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Harmonic Meromorphic Functions Involving
Generalized Incomplete Beta Functions

Amit Kumar Yadav!

Abstract

In this Article, a class My ([a]) of complex valued harmonic mero-
morphic functions of the form f = h + 9 € My is introduced with the
use of inverse function involving generalized incomplete beta function.
A subclass M7 ([aq]) of My ([o]) is considered for various properties.
Using coeflicient condition for functions belonging to My ([a1]) class,
bounds, extreme points, closure theorems and integral operator for those

functions are also obtained.
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1 Introduction

Hengartner and Schober [4] studied and gave the concept of the special

classes of harmonic functions, which are defined on the exterior of the unit
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disk U = {2z :|z| > 1}. They showed that these functions are complex valued,

harmonic, sense preserving, univalent mappings f, admits the representation

f(2) = h(2) + g(2) + Alog |z,
where h(z) and g(z) are analytic in U = {2 : || > 1}.
Let My denote a class of functions which are harmonic meromorphic in
the unit disk U = {z : |z| < 1} and are of the form:

f(z) = h(2) + g(2), (1)
where

1 oo o0
h(z) = 2 + Zanz", and g(z) = anz”
n=1 n=1

are meromorphic in U and h(z) has a simple pole at the origin with residue 1
there. The class My is studied in [2], [5], [6] and [8]. Whereas M7 denotes a

subclass of My consisting of functions f = h+g, with A and g are of the form

h(z) = % + Z la,| 2", z € U\ {0} and g(z) = —Z bo| 2", 2 €U (2)

n=1

and are called respectively meromorphic part and co-meromorphic part. A
function f = h +79 € My is said to be in the class M S}, of meromorphically

harmonic starlike functions in U \ {0} if it satisfies the condition

Re{—ml(z) _ﬂz)} >0 (zeU).

h(z) +9(2)

Jahangiri and Silverman studied the class MS} in [5]. For positive real

numbers «; and §;, 7 = 1,2,3,...s, a generalized incomplete beta function,
¢ ((ai)1,57 (/Bi)l,87 Z) = ¢ ([Oél] ,Z) is defined as

Cb([al],z) = Zs+1Fs((%)1,571;(@)1,5;2)

and its series representation is given as:

bllar) 2) = 3Gt ®)
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where

s (a1)peenn (s )n . _
Ve ([aq]) == BB eN={12 ..} (4)

and (a),, is the Pochhammer symbol defined as:

forn e N={1,2,...}.
A differential operator 6 [8] on the function ¢ ([a1], z) given in (3) is defined

96 (@)1 (1 2)) = 2200 (@01 (B)10:2).

The series expansion of 6 (¢ ((a;)1.s, (8i)1.5,2)) is given as

00 (o), 2) = 3 (4 1)\ @m0 (5)

= ) (n+ 1)V ([a]) 2"

n=o

Throughout this paper, the following notations are being used:

[e.e]

6(¢([n] 1)) =D _(n+ 1)V, ([an]) =: 6 (¢ ([on))) (6)

n=o

and

1) = ZVZ ([aa]) =: ¢ ([an]) (7)
pr0v1ded the correspondmg series are absolutely convergent, i.e if

Z (Bi — ;) > 1 and Z (6; — o) > 2 respectively.

=1
Generalized hypergeometric functions are used to define harmonic functions

in various research papers such as [1] and [3]. For harmonic functions

1 00 ' 00 o
=S4 DAY BIET =12
z
n=1 n=1
the convolution fi*f, is defined by

(fixfy) (2) == = + ZAUP 2"+ BB
n=1
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Corresponding to the function ¢ ([a1], z), defined in (3), consider

61 (joul,2) = 6 (] 2), = € U\ {0}

and its inverse function (q?l ([oa], z)) defined by

o2+ (31 (.9) " = =

The series expansion of this inverse function is given as:

z e U\ {0}.

= Z4
z 0 (al)n—l—l ......... (as)n—l—l

(&([al]’z)yl 1 o= (B)nsteeeen (Bs)ns o

(e o]

B

—0 n—i—l

where

Vos (eal) = %11))7:1 ................. (( g S)):ll : (8)

From the contiguous relation of Pochammer symbol (a), ; = a(a+1),,, it
is noted that

Vi ( (H ) ([ +1]). (9)

Let

H(z) {(51 (@)2) " = e } -1 i—vzﬂlqal])zn (10)

which is meromorphic function in U. Again, corresponding to the function
¢ ([a1], 2), defined in (3), consider

52 (feul,2) = S0 ([l 2), =€ U\ {0)

and its inverse function (52 ([oa], z)) defined by

b2 (o.2)x (%2 (0).2)) " = S5+ =€ U\{0)

2)

The series expansion of this inverse function is given as:

_ S N (¢} g (Bs)n n
(2le)2) = 3 i
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Let

6te) = { (Balio ) - s b= im ()

which is an analytic function, hence meromorphic in U. Now, harmonic mero-

morphic function defined as
F(z) = H(z) + G(z) € My, (12)

where H and G and are of the form (10) and (11) are called respectively
meromorphic part and co-meromorphic part of F(z). Using convolution “*”
of harmonic meromorphic functions F(z) = H(z) + G(z) given by (12) and
f(2) = h(2) + g(z) given by (1), a linear operator F; ([ay]) f(2) : My — My
is defined as:

Folla]) f(z) = F(z )¥f( )— H(z) % h(z )+G( ) % ( ) (13)

= ——l—Z o) anz +Z

n+1

Involving operator F; ([au]), a class My ([au]) is defined as follows:

Definition 1.1. Let My ([ay]) denote the family of harmonic meromorphic
functions f(z) = h(z) + g(z) € My satisfying

(o) )
R{ (o)) F2)

}>0 (ze€U), (14)

2(H(z) xh(z) — 2 (G *g(3))

Re ¢ — — >0 (z€U).
H(z)*h(z) + G(2) x g(2)

Denote My ([a1]) = My ([a1]) N M.

2 Coefficient Conditions

In this section, sufficient coefficient condition for the class My ([aq]) is

established and then it is proved that this coefficient condition is necessary for
its subclass M ([aa]) -
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Theorem 2.1. Let f(z) = h(z) + g(2) be of the form (1) and if

> 1 1
Z”{vzﬂ o) ™! T2 @) ‘b"'} =1 (15)

where V3, ([oa]) and Vi, ([a1]) are given in (4) and (8) respectively, for pos-

itie real numbers a; and B; with Y (f; — ;) > 1, then f(z)is harmonic,
i=1

orientation preserving and univalent in U \ {0} and f € My ([ay]).

Proof. Let the function f(2) = h(2)+g(z) given by (1), satisfying (15). Under
the condition Z (Bi — a;) > 1, it follows that 0 < V_, ([an]) < V2 ([an]) <1

for all n > 1. Then for 0 < || < |z2] < 1,

) = Gl > W) = Al = lglen) = o)
> Tl X el D
- - ’22'22"“&”' )
> - i” Vo ! v 'b"'}]
> 0,

if (15) holds, then f is univalent in U \ {0} .

In order to show that f is sense preserving in U\ {0}, it only needs to show
that |h/(2)| > |¢'(#)]. For 0 < |z| =r < 1, on using (15), it follows that

1
Wl = — anan||2|n 1
| n=1
> —Q—Zn|an|r"’1
r n=1
o
> 1—Zn|an|
n=1



Amit Kumar Yadav 63

> 1 —g"{m Ian|}

n+1

> 20 (e )

n=1

(o.9] o

> > nfbal > n bl
n=1 n=1
oo

= D _nlbal 2" > 19 (2)]
n=1

which proves that the map f is sense preserving in U \ {0}.
Now, in order to show that f € My ([ay]), it suffices to show that

7 )

(HE) () - <G’(z) . g(z))
H(z)*h(z) + G(z) * g(2)

Re > 0. (16)

/

It is known that Re (p(z)) > 0, if and only if igzﬁ < 1 for an analytic
function p(z) =1+ p1z + paz + ...
Let )
A(2) == —2 (H(2) x h(2)) + = (G(z) " g(z)) (17)
and
B(z) := H(z)*x h(z) + G(z) * g(2). (18)
It is observe that (16) holds if
|A(z) + B(2)| — |A(2) — B(2)| > 0. (19)

Now from (17) and (18), it follows that

[A(2) + B(2)]

= ‘—z (H(2)*h(2)) + =z (G(z) *g(z)), + H(z) *x h(z) + G(z) * g(2)

9 & 1 R 1 _n
FRD DI TP DI oy L

Fi ; (n—1) T o) |an] || nzl (n+1) S [bn| [2]
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and

[A(2) = B(2)]

_ ‘—z (H(2) % h(2)) + = (G(z) " g(z))' — H(2) % h(z) — G(2) * g(2)

1 R 1 .
R (T i DLy P U

n=1

K

1

3
I

o0

(n+1) ba] 2™

NE

i B 1
mwm +Z A N )

Il
—

n

Thus, from (15)
IA(Z) B(z)| — |A(z) — B(z)]|
22%5“ |anuz\ —QZn \b ||2]"

2 - 1
i 1_ n+1 n+1
{ S g ol zn—vs IS
> i ol s
1 Vn+1 ([al]) V3 (o (

v

v

n

1= S e ol + ey }

>
>
This proves the result. [l

Now, we prove that the condition (15) is necessary for functions f € M ([a1]) .

Theorem 2.2. Let f(z) = h(z) + g(2) € My with h and g are of the form
(2), then f € My ([o1]) if and only if

1
> { e e+ e ) < .

where V3, ([oq]) and Vi, ([oa]) are given in (4) and (8) respectively.
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Proof. In view of Theorem 2.1, it only needs to prove the “only if”” part of the
Theorem. Since My ([a1]) € My ([aq]), it suffices to show that f & My ([aq])
if the condition (20) does not hold. If f € M ([ay]) then

!/

L] GG -2 (GEI*9(2) »

H(z) % h(z) +G(2) *x g(2)

is equivalent to

Qvas o lanl 2" Qan]anE”
Re = >0, (21)

o0

1 1 1 =n
: +n§lm lanl 2" = 2. ity 10l 2

= 1 1
I Zlnviﬂl([aﬂ) |anl |z|n+ vas |b | |2 |n+
n=

S n+1 n+1
1+ EIVfl_Hl([alD |an| |Z| * + Zlm |bn| |Z| +

Since

‘ £

hence the condition (21) holds if

>0, (22)

Now, if the condition (20) does not holds, then the numerator of above
equation is negative for z sufficiently close to 1. Which contradicts the required

condition for f € My ([o1]) and this proves the required result. O

Corollary 2.3. If f € My ([ay]) then

D lan| < (H%) (€2) {0 (¢ ([aa +1])} = {¢ ([en + 1)}

and

D 1bal < (€D O (6 ([a]))} = {¢ (D)},

M8

where ((2) = > =5 is called a Zeta function and 0 (¢ ([ou])), ¢ ([a1]) are given

n=1

in (6) and (7) provided i (Bi — ;) > 2.

=1
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Proof. On using relation given in (9), (6) and (7), from Theorem 2.2 it follows
that

o) < 32 Tan (o)

- Ejk%n+l }OI ) (Jar + 1))

Zn— n+ 1DV (Jog + 1]) Zﬁvgﬂ (g + 1))

=1 n=1

IN

Ha_)( @) HO (6 (fos + 1)} — {6 (o + 1Y)

z:lﬁZ
and
- ZH } : (o)
< i%(n‘f’l VS Z Vs (lfl
< (52)[{9( ¢ ([aa]))} — {¢([a1])}]
0
3 Bounds

In this section, bounds for functions belonging to the class Mz ([oy]) are

determined with the use of Theorem 2.2 and Corollary 2.3.

S

Theorem 3.1. Let f € My ([ou]), then for > (i —a;) > 1 and 0 < |z] =
i=1

(i) e oo (10)

r <l
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Proof. Let f € Mz (|

using Theorem 2.2, it follows that

+Z|an|z _Z|bn|zn

F(2)]

and

IN

IN

IA

v

v

v

v

>

; + Z |a,| ™ + Z b, | 7"
n=1 n=1

o0

n=1

1
> (] 1B

n=1

1

1
——i—'r’VS

SO WL SNy
r n=1 n=1

1 o

061

n=1

== (an] + b

n=1

1
- —1rVi(

r

——er o] Z {

- Bi

+Z|an|z —Z|bn|z”

=+ V1 ([aa]) an(

(o] anaan\ + Pl

%)

_)_

This proves the required result.

n+1

a])

|an| +

1
Vs ([an

)

[bn ]

67

1]), taking the absolute value of f defined in (2) and

]

Using inequalities obtained in Corollary 2.3, following functional bounds

are estimated.
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Theorem 3.2. If f € My ([a1]) then for 0 <|z|=r <1

5—> (0.6 ([on + 1)} — {6 ([on + 1] |
106 (o))} — {6 ()]

S

FE) < - +7¢(2) (

1

and

1f(2)] > % —7((2) (Hl%) {0 (¢ ([an +1]))} = {¢ ([oa +1])}]
+[{0 (¢ ([aa]))} = {¢ ([eu]) }]

where ((2) = i = is called a Zeta function and 0 (¢ ([a1])), ¢ ([ou]) are given
n=1

in (6) and (7) provided i (Bi — i) > 2.
i=1

Proof. Let f € My ([aq]), using Corollary 2.3 and taking the absolute value
of f of the form (2), it follows that

P = |2+ D laal 2 =3 bl 20
< %+Z|an|r”+2|bn|r"
< b rS (ol + Il
< L [ (115 ) 06 (far-+ 1)) = (o + 1D}
IO @ (o))}~ {6 ()}
and
FEL = [ D ol =3 ol

> S = Y bl

> > (el + )

- [ (I3 0@ o + 1)}~ 0 (o + 1Y
L0 (6 () - {6 (fan])}]

This proves the required result. O]
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Remark: The functional bounds obtained in Theorem 3.2 are best possible

for f € My ([ov]).

In view of above remark, the following result is obtained which is sharp:

Corollary 3.3. Let f € My ([ay]) then

k3

{w el 1) { (T ) {06 far-+ 1)) = {6 (s + 1D} ] }

+H{0 (¢ ([a])} = {o ([aa])}]

C C\ FUN{0}).

4 Extreme Points

In this section, extreme points for the class My ([oi]) are provided.

Theorem 4.1. Let f = h + g, where h and g are of the form (2) then

f € My ([e1]), if and only if f can be expressed as

o0

f(z) = (Tnhn(2) + Yngn(2)) ,

where z € U \ {0} and

fOT’
z - n\ 2 - 2z ,MNn , ...
go Z’ g e

and

Z:L‘n—i—yn =1, p, >0 and y, > 0.
n=0

Proof. Let

f(2) = > (@ahn(2) + Yngn(2))

n=0

n

= 1 Vi ([ad]) 1 Vv
= woho+yogo+zxn<;+M2>+yn(;——

n=1

() ()

(23)
(24)
(25)
(26)
n ([al])zn>
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Thus by Theorem 2.2, it follows that f € Mz ([ay]), since

55{”vmf@nb(V%ﬁ?hm“>‘”vz&nb(vzghb%)}

n=1

an+yn — 1—$0—yo) L.
n=1
Conversely, suppose that f € Mz ([ag]). Set

T, = N

which satisfy (26), thus
1 G n S —=n
Fe) = S Dlenl =Sl
_ _+Z n+1 [ay]) ivi’; 1))

n=1
9]

n=1 n=1
n=1 n=1 n=1 n=1

= xoho + Yogo + Zhnxn + Zgnyn

n=1 n=1
= Z (Tnhn + Yngn) -
n=0

This proves the Theorem.

[]

Remark: The extreme points for the class My ([oi]) are given by (24)

and (25).

5 Closure Theorems

In this section, convolution of the class My ([aq]) and convex linear com-

bination of its members are defined and studied.
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Theorem 5.1. Let f € My ([an]) and F € My ([a1]), then the convolution

function
~ 1 & n - =n
fRF = -+ §_1 lan A, | 2" — E—1 b, B,| 2" € Mg ([cn]) -

Proof. Since F' € My ([an]), then by Theorem 2.2, |4,| < 1 and |B,| < 1,
hence
1
nq =z lanAnl + =—— ]ann|}
Z {Vn+1 a1]) Vi ([aa])

1
<Z”{ (P R ZX (7)) "’”'} =1

by Theorem 2.2 as f € Mﬁ([ 1]). Thus, again by Theorem 2.2, f*F €
My ([on]). O

Theorem 5.2. Let the functions f;(z) defined as

1 . n - —=n
z) = ;JFZ\%J\Z = lbaylz (27)
n=1 n=1

be in the class M ([aq]) for every j =1,2,3....... , then the function
2) =Y ¢ifi(2)
n=1

is also in the class My ([ou]), where Y ¢; =1 ,¢; >0 (j =1,2,3.......).

n=1

Proof. 1t is noted that

z) = é +) <ch ’@n,j|) ey (ch |bn,j!> z
n=1 \j=1

n=1 \j=1
Since f;j(z) € Mg ([a1]) for every j = 1,2,3......., then by Theorem 2.2, it

follows that
V (E :CJ |an3|)+n (E Cj |bn1|>]
n+1 ;

> |r
S Sl b

n=1
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hence, 1¥(z) € Mz ([ou]), which is the desired result. O

6 Integral Operator

In this section, it is shown that the class My ([a1]) is closed under Integral

operator.

Definition 6.1. An integral operator I : My — M7 is defined as:

c z

If(z) = g /OZ t°h(t)dt + ZC—CH i teg(t)dt, for ¢>0,z€ U\ {0}. (28)

Theorem 6.2. Let f € My ([a1]) and I f(z) be defined in (28), then I f(z) €
M (fen]) -

Proof. From the series representation of I, it follows that

1 > c > c
I = - —a,| 2" — — b, 2™
1) z+;n+c+1’a’2 ;n—irc—irl’ E

Since, f € My ([eu]), by Theorem 2.2, I f(z) € My ([a1]), since

%) c 1 1
D er " {v o) ™! T2 @) 'b"'}

n=1
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