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Abstract 
 

This paper investigates the effectiveness of using Deep Learning with Multilayer 

Perceptron (MLP) to assess credit risk in banks. To this end, its performance is 

compared with that of Support Vector Machine (SVM), Gradient Boosting, 

Decision Tree (Random Forest), and Logistic Regression algorithms using credit 

risk analysis data from customers of two of the largest Brazilian financial 

institutions, focusing exclusively on Direct Consumer Credit operations. 

Performance is measured using accuracy, precision, recall, F1-score, AUC-ROC, 

and cross-validation. The MLP model presented the best overall performance, with 

accuracies of 84.45% (Bank A) and 94.00% (Bank B) and higher recall values, 

while Gradient Boosting achieved the highest AUC-ROC scores (87.90% and 

94.10%). All machine learning models outperformed Logistic Regression (79.0% 

and 78.38%), demonstrating that the adoption of these techniques — especially 

MLP — can significantly improve default prediction in direct consumer credit. 
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1. Introduction  

Growing global economic integration and advances in information technology have 

increased society's exposure to economic, financial, and health crises—such as the 

COVID-19 pandemic—directly impacting the financial capacity of individuals and 

businesses (Coelho and Lima Amorim, 2021). In this context, credit risk 

management has become fundamental to the stability of financial institutions, with 

this risk defined as the possibility of a debtor defaulting on their financial 

obligations (Schrickel, 2000). The incorporation of Big Data has transformed this 

management, enabling more accurate and dynamic analyses based on large volumes 

of structured and unstructured data, such as social media, transaction histories, and 

real-time economic indicators. 

This technological evolution has allowed financial institutions to enhance their risk 

models, transitioning from conventional approaches to more robust and proactive 

methods. However, this evolution also poses significant challenges related to data 

quality, integration, and governance, requiring accurate, relevant, and timely 

information to ensure successful analyses. Furthermore, the cost of changes in the 

modus operandi of their activities must be justified by efficiency gains, with the 

advantages of using additional models being as evident as possible. 

Therefore, this paper seeks to investigate the potential advantages of using Deep 

Learning with Multilayer Perceptron (MLP) to predict credit risk in banks. To this 

end, data from credit risk analysis of individual customers in Direct Consumer 

Credit (CDC) operations at two of the largest Brazilian financial institutions are 

used to compare their performance with that of other algorithms. Support Vector 

Machines (SVM), Gradient Boosting, Decision Trees (Random Forest), and 

Logistic Regression are considered, while the analysis is conducted using 

performance metrics such as accuracy, precision, recall, F1-score, AUC-ROC, and 

cross-validation. 

The results indicate that Multilayer Perceptron (MLP) Deep Learning is the best-

performing algorithm, achieving the highest accuracy rates and associated metrics. 

Gradient Boosting achieved the best AUC-ROC scores, and all other algorithms 

also outperformed logistic regression, which is widely used by financial institutions 

for credit risk prediction. These findings are useful for the scientific literature 

investigating bank management and the use of machine learning methods, providing 

empirical evidence for Brazilian institutions. They also serve financial market 

participants by demonstrating the potential of these algorithms to reduce credit 

losses, improve capital allocation, enhance pricing, and strengthen risk appetite 

frameworks. 

This paper is structured as follows: Section 2 presents the theoretical foundation, 

discussing the evolution of credit risk models and the state of the art in machine 

learning. Section 3 describes the database, preprocessing, estimated models, and 

metrics used. Section 4 reports and discusses the empirical results. Finally, Section 

5 concludes the paper, highlighting the practical implications of the results, the 

limitations of the study, and suggestions for future research. 
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2. Theoretical Framework 

In the past, credit risk assessment was performed using qualitative methods, such as 

the "5 Cs" model—Character, Capacity, Condition, Capital, and Collateral—which 

relied heavily on human subjectivity and experience. Although this framework was 

fundamental, technological advancements and the increasing availability of data 

drove the transition to quantitative techniques, notably Machine Learning. These 

new methods have replaced subjectivity with algorithms capable of identifying 

complex patterns in large volumes of data, generating more accurate predictions 

about the probability of default (Montevechi et al., 2024). 

Credit risk analysis at the individual level considers a set of variables that have 

historically shown a correlation with repayment ability. Age, for example, is often 

associated with financial stability; older customers tend to have greater professional 

stability and a longer credit history. Education level is also a relevant factor, as 

higher levels of schooling are generally correlated with higher incomes and, 

consequently, a lower risk of default. Main occupation and income are direct 

determinants of repayment capacity, being central variables in any credit scoring 

model. 

Behavioral variables, such as default history and the presence of records in credit 

protection agencies (like Serasa), are powerful predictors of future behavior. A 

customer who has previously experienced payment difficulties has a higher 

probability of recurrence. Similarly, marital status can influence risk, as family 

structure and shared financial responsibilities can affect the ability to honor 

commitments. Gender has also been studied, although its influence is complex and 

often mediated by other socioeconomic factors. The combination of these variables 

allows for the construction of a detailed and individualized risk profile for each 

customer. 

With the implementation of systems like Open Banking, credit scoring models have 

begun to incorporate transactional and behavioral data (behavioral scoring), such as 

consumption patterns and payments, which has significantly increased the accuracy 

of predictions (Vicente 2020; Bravo et al., 2023). This more complete and 

personalized approach, which considers the specific behavior of the customer, has 

proven increasingly effective in identifying risks. 

Recent literature highlights the superiority of machine learning models over 

traditional statistical approaches in credit risk problems. Advanced algorithms, such 

as Gradient Boosting and deep neural networks, capture nonlinear relationships and 

detailed interactions that would not be perceptible in traditional analyses, reducing 

the influence of subjective judgments and making the process more impartial and 

objective (Suhadolnik et al., 2023). 

Ensemble-based methods, such as Gradient Boosting and Random Forests, which 

combine multiple decision trees, are especially effective for improving predictions, 

particularly with imbalanced data common in the financial sector (Chopra and 

Bhilare, 2018; Zhang and Yu, 2024). Other methods, such as Support Vector 

Machine (SVM) and Deep Learning with the Multilayer Perceptron (MLP) 
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algorithm, stand out for their ability to capture complex relationships in the data 

(Dastile et al., 2020). Zhong et al. (2014) point to neural networks and SVMs as 

predominant techniques in the field. 

Despite the predictive power of these models, Logistic Regression remains popular 

due to its simplicity and the interpretability required by regulators (Florez-Lopez 

and Ramon-Jeronimo 2015; Huang et al. 2004). However, there is still no absolute 

consensus on the best method, making it essential to analyze which model best 

adapts to the specific context of each financial institution, considering market 

dynamics and different credit scenarios (Addo, Guégan, and Hassani 2018). This 

work contributes to this discussion by empirically comparing the performance of 

four of the main ML algorithms in a real scenario of the Brazilian market. 

 

3. Methodology 

3.1 Data 

This work uses real data from two large Brazilian financial institutions, referred to 

as Bank A and Bank B, to ensure confidentiality, as per nondisclosure agreements. 

In both cases, the data corresponds to a customer cohort observed over 12 months, 

intending to classify them as either compliant (0) or non-compliant (1). Non-

compliant customers are those who were more than 90 days late in paying their 

direct consumer credit (CDC) operations. 

To prepare the data for modeling, a six-step treatment and cleaning process was 

applied to create consistent and standardized datasets for all tested models. This 

procedure was applied independently for each bank, respecting the particularities of 

their databases. The steps were: 

1. Categorical Variable Encoding: Nominal variables, such as "Gender", "Marital 

Status," and "Education Level," were transformed into a binary numerical format 

using one-hot encoding. This approach creates binary columns for each category, 

allowing the algorithms to process this information appropriately. 

2. Handling Missing Values and Outliers: Missing numerical values were replaced 

by the median of the respective variable, a measure of central tendency robust to 

extreme values. To handle outliers, the winsorization technique was applied, 

limiting extreme values to the 1st and 99th percentiles, thus smoothing their impact 

without discarding the data. 

3. Normalization: Numerical variables were adjusted to a common scale in the [0, 

1] range using Min-Max normalization. This procedure ensures that variables with 

different magnitudes contribute equally to the model training. 

4. Correlation Analysis: To reduce multicollinearity, which can impair the 

performance of some models, variables with a correlation coefficient greater than 

0.9 were identified and excluded from the analysis. 

5. Class Balancing: Credit databases are often imbalanced, with a larger proportion 

of compliant customers. To prevent models from becoming biased towards the 

majority class, the oversampling technique was applied to the minority class (non-

compliant), ensuring that the training and testing samples had balanced proportions 
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(50% of each class). 

6. Sample Splitting: After treatment, the samples from each institution were divided 

into 70% for model training and 30% for testing and validation of the results. 

For Bank A, the initial sample contained 147,000 customers, with 78% compliant 

and 22% non-compliant, and included 52 registered variables. After the cleaning 

and selection process, 21 predictor variables were used. The transformed categorical 

variables were: default indicator, Serasa record indicator, nature of main occupation, 

education level, marital status, overdraft indicator, benefit type, and gender. The 

descriptive statistics revealed a large dispersion in variables such as main net 

income (mean of R$ 3,017.78 with a standard deviation of R$ 134,946.02) and the 

value of Serasa restrictions (mean of R$ 2,660.58 with a standard deviation of R$ 

509,711.04), which reinforced the need for normalization and outlier treatment 

steps to ensure the robustness of the analysis. 

For Bank B, the provided dataset contained 50,000 customers and 36 variables, 

already segmented with a proportion close to 50% for each class. After applying the 

same treatment pipeline, 18 predictor variables were selected for modeling. The 

converted categorical variables were: salary account at the institution, resolved 

restriction at Serasa, education level, gender, and type of residence. The descriptive 

analysis showed that variables such as the percentage of revolving credit utilization 

had high variability (mean of 30.36% with a standard deviation of 40.57%), 

indicating different risk behaviors among customers. Net income also showed 

considerable dispersion (mean of R$4,163.42 with a standard deviation of 

R$2,271.11), justifying the application of the same treatment procedures. 

 

3.2 Empirical Strategy 

3.2.1 Logistic Regression 

Logistic Regression is a statistical method widely used to assess the 

creditworthiness of borrowers due to its simplicity and transparency in predictions 

(Dastile et al., 2020). It allows for the estimation of the probability of an event 

occurring, such as a loan default, based on explanatory variables that can be both 

continuous and categorical, like income, age, and credit history. According to 

Corrar, Paulo, and Dias Filho (2007), Logistic Regression is characterized by 

describing the relationship between several independent variables Xi and a 

dichotomous dependent variable f (Z), representing the presence of default (1) or its 

absence (0). 

The model maps the linear combination of input variables to a probability value 

between 0 and 1 through the sigmoid function, which generates an "S"-shaped curve. 

Mathematically, the probability p of the event occurring is described as follows: 

 

Definition 3.2.1.1 Logistic Regression 

𝑝 =
1

1 + 𝑒−(α+∑ β𝑖𝑋𝑖
𝑘
𝑖=1 )

 



6                                          Bispo and Tessmann  

 
Where p is the probability of the event occurring, β0 is the intercept (or constant) 

of the model, βi are the coefficients representing the weight of each independent 

variable Xi, and the expression  ∑ β𝑖𝑋𝑖
𝑘
𝑖=1  describes the weighted sum of the 

independent variables, which contribute to the probability estimate. The main 

advantage of Logistic Regression lies in its ability to generate interpretable results, 

which is crucial for justifying credit decisions and complying with regulatory 

obligations (Chopra and Bhilare, 2018). 

 

3.2.2 Decision Trees (Random Forest) 

Decision Trees are non-parametric models that classify data through a series of 

hierarchical rules, dividing the dataset into increasingly homogeneous subsets 

(Quinlan 1986). The construction of the tree involves selecting attributes that best 

separate the classes at each node. Two common metrics for this selection are 

Information Gain and the Gini Index. Information Gain measures the reduction in 

entropy (uncertainty) after a split: 

 

Definition 3.2.2.1 Gain of Entropy(S) 

𝐺𝑎𝑖𝑛 (𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑ (
|𝑆𝑖|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑖))

𝑛

𝑖=1

 

 

Where S is the dataset, A is the attribute, and Sv is the subset of S for which attribute 

A has the value v. The Gini Index, in turn, measures the impurity of a node: 

 

Definition 3.2.2.2 Calculate of Gini(S) 

 

𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑ 𝑝(𝑥)2

𝑥∈𝑋

 

 

Where pi is the proportion of samples of class i in the set S. To avoid overfitting a 

single tree, the Random Forest algorithm was used, an ensemble method that builds 

multiple decision trees from random subsamples of the data (bootstrap) and 

variables. The final decision is made by a majority vote among all N trees: 

 

Definition 3.2.2.3 Final prediction for instance (x) 

 

𝐻(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒{ℎ𝑖(𝑥)}𝑖=1
𝑁  

 

Where H(x) is the final prediction for instance x. This approach reduces variance 

and improves the model’s generalization (Breiman, 2001). 
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3.2.3 Gradient Boosting 

Gradient Boosting is a powerful ensemble method that builds models sequentially 

and additively (Friedman, 2001). Unlike Random Forest, where trees are 

independent, in Gradient Boosting, each new tree is trained to correct the errors 

(residuals) of the previous model. The process minimizes a differentiable loss 

function through a gradient descent procedure. At each step t, the model is updated 

by adding a new tree ht(x) that best fits the negative gradient residuals of the loss 

function: 

 

Definition 3.2.3.1 Previous iteration 

 
𝐹𝑡+1(𝑥) = 𝐹𝑡(𝑥) + γ𝑡ℎ𝑡(𝑥)  

 

Where 𝐹𝑡+1(𝑥) is the model at the previous iteration, and ν is the learning rate, a 

hyperparameter that controls the contribution of each tree to prevent overfitting. 

This iterative approach allows the model to focus on the most difficult instances to 

classify, resulting in high predictive accuracy (Xia and Liu, 2020). 

 

3.2.4 Support Vector Machine 

The Support Vector Machine (SVM) is a classifier that seeks to find an optimal 

hyperplane that maximizes the margin of separation between classes in a feature 

space (Cortes and Vapnik 1995). For linearly separable data, the optimization 

problem is:  

 

Definition 3.2.4.1 SVM Linearly Separable Data 

min
𝑤,𝑏

(
1

2
) ||𝑤||

2
 subject to 𝑦𝑖(𝑤 ⋅𝑥𝑖+ 𝑏) ≥ 1  

 

Where w is the normal vector to the hyperplane and b is the bias term. For non-

linearly separable data, a slack variable ξi and a regularization parameter C are 

introduced: 

 

Definition 3.2.4.2 SVM with soft margin (non-linearly separable data) 

min
       𝑤,𝑏,𝜉

(
1

2
) ||𝑤||

2
+  𝐶 ∑ 𝜉𝑖 subject to 𝑦𝑖(𝑤 ⋅𝑥𝑖+ 𝑏)

𝑛

𝑖=1

≥ 1 −  𝜉𝑖, 𝜉𝑖 ≥ 0  

 

To handle complex and non-linear relationships, SVM uses the "kernel trick," which 

maps the data to a higher-dimensional space without explicitly calculating the new 

coordinates. In this study, the Radial Basis Function (RBF) was used, one of the 

most common in credit analysis: 
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Definition 3.2.4.3 Radial Basis Function (RBF) kernel 

 

𝐾(𝑥, 𝑥′) = exp(−γ‖𝑥 − 𝑥′‖2)  

 

3.2.5 Deep Learning with Multilayer Perceptron (MLP) 

The Multilayer Perceptron (MLP) is a type of feedforward artificial neural network 

model, composed of an input layer, one or more hidden layers, and an output layer. 

Its ability to learn hierarchical representations and capture complex non-linear 

relationships makes it particularly effective for credit risk problems (Addo, Guégan, 

and Hassani 2018). In a hidden layer, the output of a neuron j is calculated as: 

 

Definition 3.2.5.1 Hidden-layer neuron output 

ℎ𝑗 =  𝑓 (∑ 𝑤𝑖𝑗𝑥𝑖

𝑛

𝑖=1

+  𝑏𝑗)  

 

Where f is a non-linear activation function (like ReLU, f(x) = max(0, x)), wij are 

the synaptic weights, xi are the inputs, and bj is the bias term. The final output of 

the model, for binary classification, generally uses the sigmoid function to map the 

result to a probability: 

 

Definition 3.2.5.2 Sigmoid output layer (binary classification) 

 

𝑦̂ =  𝜎 (∑ 𝑤𝑗
′ℎ𝑗

𝑚

𝑗=1

+ 𝑏′)  where 𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

 

3.3 Evaluation Metrics 

To comprehensively compare the efficiency of the models, the following metrics 

were used: 

• Accuracy: The proportion of correct predictions (both compliant and non-

compliant) over the total number of cases. It is a general metric, but can be 

misleading in imbalanced datasets. 

• Precision: Measures the proportion of positive predictions (noncompliant) that 

were correct. It is important for minimizing false positives (classifying a good payer 

as non-compliant). 

• Recall (Sensitivity): Measures the proportion of actual positives (non-compliant) 

that were correctly identified by the model. It is crucial for minimizing false 

negatives (failing to identify a bad payer). 

• F1-Score: The harmonic mean of precision and recall, providing a single metric 

that balances both errors. 

• AUC-ROC: The Area Under the ROC Curve measures the model’s ability to 

discriminate between positive and negative classes. A value close to 1 indicates 
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excellent discriminatory power. 

• Cross-Validation: The average accuracy obtained over multiple splits of the 

dataset, providing a more robust estimate of the model’s performance on unseen 

data. 

 

4. Results 

The comparative results of the models’ performance for Bank A and Bank B are 

consolidated in Tables 1 and 2, respectively. The analysis of these metrics allows 

for a detailed evaluation of the effectiveness of each approach in predicting default. 

 
Table 1: Model Results for Bank A 

Model Accuracy Precision Recall F1-Score 
AUC-

ROC 

Cross- 

Validation 

Random Forest 79.38% 78.66% 80.32% 79.49% 87.16% 86.65% 

Gradient Boosting 79.74% 79.15% 80.44% 79.79% 87.90% 87.40% 

SVM 78.58% 78.23% 78.88% 78.55% 85.00% 85.56% 

Deep Learning 

(MLP) 
84.45% 81.03% 91.01% 85.00% 85.00% 86.55% 

Logistic 

Regression 
79.03% 79.31% 79.12% 79.00% 79.00% 78.00% 

Source: Elaborated by authors. 

 
Table 2: Model Results for Bank B 

Model Accuracy Precision Recall 
F1-

Score 
AUC-ROC 

Cross- 

Validation 

Random 

Forest 
86.32% 87.18% 85.09% 86.12% 93.36% 93.18% 

Gradient 

Boosting 
87.54% 87.44% 87.62% 87.53% 94.10% 93.99% 

SVM 76.91% 75.88% 78.76% 77.29% 88.45% 88.02% 

Deep 

Learning 

(MLP) 

94.00% 93.86% 93.84% 93.44% 94.00% 93.95% 

Logistic 

Regression 
78.00% 79.00% 77.00% 78.00% 78.00% 78.00% 

Source: Elaborated by authors. 
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The results in Table 1 show that for Bank A, the Deep Learning model with 

Multilayer Perceptron (MLP) performed best overall, with a precision of 84.45% 

and, notably, the highest recall (91.01%). High recall is particularly valuable in risk 

analysis, as it indicates that the model can correctly identify 91% of all customers 

who defaulted, minimizing false negatives. Gradient Boosting also excelled, 

achieving the highest AUC-ROC value (87.90%), suggesting superior 

discriminatory ability to distinguish between good and bad payers. 

The results in Table 2 show that for Bank B, Deep Learning with Multilayer 

Perceptron (MLP) also achieved the best performance, again leading in accuracy 

(94.00%), precision (93.44%), recall (93.84%), and F1-Score (93.86%), which may 

indicate a good and balanced performance. Gradient Boosting followed closely, 

with an accuracy of 87.54% and the highest AUC-ROC (94.10%), which may 

reinforce its robustness as a predictive model. The inferior performance of SVM on 

both datasets can be attributed to its sensitivity to hyperparameter choices and the 

inherent complexity of the data, which may not have been perfectly captured by the 

RBF kernel in the tested configurations. 

The comparison between the two banks reveals that the models performed better 

overall on the Bank B dataset. This may be explained by differences in data quality, 

variable distribution, or the fact that the Bank B dataset was initially more balanced. 

Regardless of the dataset, Deep Learning with Multilayer Perceptron and Gradient 

Boosting emerged as the most promising techniques, with MLP standing out for its 

ability to maximize the identification of non-compliant customers (high recall), 

while Gradient Boosting proved to be the best overall discriminator (high AUC-

ROC). 

The results for both banks showed that the machine learning models outperformed 

Logistic Regression, a historically and widely used method for measuring credit risk 

(Pinto et al., 2024), with the superior performance of the machine learning models 

being even more pronounced when considering Bank B. This may highlight the 

potential performance gains provided by more computationally complex algorithms 

in the task of analyzing customer credit risk in financial institutions. 

 

5. Conclusion 

This paper investigated the performance of Deep Learning with Multilayer 

Perceptron (MLP) for assessing bank credit risk. It compared its performance with 

that of other techniques such as Support Vector Machine (SVM), Gradient Boosting, 

Decision Tree (Random Forest), and Logistic Regression. The authors used 

databases for direct-to-consumer credit risk analysis from two of Brazil's largest 

financial institutions, as well as performance metrics such as accuracy, precision, 

recall, F1-score, AUC-ROC, and cross-validation. 

The results indicate that Deep Learning with Multilayer Perceptron (MLP) performs 

best among the algorithms tested, with accuracies of 84.45% for Bank A and 

94.00% for Bank B, and higher recall values. The Gradient Boosting algorithm 

achieved the highest AUC-ROC scores, 87.90% for Bank A and 94.10% for Bank 
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B. The other machine learning algorithms also outperformed Logistic Regression, 

which is widely used to analyze credit risk in financial institutions. This highlights 

the performance of MLP compared to the other machine learning algorithms 

considered, with the advantages of its use potentially outweighing the 

implementation costs for these institutions. 

These findings contribute to the scientific literature investigating bank management 

and the use of computational methods by providing empirical evidence for Brazilian 

financial institutions and offering insights into the generalizability and adaptability 

of models to different credit portfolios. At the same time, they can be useful to 

financial market players by highlighting the performance of machine learning 

algorithms, especially Deep Learning, which can provide greater accuracy in credit 

risk assessment and thus contribute to better decision-making, reduced default 

losses, and greater efficiency in risk management. 

As a suggestion for future research, we recommend exploring hybrid approaches 

that combine the robustness of machine learning models with techniques that 

promote greater interpretability. This would meet regulatory requirements and 

facilitate the adoption of these technologies by financial institutions, enhancing the 

benefits observed in this work. 
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