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Abstract 
 

This paper investigates the implementation of asymmetric models and skewed distributions when 

managing market risk using the Value-at-Risk. The comparative analysis of the VaR estimations is 

executed by consideration of the time dynamics and the sequence of potential violation of the model. The 

findings of the paper suggest that the consideration of skewed distributions of time series and asymmetric 

volatility specification result to more accurate estimations of the VaR and hence provide the means for 

more efficient estimators of the potential losses that an institution is likely to exhibit. The importance of 

the paper lies on the fact that according to the regulative authorities financial institutions are supposed to 

adopt internally models for managing more efficiently market risk and this could be achieved by applying 

asymmetric models on both the volatility of their assets and on the distributions of the examined time 

series. 
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1  Introduction 

Financial risks are classified into broad categories of market risks, credit risks, liquidity risks, 

operational risks and legal risks. In recent years, the tremendous growth of trading activity and 

the well-publicized loss of many financial institutions due to the recent financial crisis have 

led financial regulators and supervisory committee of banks to favour quantitative techniques 

which appraise the possible loss that these institutions can incur. One of the most sought-after 

techniques for managing market risk is the Value at Risk (VaR). Regulative authorities’ 

objectives towards a stable financial system are often exposed to the adverse impact that the 

overexpansion of trading activities of financial institutions might have on the functioning of 

financial markets. These worries stem from the increased involvement of banks in the 

derivatives markets, which are becoming global, more complex, and therefore embed systemic 

risk; on top of that these instruments do not show up on balance sheets.  
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One of the most attractive approaches for modeling VaR is the delta -normal according to 

which the VaR is calculated as the product of the forecasted volatility and the corresponding 

percentile of the normal distribution. Although, volatility models exhibit asymmetries on the 

way that new information is incorporated in the process, most of the extant papers are based on 

symmetric GARCH models. On top of that, the distributional form which is adopted in most 

cases is a symmetric one, i.e. the normal or the t -distribution, which apparently does not reflect 

with accuracy the asymmetric effects that are observed in financial time series.  

The aim of this paper is to investigate the effectiveness of VaR models for managing market 

risk by consideration of the asymmetric effects of financial time series on both the volatility 

and the distributional form. Based on the family of the autoregressive conditional 

heteroskedasticity models of Engle (1982) [1], this paper considers many different asymmetric 

effects on both the volatility process and on the distributional form providing a comparative 

analysis. According to the empirical findings of the paper the adoption of asymmetric models 

are more efficient in forecasting market risk, a conclusion that should be considered from both 

regulators and investors. The rest of the paper contains a literature review in the second 

chapter, the data and empirical analysis, the empirical findings and finally the conclusi on.  

 

2  Literature Review 

According to Jorion (1995) [2] market risks arise from changes in the prices of financial assets and 

liabilities (or volatilities) and are measured by changes in the value of open positions or in earnings. 

Market risks include basis risk, which occurs when relationships between products used to hedge each 

other change or break down, and gamma risk, due to nonlinear relationships. (Holders of large positions 

in derivatives have been hurt by basis and gamma risk, even though they thought they were fully hedged). 

Market risk can take two forms: absolute risk, measured by the loss potential in dollar terms, and relative 

risk, relative to a benchmark index. While the former focuses on the volatility of total returns, the latter 

measures risk in terms of tracking error or deviation from the index. Value-at-Risk has become one of the 

most sought-after techniques as it provides a simple answer to the following question: with a given 

probability (say α), what is the predicted financial loss over a given time horizon? The answer is the VaR 

at level α, which gives an amount in the currency of the traded assets (in dollar terms, for example) and is 

thus easily understandable. There are several ways for VaR estimation, such as the delta-normal, the 

historical simulation, the stress testing and the Monte-Carlo approach. 

The delta-normal method assumes that all asset returns are normally distributed. A related, problem is the 

existence of “fat tails” in the distribution of returns on most financial assets. These fat tails are 

particularly worrisome precisely because VaR attempts to capture the behavior of the portfolio return in 

the left tail. With fat tails a model based on normal approximation underestimates the proportion of 

outliers and hence the true VaR.  

The historical-simulation method provides a straightforward implementation of full valuation. It consists 

of going back in time, such as over the last 90 days, and applying current weights to a time series of 

historical asset returns. This method is relatively simple to implement if historical data have been 

collected in-house for daily marking to market. The same data can then be stored for later reuse in 

estimating VaR. As always, the choice of the sample period reflects a trade-off between using longer and 

shorter sample sizes. Longer intervals increase the accuracy of estimates but could use irrelevant data, 

thereby missing important changes in the underlying process. For instance, to obtain a monthly VaR, the 

user would reconstruct historical monthly portfolio returns over, say, the last five years. This method is 

robust and intuitive and, as such, forms the basis for the Basle 1993 proposals on market risks. 
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Stress Testing takes a completely opposite approach to the historical simulation method. This method, 

sometimes called scenario analysis, examines the effect of simulated large movements in key financial 

variables on the portfolio. It consists of subjectively specifying scenarios of interest to assess possible 

changes in the value of the portfolio. For instance, one could specify a scenario where the yield curve 

shifts up by 100 basis points over a month or a doomsday scenario where a currency suddenly devalues 

by 30 percent. These are typical scenarios used by the traditional asset liability management approach. 

In contrast to scenario analysis, Monte-Carlo simulations cover a wide range of possible values in 

financial variables and fully account for correlations. In brief, the method proceeds in two steps. First, the 

risk manager specifies a stochastic process for financial variables as well as process parameters; 

parameters such as risk and correlations can be derived from historical or optional data. Second, fictitious 

price paths are simulated for all variables of interest. At each horizon considered, which can go from one 

day to many months ahead, the portfolio is marked to market using full valuation. Each of these “pseudo” 

realizations is then used to compile a distribution of returns, from which a VaR figure can be measured. 

The MC method is similar to the historical simulation method, except that the hypothetical changes in 

prices for an asset are created by random draws from a stochastic process. This approach analysis is by far 

the most powerful method to compute VaR. It can account for a wide range of risks, and even model risk. 

It can incorporate time variation in volatility, fat tails, and extreme scenarios. 

Most models in the literature focus on the VaR for negative returns as mentioned by Jorion (2000) [3]. 

Indeed, it is assumed that traders or portfolio managers have long trading positions, i.e. they bought the 

traded asset and are concerned when the price of the asset falls. Giot and Laurent (2003) [4], focus on 

modeling VaR for portfolios defined on long and short trading positions. Thus they model VaR for traders 

having either bought the asset (long position) or short-sold it (short positions). Correspondingly, one 

focuses in the first case on the left side of the distribution of returns, and on the right side of the 

distribution in the second case. 

Black (1976) [5] first noted that often, changes in stock returns display a tendency to be negatively 

correlated with changes in returns volatility, i.e. volatility tends to rise in response to “bad news” and to 

fall in response to “good news” asymmetrically. This phenomenon is termed the “leverage effect” and can 

only be partially interpreted by fixed costs such as financial and operating leverage (see Gewe (1982) 

[6]). The asymmetry present in the volatility of stock returns is too large to be fully explained by leverage 

effect. According to the leverage effect, a reduction in the equity value would raise the debt-to-equity 

ratio, hence raising the riskiness of the firm as manifested by an increase in future volatility. As a result, 

the future volatility will be negatively related to the current return on the stock. Discussion of the leverage 

effect can also be found in Kupiec (1990) [7] where the leverage effect is tested within the context of a 

linear GARCH(p,q) model by introducing a stock price level in the variance equation. The coefficient is 

insignificant though this may be a result of a failure to adjust for strong trend in the price level. It is also 

worth noting that the leverage effect can only partially explain the strong negative correlation between 

current return and current volatility in the stock market. In contrast to the causal linkage of current return 

and future volatility explained by the leverage effect, the fundamental risk-return relation predicts a 

positive correlation between future returns and current volatilities in stock prices. However, an alternative 

explanation is the volatility feedback effect, studied in French, Schwert and Stambaugh (1987) [8] and 

Cambell and Hentschel (1990) [9]. 

 

3  Data and Research Methodology 

For the purposes of this paper, eight main indices are used from the US, EU and Asia on a daily basis for 

a period of time which spans from 1928 to 2005. Precisely, the data refer to the Dow Jones, Nasdaq, S&P 
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500, FTSE/ATHEX, CAC40, DAX, FTSE 100 and Nikkei 225. Daily returns (log differences) often 

exhibit serial autocorrelation, and an AR(p) filter is applied: 

 t t p t p t
r r r   

0 1 1
...

 
       ,                                                              (1) 

where εt are the residuals of the corresponding AR(p) filter. The residuals of the first moment models (εt), 

are ready for further analysis under the second moment models, the ARCH models. The first model 

adopted in the analysis is the Engle’s (1982) Autoregressive conditional Heteroskedasticity Model: 

  t t t
= z h           (2) 

where z is a zero-mean Gaussian process with unit variance and h represents the q
th
 order ARCH process:

 
2

t 0 1 t-1
h = a +a    or 

2 2

t 0 1 t-1 q t-q
h = a +a +...+a          (3) 

The next volatility model is that of Bollerslev (1986) [10], the Generalized Autoregressive Conditional 

Heteroskedastic (GARCH), which allows a much more flexible lag structure. It is argued that a simple 

GARCH model provides a marginally better fit and a more plausible learning mechanism than the ARCH 

model with an eight-order linear declining lag structure as in Engle and Kraft (1983). The variance 

function of the GARCH model is given by the following equation with respect to the residual process εt of 

the first moment models:                                                                                                                 

 

q p
2

t 0 i t-i i t-i

i=1 i=1

h = a + a + h                                                                       (4) 

Furthermore, the logarithm ARCH model is applied which was proposed by Geweke (1986) [12], Pantula 

(1986) [13] and Milhoj (1987a) [14]: 

      2 2

t 0 1 t-1 q t-q
log h = a +a log +...+a log          (5) 

Another extension is that of Higgins and Bera (1992) [15], the non-linear ARCH (NARCH) model: 

      
1

2 2 2

t 0 1 t-1 q t-q
h = + +...+

  

        
  

,      (6) 

, where σ
2
>0, φi≥0, δ>0 and the φi’s are such that 

q

i

i=0

= 1 . 

Furthermore, the Nelson’s (1991) [16] EGARCH model is adopted in the paper which accounts for the 

leverage effect: 

    t-1 t-1 t-1

t 0 t 1

t 1 t 1 t 1

ln h = a + - E + + ln h
h h h

  
  



  

 
   
 
 

    (7) 

Particularly, the parameter θ captures the leverage effect (when θ < 0 the leverage effect is taken place).  
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The next model which accounts for asymmetries in the volatility, is the Threshold GARCH 

(TGARCH) model of Zakoian (1991a) [17]: 

 





+ + - - + + - -

t 0 1 t-1 1 t-1 q t-q q t-q

1
1 1 2

2 2
1 t-1 p t- p

h = a +a - a +...+a - a +

             + h +...+ h

   

 

   

 

       (8)  

where  +

t t
= max ,0   and  -

t t
= min ,0                      

Another model which accounts for asymmetries and is applied at this paper is the GJR -GARCH 

model of Glosten et. al. (1993) [18]: 

       2
q q p

2

t 0 i t-i i t-i t i j t- j

i=1 i=1 j=1

h = a + a d <0 h    


            (9) 

where γi, for i=1,…,q, are parameters for estimation, d(.) denotes the indicator function (i.e. d( εt-i < 0) = 1 

if εt-i < 0, and d(εt-i < 0) = 0 otherwise). The GJR model allows good news, (εt-i > 0), and bad news, (εt-i < 

0), to have different effects on the conditional variance. Therefore, in the case of the GJR(0,1) model, 

good news has an impact of α1, while bad news has an impact of α1+γ1. For γ1 > 0, the “leverage effect” 

exists. 

Finally, the paper adopts the Asymmetric Power ARCH or AP-ARCH(p,q) model of Ding et al. (1993) 

[19]: 

  
q p

2 2
t 0 i t-1 i t-i j t- j

i=1 j=1

h = a + a - + h
 



              (10) 

where α0 > 0, δ ≥ 0, bj ≥ 0, j=1,…,p , αi ≥ 0 and -1 < γi < 1, i=1,…,q. The model imposes a Box and Cox 

(1964) [20] power transformation of the conditional standard deviation process and the asymmetric 

absolute innovations. The functional form for the conditional standard deviation is familiar to economists 

as the constant elasticity of substitution (CES) production function. In the case of the APGARCH 

modelling the leverage effect is captured by the parameter γ.  

For the estimation of the volatility models I apply several symmetric and asymmetric 

distributions maximizing the likelihood accordingly. The symmetric distributions are the 

normal, the t-student and the GED, while the asymmetric ones are the Hansen’s (1994) [21] 

and the Giot and Laurent’s (2001) [22] skewed t distributions. 

Hansen (1994) considered a skewed T distribution, which is applied in the residuals εt of the first moment 

models, yielding: 
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 

n+1
-

2 2

t

t t t

t

t n+1
-

2 2

t

t
t

t

b +a
h1 a

b c 1+ , < -
hn - 2 1- b

g /n, =

b +a
h1 a

b c 1+ , -
hn - 2 1+ b







 








    
    
   

    
  
       


                        
   

     (11) 

where 2 < n < ∞, and -1 <  λ < 1. For computation purposes I adopt the logistic transformation to the 

degrees of freedom and the coefficient of skeweness: 
 

 
*

t

t

U - L
x = L+

1+exp -x
. Even if x is allowed to vary 

over the entire real line, x
*
 will be constrained to lie in the region [L, U]. 

The constants α, b and c are given by: 

 
n - 2

a = 4 c
n -1


 

    
 

 , 2 2 2b = 1+3 - a         and 

 

n+1

2
c =

n
n - 2

2


 
 
 

 
    

 

          (12) 

This skewed student-t distribution specializes to the student-t distribution by setting λ = 0. 

Along with this skewed distribution this paper also adopts the Giot and Laurent (2001) skewed 

distribution: 

 

 

 

n+1
-

2

t

t
t

t

t n+1
-

2

t

t -1 t

t

n+1 s +m
h2 s m2

1+ , < -
1n hn - 2 s

+× n - 2
2

f /n, =

n+1 s +m
h2 s m2

1+ , -
1n hn - 2 s

+× n - 2
2









 










                     

       
  

              

             
 

     (13)  

where ξ (ξ>0) is the asymmetry coefficient, and m and s
2
 are respectively the mean and the variance of 

the non-standardized skewed student defined as: 
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n -1
n - 2

12
m = -

n

2






 
     

  
     
 

  and  
2 2 2

2

1
s = + - m -1


    (14)                                                                                   

Lambert and Laurent (2000) show that the quantile function 
*

, ,a n
st   of a non- standardized skewed student 

density is: 

 

 

  

2

2

*

a,n,

2 2

1 a 1
t 1+ ,n                           if    a < 

2 1+
st =

1- a 1 1
- t 1+ ,n                   if    a  

2 1+




 


 

  
  
 


          

     (15) 

where tα,n is the quantile function of the (unit variance) Student-t density.  

One of the most widely used methods for estimating the volatility models is the Maximum Likelihood 

Estimator and the Quasi-Maximum Likelihood Estimator if the normal distribution is used. 

The one-step-ahead VaR computed at t-1 for long trading positions is given by t a t
+ z h   when for 

short trading positions it is equal to t 1-a t
+ z h 

 
with zα being the left quantile at α% for the normal 

distribution and z1-α is the right quantile at α%. 

For the t-student APARCH model, the VaR for long and short positions is given by t a,n t
+ st h  , and 

t 1-a,n t
+ st h   with ,a n

st being the left quantile at α% for the (standardized) student distribution with 

(estimated) number of degrees of freedom n and 1 ,a n
st

 is the right quantile at α% for this same 

distribution. For the skewed Student APARCH model, the VaR for long and short positions is given by

, ,t a n t
+ skst h   and , ,t 1 a n t

+ skst h


  with , ,a n
skst   being the left quantile at α% for the skewed 

student distribution with n degrees of freedom and asymmetry coefficient ξ, while, 1 , ,a n
skst   is the 

corresponding right quantile. If log(ξ) is smaller than zero (or ξ < 1), | , ,a n
skst  | > | 1 , ,a n

skst  | and the VaR 

for long trading positions will be larger (for the same conditional variance) than the VaR for short trading 

positions. When log(ξ) is positive, we have the opposite result. Therefore, the skewed student density 

distribution allows for asymmetric VaR forecasts and fully takes into account the fact that the density 

distribution of asset returns can be substantially skewed. 

All models are tested with one-step ahead VaR level α and their performance is then assessed by 

computing the failure rate of returns. By definition, the failure rate is the number of times returns exceed 

(in absolute value) the forecasted VaR. If the VaR model is correctly specified, the failure rate should be 

equal to the pre-specified VaR level. Notice also, that since the normal distribution of the returns is under 

question, the aforementioned tests might overdo for small values of α. 
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According to the Kupiec test (unconditional coverage) let 

T 1
a a

t+1

t 0

N I




  be the number of days over a T 

period that the time series of the residuals of the first moment model was larger (in absolute values) than 

the 
a

t
VaR  estimate, where: 

 
 

 

  ε

   ε

a

t 1 t+1a

t+1 a

t+1 t+1

1,             if  VaR long
I

0,             if VaR long


 

 


 for long trading positions and          (16) 

 
 

 

a

t+1 t+1a

t+1 a

t+1 t 1

0,             if    VaR short
I

1,             if    VaR short






 
 



 for short trading position               (17) 

Hence, N
α
 is the observed number of exceptions in the sample. As argued in Kupiec (1995) [23], the 

failure number (failure is the event where the financial time series is lower than the VaR for long trading 

position and larger than the VaR for short trading position) follows a binomial distribution, N
α
 ~ Binomial 

(T, fr
α
 = Ν

α
/Τ). At the 5% level and if T yes/no observations are available, a confidence interval for fr  

(failure rate) is given by: 

  1.96 1fr fr fr T


   
,  1.96 1fr fr fr T


    

         (18) 

The pair of the null and alternative hypothesis for the following test is H0: fr=α and H1: fr≠α 

If we assume independence for the Bernoulli sequence I1,…IT, the likelihood under the null hypothesis is 

simply    1
; , ..., 1

N T N

T
L I I

 

       and the likelihood under the alternative is: 

    1
; , ...,

a a

a a

N T N
a a

N T N

T

N N
L f I I 1 f f 1

T T



    
        

   
    (19) 

and consequently, the appropriate likelihood ratio statistic is: 

 
 
 

0

1

  

  

likelihood under the H
LR = -2ln

likelihood under the H

 
  
 

       (20) 

   
aa

aa

T NN
a a

NT N N N
LR = -2 ln a 1 a +2 ln 1-

T T





               
      

    (21) 
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Asymptotically, this test is distributed as a χ
2
 with one degree of freedom

2
. This test can reject a model for 

both high and low failures but, as stated in Kupiec (1995), its power is generally poor.  

The unconditional coverage proposed by Kupiec (1995) tests the coverage of the interval but it does not 

have any power against the alternative that the zeros and ones come clustered together in a time-

dependent fashion. In the test above the order of zeros and ones in the indicator sequence does not matter, 

only the total number of ones plays a role. In contrast, Christoffersen (1998) [24] introduced a conditional 

coverage test. Of course, simply testing for the correct unconditional coverage is insufficient when 

dynamics are present in the higher-order moments. The two tests presented below make up for this 

deficiency. The first, tests the independence assumption (LRind), and the second, jointly tests for 

independence and correct coverage (LRcc), thus giving a complete test of correct conditional coverage. 

The above tests, for unconditional coverage (LRuc) and independence (LRin) are now combined to form a 

complete test of conditional coverage: 

 
 

 
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1 1
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; , ...,
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L a I I
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00 01

00 01 00 01
1

10 11

10 11 10 11

n n
     

n +n n +n
=

n n
      

n +n n +n

 
 
 
 
 
 

          (23) 

and nij indicates the number of transitions of i state to j state. The LRcc is asymptotically χ
2
 with degrees 

of freedom 2x(2-1)=2. As pointed out from Christoffersen (1998) conditioning on the first observation, 

the three LR tests are numerically related by the following identity,                          

 LRcc = LRuc + LRind           (24) 

Its main advantage over the previous statistic is that it takes account of any conditionality in our forecast: 

if volatilities are low in some period and high in others, the forecast should respond to this clustering 

event. The Christoffersen procedure enables us to separate clustering effects from distributional 

assumption effects. Another illustration of the LRcc is given below:

     00 1001 11 2

01 01 11 11 2
2 ln 1 2 ln 1 1 ~

n nT N n nN

cc
LR a a x

   

   
              

      
   (25) 

where nij is the number of observations with value i followed by j for i, j=0, 1 and 

a

ija

ij a

ijj

n

n
 


  are the 

corresponding probabilities. If the sequence of 
a

t
I  is independent, then the probabilities to observe or not 

observe a VaR
α
 violation in the next period must be equal, which can be written more formally as 

π01=π11=α. The main advantage of this test is that it can reject a VaR model that generates either too many 

or too few clustered violations, although it needs several hundred observations in order the test to be 

accurate. 

                                                           
2
 Two outcomes -1 = 1 degrees of freedom 



38                                                                                                                                                  Vasilios Sogiakas 
 

5  Empirical Findings 

From the empirical results, the parameters tend to be significant at 5% statistical significance 

level, in the cases where asymmetry volatility specifications and asymmetry distributions are 

recruited. Thus, the asymmetry in both volatility and distribution specifications, se ems to be a 

decisive factor for modeling financial time series. 

Another useful result, is that the parameter ‘β’ of the volatility functions seems to be close to 

unity, indicating a long memory process with high persistence to shocks. In this direction the  

parameter ‘δ’ of the AP-GARCH volatility function is close to two, and below two when the 

skewed T distribution is considered, indicating that there is substantially larger correlation 

between absolute returns than between squared returns. This is a stylized fact of high -

frequency financial results (often called ‘long memory’), according to Giot and Laurent (2003).   

According to Kupiec and Christoffersen tests (as shown on Table 1 of the appendix), under the Normal 

Distribution the AP-GARCH model captures better
3
 the characteristics of the data, since it gives more 

accurate results. Note also that for long trading positions the above tests overdo with respect to short 

trading positions, and this flows out, probably, from the existence of skewness in the data.  

The same conclusions are derived when we use other symmetric d istributions (such as the T-

student Distribution or the GED), or the skewed T distribution. The models that capture the 

asymmetry in volatility seem to be preferable. By comparing the distributions’ performance it 

is shown that the Skewed T distribution is better in capturing the structure of the data, since it 

considers their asymmetry. By applying skewed distributions, there is no relative efficiency for 

long trading positions compared with short trading positions.  

The leverage effect (bad news at present tend to have bad impacts on the future, i.e. negative 

returns today tend to increase the volatility of the next day) seems to be a significant factor in 

determining the time-varying volatility processes. 

The T-GARCH specification has the advantage of the time varying leverage effect, since it 

does not capture the phenomenon with a single fixed parameter. The leverage effect is 

explained as a time varying phenomenon and seems to be statistical significant at 5% 

significance level for all of the eight Indices considered in this dissertation. 

On the other hand, the E-GARCH specification suggests that the leverage effect  is statistical 

significance at 5% significance level for the Normal case except from the ASE Index where it 

is not significant. Furthermore, it is statistical significant for the T-Student distribution for all 

of the examined Indices and finally, it is statistical significant for the Generalized Error 

Distribution for all of the examined Indices  

On the other hand, although that the GJR specifica tion tracks out the leverage effect, it is not 

significant at 5% significance level.   Furthermore, the AP-GARCH specification captures the 

leverage effect approximately in the whole study. Particularly, the leverage effect is captured 

in the case of the Conditional Normal distribution, with insignificant parameters only in the 

case of the ASE, is present in the case of the Conditional T-student distribution, is present in 

the case of the Conditional Skewed T-student distribution of Hansen and finally, is present in 

                                                           
3
 Note that it is not defined always, because in some cases the Likelihood Ratio Statistic of the Kupiec or 

Christoffersen test is difficult to be computed 
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the case of the Conditional Skewed T-student distribution of Giot and Laurent, except for the 

case of the FTSE 100 Index. 

For all of the estimated models, the degrees of freedom of the T -student and the Skewed T - 

student of Hansen and of Giot and Laurent, seems to be statistical significant, indicating that 

the phenomenon of leptokurtosis is present and is successfully captured by these models. In the 

case of the GED the parameter v is below two and is statistically significant, indicating that th e 

conditional distribution of the returns is more leptokurtic than the Normal.  

The skewed T distributions that have been considered in this thesis, suggest a statistically 

significant parameter of skewness, emphasizing the importance of Skewed Distribution s in the 

analysis of financial data. The exception comes from the Nikkei 225 Index in the case of the 

Hansen Conditional Distribution approach and under the GARCH specification, where the 

skewness parameter is not significant. 

In this analysis, the second moment autocorrelations have been successfully modelled. This is 

an indication of success in applying Volatility models, since they have captured the serious 

non-linear dependences of the second moments in many various ways.  

 

6  Conclusion 

Volatility is a key factor which permeates most financial instruments and plays a central role in many 

areas of finance. The ARCH model and its various extensions have proven very effective tools along 

these lines. Indeed, by any yardstick, the literature on ARCH has expanded dramatically since the seminal 

paper by Engle (1982). However, many interesting research topics remain to be examined.  

This paper examines empirically the importance of accounting for potential asymmetries on both the 

volatility process and the distributional form of financial series. The empirical findings suggest that 

modeling market risk adopting skewed distributions provide more accurate estimations than when 

assuming symmetric distributions. This finding could be considered by institutional investors when 

quantifying the VaR estimations internally and most importantly by the regulative authorities which 

request from banks to meet specific standards and requirements for a more efficient functioning of the 

financial system. 
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Appendix 

 
Table 1. Panel A. p-values of the Christoffersen test with Normal distribution. 

 

 

 

α level Dow Jones Nasdaq S&P 500 ASE CAC 40 DAX FTSE 100 Mos Times Nikkei 225

5% - - - 0,22911 0,75000 - - 0,10224 -

2.5% - - 0,20833 0,81605 0,08992 0,00444 0,04925 0,62657 -

1% - 0,00000 0,00000 0,45648 0,00001 0,00000 0,00000 0,00625 0,00000

0.5% - 0,00000 0,00000 0,19283 0,00000 0,00000 0,00000 0,00009 0,00000

0.25% - 0,00000 0,00000 0,44685 0,00000 0,00000 0,00000 0,00000 0,00000

p-value of Christoffersen test for long trading positions using Normal ARCH(1) Model

α level Dow Jones Nasdaq S&P 500 ASE CAC 40 DAX FTSE 100 Mos Times Nikkei 225

5% - - - 0,02542 0,08224 0,00551 - 0,00001 -

2.5% - 0,07348 0,26721 0,02010 0,87644 0,89880 0,64519 0,05004 0,90000

1% - 0,03979 0,00095 0,44518 0,16696 0,01633 0,19240 0,81551 0,00179

0.5% - 0,00002 0,00141 0,24085 0,00338 0,00035 0,03792 0,21743 0,00000

0.25% - 0,00000 0,00000 0,49121 0,00038 0,00001 0,00368 0,04455 0,00000

p-value of Christoffersen test for short trading positions using Normal ARCH(1) Model

α level Dow Jones Nasdaq S&P 500 ASE CAC 40 DAX FTSE 100 Mos Times Nikkei 225

5% - - - 0,01703 0,00417 0,00019 - 0,00200 -

2.5% - 0,00011 0,91545 0,02092 0,01848 0,00010 0,00013 0,08649 0,00050

1% - 0,00949 0,28266 0,85717 0,65584 0,11366 0,13573 0,81578 0,68848

0.5% 0,09216 0,06205 0,24830 0,24085 0,21553 0,88254 0,70167 0,49543 0,07343

0.25% 0,00282 0,93495 0,45233 0,49121 0,86746 0,79606 0,73024 0,10060 0,00012

p-value of Christoffersen test for short trading positions using Normal GARCH(1,1) Model

α level Dow Jones Nasdaq S&P 500 ASE CAC 40 DAX FTSE 100 Mos Times Nikkei 225

5% - - - 0,32205 - 0,88392 - 0,06743 -

2.5% - - 0,02114 0,56630 0,01707 0,16430 0,12385 0,72115 -

1% - - - - - - - -

0.5% - - - - - - - -

0.25% - - - - - - - -

p-value of Christoffersen test for long trading positions using Normal GARCH(1,1) Model

α level Dow Jones Nasdaq S&P 500 ASE CAC 40 DAX FTSE 100 Mos Times Nikkei 225

5% - - - 0,22911 - 0,32738 - 0,04143 -

2.5% - - 0,64680 0,81605 0,03081 0,00320 0,01581 0,92397 -

1% - - - - - - - - -

0.5% - - - - - - - - -

0.25% - - - - - - - - -

p-value of Christoffersen test for long trading positions using Normal TGARCH(1,1) Model

α level Dow Jones Nasdaq S&P 500 ASE CAC 40 DAX FTSE 100 Mos Times Nikkei 225

5% - - - 0,02151 0,07347 0,01708 - 0,00001 -

2.5% - 0,46851 0,94637 0,01866 0,25690 0,79259 0,41122 0,13100 0,09800

1% - 0,01009 0,00025 0,44518 0,01181 0,06483 0,03278 0,48531 0,00009

0.5% - 0,00005 0,00003 0,24085 0,00046 0,00036 0,03792 0,00895 0,00000

0.25% - 0,00000 0,00000 0,49121 0,00003 0,00000 0,00006 0,00073 0,00000

p-value of Christoffersen test for short trading positions using Normal TGARCH(1,1) Model
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α level Dow Jones Nasdaq S&P 500 ASE CAC 40 DAX FTSE 100 Mos Times Nikkei 225

5% - - - 0,32205 - 0,88392 - 0,00301 -

2.5% - - 0,23132 0,72788 0,09004 0,16430 0,31989 0,36996 -

1% - - - - - - - - -

0.5% - - - - - - - - -

0.25% - - - - - - - - -

p-value of Christoffersen test for long trading positions using Normal GJRGARCH(1,1) Model

α level Dow Jones Nasdaq S&P 500 ASE CAC 40 DAX FTSE 100 Mos Times Nikkei 225

5% - - - 0,02452 0,01731 0,00034 - 0,00002 -

2.5% - 0,00036 0,93072 0,02092 0,01096 0,00024 0,00014 0,00543 0,00050

1% - 0,02303 0,07994 0,96416 0,08998 0,15996 0,17992 0,77067 0,68848

0.5% 0,09216 0,10341 0,03086 0,92943 0,18828 0,88254 0,70167 0,49543 0,07343

0.25% 0,00282 0,93495 0,07444 0,49121 0,54107 0,79606 0,73024 0,20519 0,00012

p-value of Christoffersen test for short trading positions using Normal GJRGARCH(1,1) Model

α level Dow Jones Nasdaq S&P 500 ASE CAC 40 DAX FTSE 100 Mos Times Nikkei 225

5% - - - 0,32205 - 0,73737 - 0,03169 -

2.5% - - 0,47053 0,72788 0,09004 0,58262 0,21048 0,87282 0,23931

1% - - - - - - - - -

0.5% - - - - - - - - -

0.25% - - - - - - - - -

p-value of Christoffersen test for long trading positions using Normal AP-GARCH(1,1) Model

α level Dow Jones Nasdaq S&P 500 ASE CAC 40 DAX FTSE 100 Mos Times Nikkei 225

5% - - - 0,02452 0,03460 0,00447 - 0,00167 -

2.5% - 0,00036 0,81739 0,02092 0,00795 0,00754 0,00036 0,11121 0,00908

1% - 0,02303 0,29202 0,85717 0,11025 0,07753 0,04857 0,81551 0,06962

0.5% - 0,16179 0,03545 0,92943 0,18828 0,69875 0,86336 0,66648 0,00068

0.25% 0,00009 0,96539 0,07444 0,49121 0,54107 0,44933 0,73024 0,20519 0,00000

p-value of Christoffersen test for short trading positions using Normal AP-GARCH(1,1) Model
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Table 2. Panel B. p-values of the Christoffersen test with T-student distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

α level Dow Jones Nasdaq FTSE 100 Nikkei 225

5% - - - -

2,50% - 0,00079 0,33870 0,00000

1% - - - -

0,50% - - - -

0% - - - -

p-value of Christoffersen test for long trading 

positions using T-student GARCH(1,1) Model

α level Dow Jones Nasdaq FTSE 100 Nikkei 225

5% - 0,00000 0,00000 0,00000

2,50% - 0,00000 0,00000 0,00000

1% 0,00000 0,00000 0,00000 0,00000

0,50% 0,00000 0,00000 0,01332 0,00015

0% 0,00000 0,00072 0,03321 0,00007

p-value of Christoffersen test for short trading 

positions using T-student GARCH(1,1) Model

α level Nasdaq FTSE 100 Nikkei 225

5% - - -

2.5% 0,00012 0,08529 0,00000

1% - - -

0.5% - - -

0.25% - - -

p-value of Christoffersen test for long trading 

positions using T-student E-GARCH(1,1) 

Model

α level Nasdaq FTSE 100 Nikkei 225

5% 0,00000 0,00000 0,00000

2.5% 0,00000 0,00000 0,00000

1% 0,00000 0,00008 0,00003

0.5% 0,00000 0,04768 0,00051

0.25% 0,00072 0,03321 0,01254

p-value of Christoffersen test for short trading 

positions using T-student E-GARCH(1,1) Model

α level Nasdaq FTSE 100 Nikkei 225

5% - - -

2.5% 0,00023 0,18665 0,00000

1% - - -

0.5% - - -

0.25% - - --

p-value of Christoffersen test for long trading 

positions using T-student AP-GARCH(1,1) 

Model

α level Nasdaq FTSE 100 Nikkei 225

5% 0,00000 0,00000 0,00000

2.5% 0,00000 0,00000 0,00000

1% 0,00000 0,00008 0,00003

0.5% 0,00000 0,00628 0,00131

0.25% 0,00072 0,03321 0,00333

p-value of Christoffersen test for short trading 

positions using T-student AP-GARCH(1,1) Model
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Table 3. Panel C. p-values of the Christoffersen test with GED distribution. 

 

 

 

 

Table4. Panel D. p-values of the Christoffersen test with skewed T-student distribution. 

 

 

 

α level Nasdaq FTSE 100 Nikkei 225

5% - - -

2,50% 0,00000 0,00000 0,00000

1% 0,00000 0,00000 0,00000

0,50% 0,00000 0,00000 0,00000

0% 0,00000 0,00000 0,00000

p-value of Christoffersen test for long trading 

positions using GED GARCH(1,1) Model

α level Nasdaq FTSE 100 Nikkei 225

5% 0,00000 0,00000 0,00000

2,50% 0,00000 0,00000 0,00000

1% 0,00000 0,00000 0,00000

0,50% 0,00000 0,00000 0,00000

0% 0,00000 0,00000 0,00000

p-value of Christoffersen test for short trading 

positions using GED GARCH(1,1) Model

α level Nasdaq FTSE 100 Nikkei 225

5% - - -

2.5% 0,00217 0,52134 0,71034

1% - - -

0.5% - - -

0.25% - - -

p-value of Christoffersen test for long trading 

positions using GED E-GARCH(1,1) Model

α level Nasdaq FTSE 100 Nikkei 225

5% 0,00000 - -

2.5% 0,00000 0,00000 0,00000

1% 0,00000 0,00350 0,12245

0.5% 0,00058 0,59684 0,31093

0.25% 0,01391 0,85559 0,08832

p-value of Christoffersen test for short trading 

positions using GED E-GARCH(1,1) Model

α level Nasdaq FTSE 100 Nikkei 225

5% - - -

2.5% 0,01422 0,72575 0,31762

1% - - -

0.5% - - -

0.25% - - --

p-value of Christoffersen test for long trading 

positions using GED AP-GARCH(1,1) Model

α level Nasdaq FTSE 100 Nikkei 225

5% 0,00000 - -

2.5% 0,00000 0,00001 0,00002

1% 0,00000 0,00584 0,07745

0.5% 0,00389 0,48695 0,31093

0.25% 0,01391 0,90923 0,92198

p-value of Christoffersen test for short trading 

positions using GED AP-GARCH(1,1) Model

α level Nasdaq FTSE 100 Nikkei 225

5% - - -

2.5% - 0,03467 0,26691

1% - - -

0.5% - - -

0.25% - - --

p-value of Christoffersen test for long trading 

positions using Skewed T-student Hansen AP-

GARCH(1,1) Model

α level Nasdaq FTSE 100 Nikkei 225

5% - - -

2.5% - 0,00000 -

1% - 0,00584 -

0.5% 0,00000 0,69862 -

0.25% 0,00000 0,90923 -

p-value of Christoffersen test for short trading 

positions using Skewed T-student Hansen AP-

GARCH(1,1) Model


