the mean. 

• Expectation step: estimate the expected values of the hidden variables zij (mean 

and standard deviation) using the current hypothesis  t
K

t
2

t
1t ,...,,   [4] 
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Where t is the number of the iteration, E(Zik) is the expected value for the hidden 

variables (namely mean and standard deviation), k is the dimension, σ is the 

standard deviation. 

• Maximization step: provides a new estimate of the parameters.  

                                                  







 
n

1i
ik

n

1i
iik

1t
k

)z(E

x)z(E
                                             (11) 

Convergence step: if et1t   , stop (finish iteration); otherwise, go back to 

the e-step [4]. 

Convergence Test 

After each iteration is performed, a convergence test which verifies if the 

difference of the attributes vector of an iteration to the previous iteration is smaller 

than an acceptable error tolerance, given by parame ter. Some implementations 

use the difference between the averages of class distribution as the convergence 

criterion. 

If (|| θ (t + 1) − θ (t) || < ǫ) 

   Stop 

else 

   call E-Step 

end; (where Q is the acceptable error tolerance) 

The algorithm has the property of, at each step, estimating a new attribute 

vector that has the maximum local likelihood, not necessarily the global, which 

reduces its complexity. However, depending on the dispersion of the data and on 

its volume, the algorithm can also be terminated due to the maximum number of 

iterations defined. 
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Performance function of Expectation Maximization 

Unlike K-Means in which only the centers are to be estimated, the EM algorithm 

estimates the centers, the co-variance matrices, K
and the mixing probabilities, 

p(mk).  

The performance function of the EM algorithm is [56] 

  

EM

K
1 T

k k k kD
k 1x S K

Perf (X,M, ,p)

1
log p EXP( (x m ) (x m ) )

(2 ) det( )
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     


  (12) 

where the vector p = )p,,...p,p( K21  is the mixing probability. EM algorithm is a 

recursive algorithm with the following two steps: 

E-Step: Estimating “the percentage of x belonging to the kth cluster” 
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where p(x|m) is the prior probability with Gaussian distribution, and p(mk) is the 

mixing probability.  
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M-Step: With the fuzzy membership function from the E-Step, find the new center 

locations, new co-variance matrices and new mixing probabilities that maximize 

the performance function [5]. 
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2.3 KEM (K-means Expectation Maximization) algorithm 

The KEM algorithm, like the EM algorithm is divided into two (2) stages: 

the initialization stage and the iterative stage. In the initialization stage, the 

weighted average variation of the K-means algorithm is used to classify the data 

into the number of clusters desired, since this method works better in the choice of 

the initial centroids than using the simple average K-means.    

Pseudocode for the KEM algorithm is given below: 

• Choose the number of cluster, k.  

• Randomly generate k clusters and determine the cluster centers,  

• Assign each point to the nearest cluster center. 

• Recompute the new cluster centers using weighted averages.  

• Generate an initial model M’ = ( k21 C,...,C,C ) 

 repeat 

• // (re-) assign points to clusters 

 Compute )Cx(P i , P(x) and )xC(P i  for each object x from D 

 and each cluster (= Gaussian) Ci  

• // (re-) compute the models 

 Compute a new model M = { k21 C,...,C,C } by re-computing Wi, 

 µC and ∑C for each Cluster Ci  

• Replace M’ by M 

 until |E(M) – E(M’)| < ε  

• return M  

 

First, a large number M, of uniformly distributed random cluster point 

vectors for the cluster centers are selected. Then any cluster point vectors that are 

too close to other cluster point vectors are eliminated and M, is reduced 

accordingly until the clusters produced equals to K, the number of desired clusters. 

This is done by computing the distances between all the clusters, and eliminating 
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the clusters that their distances are less than e (a value that is selected 

experimentally). 

Assigning each of the feature vectors to the nearest random cluster point 

vector, is the next step, and it can be achieved by computing the distance between 

each feature vector and all other cluster point vectors. Then the feature vector will 

be assigned to the cluster point vector such that the distance between them is the 

shortest.  

Also, each time an assignment happens the number of feature vectors 

assigned to that cluster point vector will be incremented. All cluster point vectors 

that are the centers of empty clusters, or have fewer vectors than selected p 

vectors, are eliminated and K is reduced. 

Each cluster is then given a new prototype with the current K, and that 

would be the weighted fuzzy average (WA) of each class, by initially taking the 

sample mean )0( and variance 2  to start the process. Then a Gaussian is 

centered over the current approximate WA μ(r) and iterated as follows: 

                                      
 
 
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

                                      (17) 

In this step, the WA for each cluster is calculated to be the new class 

prototype. The next step is to compute the Maximum Likelihood estimation for 

the current K clusters using EM as described above and get new centers for each 

of the clusters. Then each of the feature vectors would be assigned to the class 

with the nearest weighted fuzzy average. After that, every two clusters whose 

prototypes are closest are merged, the average of the two prototypes will be used 

as the new prototype (cluster point) and K will be reduced accordingly. Next, 

empty clusters are eliminated, and the number of clusters K is reduced. This 

process is repeated until we reach the desired number of clusters. 
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2.3.1 Derivation of KEM Performance Factor 

Let    
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be a linear mixing of K centroidal functions. EM algorithm is a recursive 

algorithm with the following two steps: 

 

2.3.1.1 E-Step: 
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where p (x|m) is the prior probability with Gaussian distribution, p(ml ) is the 

mixing probability. 

 

2.3.1.2 M-Step: 
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where N is the size of the whole data set. 

Then, we obtain a unified view of the two performance functions as follow: 

Without introducing any change, applying the identity mapping -log (EXP (-( ))) 

to the performance functions of K-Means (KM) and EM, the equations below are 

obtained;  
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The quantity inside the brackets “[]” in (26) is the linear mixing of the dataset 

functions – the 

EXP()’s. Comparing K-Means and EM’s performance function, the extra factor, 

1/sqrt[(2pi)D], does not have any real impact because it only changes the 

performance function by adding a  constant to it, which does not change the 

locations of the optima of the function.  
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Then, the extra factor = 1/sqrt[(2pi) D]. 

 

 

2.4 Time/Space complexities 

The storage required at each node is O (dim· (N/L + K))—the data set S is 

partitioned across the processors and the list of centers M is replicated at each 

processor. In contrast, the algorithm partitions the centers across the processors. 

Utilization is determined by the percentage of time each unit works on its own 

data to adjust the centers and collect cluster statistics, vs. the time waiting between 

sending out the local metrics to the Integrator and receiving the new global 

parameters. When the data size on each unit is far greater than the number of 

computing units (N>>L, which is true in general), the amount of work each unit 

has to do, O(K·dim·N/L), is far greater than the amount of work during the 

integration process, O(K·dim·L).  
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3  Results and discussions of findings  

3.1  Performance evaluation  

The programming tool used to implement the algorithms is MATLAB. This 

is because MATLAB is a very powerful computing system for handling the 

calculations involved in scientific and engineering problems. The name MATLAB 

stands for MATrix LABoratory, because the system was designed to make matrix 

computations particularly easy. 

With MATLAB, computational and graphical tools to solve relatively 

complex science and engineering problems can be designed, developed and 

implemented. 

Dataset Used: The students’ biodata and academic records used for evaluating the 

performance of the algorithms come from Agric. Engr., CSE, FSE, Chemical 

Engr., EEE and CVE departments of LAUTECH FET. A number of fields in a 

University database table can be isolated as case study for data mining to discover 

hidden data but this study is concerned with discovering the correlations between 

the Student’s mode of admission and their final CGPA at graduation only. 

 

 

3.2 Performance metrics  

The performance metrics considered include the number of iterations, 

computation time and system memory usage. 

Number of iterations 

Table1: Table showing number of iterations before convergence for the algorithms  

Algorithm Number of Iterations at 
convergence 

K-Means No distinct convergence (∞) 
Expectation-maximization 1 
Hybrid KEM 4 
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Computation time 

Table 2: Table showing computation time at convergence for the algorithms 

Algorithm Computation time
K-Means Undefined (∞) 
Expectation-maximization 3.2s 
Hybrid KEM Approx. 0.26s 

 
System memory usage  

Table 3: Table showing space requirements at convergence for the algorithms 

Algorithm System memory usage 
K-Means ∞ 
Expectation-maximization 1.1MB 
Hybrid KEM 0.74MB 

 

From the results obtained as summarized in the tables above, it can be 

observed that the hybrid KEM improves over K-Means by converging after some 

iterations unlike K-Means that does not guarantee convergence as well as the 

Expectation-Maximization algorithm which is very rigid and always generated a 

single iteration. Expectation Maximization has been used to optimize the 

performance of K-means as an improved version of K-means.  

Memory usage/iteration 

 Given by System memory usage / number of iterations (at convergence) 

 K-Means: ∞/∞ = not defined 

 Expectation-Maximization: 1.1MB/1 = 1.1 MB/iteration 

 Hybrid KEM: 0.74MB/4 ≈ 0.185 MB/iteration  

 

 

3.3 Discussions 

3.3.1 Expectation Maximization 

The expectation-maximization algorithm converged in a single run giving 

three clusters. Figure EM1 shows the clusters with their three centroids. Two of 
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the clusters for students admitted through PDS with the eclipse demarcating the 

clusters and the third cluster for students admitted through JAMB. 

From virtual observation of the clusters, the cluster for students admitted 

through JAMB has its centroid on approximately 3.25 (CGPA). However, the 

clusters for students admitted through PDS have their centroids on 3.1 (CGPA) 

and approximately 4.1 (CGPA), so it can be concluded that students that were 

admitted through PDS on the average performed better than those admitted 

through JAMB. A possible explanation being that the PDS students would have 

undergone a thorough pre-university academic training for a year immediately 

before admission and on the other hand, it is not so for their JAMB counterparts, 

some of which would have stayed at home for sometime expecting a better JAMB 

result for their admission into the University. 

However, another probable explanation is that the PDS programme affords 

the students the opportunity of being taught some of the 100 Level courses 

curriculum so that most of what they are taught in 100 Level becomes more of 

revision, which gives them a better edge over their JAMB counterparts. 

The EM algorithm automatically produced three clusters and on any number 

of re-runs, it produced exactly the same clusters which make it a very rigid 

algorithm [7]. 

 

3.3.2 K-Means 

The K-Means algorithm accepts the number of desired clusters as its input 

and in this case, five (5) was supplied to the algorithm because it is the number of 

the classes of degree in the University. The K-Means algorithm produced five (5) 

clusters for each re-run of the algorithm. 

The K-Means algorithm was run over a hundred times (a hundred and two 

times precisely). It was observed that the algorithm did not show a distinct 

convergence even though similar pattern clusters were repeating themselves at 

irregular intervals. Interestingly, some particular patterns of clusters were 
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persistent and the first could be observed from the APPENDIX in figures 

KMEAN1, KMEAN4, KMEAN10, KMEAN12, KMEAN14, KMEAN17, 

KMEAN20, KMEAN24, KMEAN26, KMEAN29, KMEAN30, KMEAN31, 

KMEAN33, KMEAN35, KMEAN38, KMEAN41, KMEAN45, KMEAN46, 

KMEAN49, KMEAN51, KMEAN56, KMEAN60, KMEAN67, KMEAN69, 

KMEAN74, KMEAN80, KMEAN81, KMEAN84, KMEAN85, KMEAN88, 

KMEAN92, KMEAN93, KMEAN94, KMEAN96, KMEAN99 and KMEN102 ( 

36 instances in a 102 (35.3%) re-runs of the K-Means algorithm). A sample of this 

cluster pattern is shown in Figure 1 below: 
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                                  Figure 1: Mode of admission against CGPA 

 

Another pattern of clusters with a closer persistence to the one observed 

above occurred in figures KMEAN11, KMEAN18, KMEAN19, KMEAN23, 
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KMEA34, KMEAN36, KMEAN43, KMEAN48, KMEAN55, KMEAN61, 

KMEAN63, KMEAN65, KMEAN70, KMEAN71, KMEAN72, KMEAN78, 

KMEAN79, KMEAN82, KMEAN83, KMEAN86, KMEAN89 and KMEAN91 

(22 instances in a 102 (21.6%) re-runs of the KMeans algorithm. A sample of this 

cluster pattern is shown in Figure 2 below: 
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Figure 2: Mode of admission against CGPA 

 

Picking the cluster pattern with the highest number of occurrence, it could 

be assumed to be the optimum set of clusters even though there is no distinct 

convergence of the cluster patterns. 

 

3.3.3 Kmeans-Expectation-Maximization (KEM) 

Like the K-Means algorithm, the KEM algorithm accepts as input the 

desired number of clusters and in this case also, five (5) was supplied to it for the 
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same reason. On many re-runs of the KEM algorithm, several cluster patterns 

were produced.  

Interestingly, a particular cluster pattern occurred for the first four (4) re-

runs of the algorithm i.e. figures KEM1, KEM2, KEM3 and KEM4 in the 

APPENDIX. Furthermore, after the twelfth (12th) re-run of the algorithm, the 

same cluster pattern occurred at the thirteenth, fourteenth, fifteenth and sixteenth 

re-run i.e. figures KEM13, KEM14, KEM15and KEM16. With these observations, 

it can be rightly concluded that the KEM algorithm converged with the said 

cluster pattern shown in Figure 3 below: 

 

2 2.5 3 3.5 4 4.5 5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

CGPA

M
O

D
E

 O
F
 A

D
M

IS
S

IO
N

 1
-P

D
S

, 
2-

U
M

E

KEM using Engineering Dataset

 

                    Figure 3: Mode of admission against CGPA 

 

However, with more re-runs (up to 61 re-runs) of the KEM algorithm, similar 

cluster patterns occurred at close intervals shown from the APPENDIX in figures 

KEM23, KEM28, KEM32, KEM33, KEM43, KEM45, KEM51, KEM52, 

KEM55, KEM56 and KEM57. 
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More interestingly, it is observed that the cluster pattern obtained at 

convergence of the KEM algorithm is exactly the same cluster pattern with the 

highest percentage of occurrence produced by the K-Means algorithm. 

Analyzing the cluster pattern obtained at convergence, it could be observed that 

there were exactly three clusters for students admitted through PDS with their 

centroids on approximately 2.8 (CGPA), 3.35 (CGPA) and 3.9 (CGPA), one 

cluster that included entries from both modes of admission with the centroid (at 

4.35 CGPA) very close to the PDS admission mode showing that the cluster is 

made up of more entries from students admitted through PDS than those admitted 

through JAMB. There is only one cluster for students admitted through JAMB 

with its centroid on 3.25 (CGPA). 

In conclusion, from the positions of all the five (5) centroids, it would be 

observed that students admitted through PDS performed better than those admitted 

through JAMB [7]. 

 

 

4  Conclusion 

Two clustering algorithms considered in this study are K-means and 

Expectation-Maximization algorithms. After the evaluation of the two algorithms, 

K-means was found not to guarantee convergence while Expectation-

Maximization’s quick convergence doesn’t guarantee optimality of results. As 

such, both algorithms are not efficient enough for any clustering problem, hence 

there arises a need for an algorithm that could both guarantee convergence and 

optimality of results. A hybrid of K-means and Expectation-Maximization (KEM) 

was developed for this purpose. 

First, the hybrid KEM had the least computational time at convergence 

(≈0.26s), followed by that of the Expectation-Maximization (3.2s) while the K-
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Means algorithm did not exhibit convergence at all giving an infinity (∞) 

computational time. 

Secondly, the KEM algorithm converged with 4 iterations; the Expectation-

Maximization algorithm converged with a single iteration while K-Means 

algorithm did not show any distinct convergence. Thirdly, the memory usage for 

the hybrid KEM algorithm was estimated at 0.74MB, that of the Expectation-

Maximization algorithm was estimated at 1.1MB and that of the K-Means 

algorithm was not defined (∞). Also, with the calculation of memory usage per 

iteration, the Hybrid KEM exhibited the least ratio of memory usage to iteration (≈ 

0.185 MB/iteration), followed by that of the Expectation-Maximization algorithm 

(1.1MB/iteration) while the K-Means algorithm seemed to exhibit the highest ratio 

of memory usage per iteration with a very high value (∞). 

Finally, the results of the evaluation showed that the hybrid KEM developed 

guarantees both optimality and convergence. It was also found to perform better 

than the other two algorithms in terms of the computational time, memory usage at 

convergence and the ratio of memory usage to iteration. 

Furthermore, the optimum clusters obtained at convergence from the datasets 

obtained from the database of Faculty of Engineering and Technology, 

LAUTECH, it was observed that students admitted through the Predegree Science 

(PDS) programme actually performed better than their counterparts admitted 

through Joint admission and matriculation board (JAMB). This could have been 

due to a number of reasons, some of which are probably being that (i), the PDS 

students would have undergone a thorough pre-university academic training for a 

year immediately before admission and on the other hand, it is not so for their 

JAMB counterparts, some of which would have stayed at home for sometime 

expecting a better JAMB result for their admission into the University. (ii) The 

PDS programme affords the students the opportunity of being taught some of the 

100 Level courses curriculum so that most of what they are taught in 100 Level 
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becomes more of revision, which gives them a better edge over their JAMB 

counterparts. 

In view of the above, the algorithm developed (Hybrid KEM) has 

demonstrated a sharp and improved performance over the other two (K-Means and 

Expectation-Maximization). 
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