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Abstract 

In this paper, we extend Markowitz Portfolio Theory by incorporating the mean, 

variance, skewness, and kurtosis of both return and liquidity into an investor’s 

objective function. Recent studies reveal that in addition to return, liquidity is also 

a concern for the investor, and is best captured by not being internalized as a 

premium within the expected return level, but rather, as a separate factor with each 

corresponding moment built into the investor’s utility function. We show that the 

addition of the first four moments of liquidity necessitates significant adjustment 

in optimal portfolio allocations from a mathematical point of view. Our results 

also affirm the notion that higher-order moments of return can significantly 

change optimal portfolio construction. 

 

                                                 

1 Department of Finance, Southern Illinois University, Carbondale, IL 62901, 
  e-mail: xwang@business.siu.edu. 
2 B.H. Field Consulting at 4425 Moratock Lane, Clemmons, NC 27012, 
   e-mail: brianhersterfield@gmail.com 
3 Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, 
  e-mail: mxiao@math.siu.edu 
 
Article Info: Received : May 10, 2012. Revised : July 2, 2012 
          Published online : August 10, 2012  

 



14                      Mean-Variance-Skewness-Kurtosis Portfolio Optimization  

Mathematics Subject Classification : 91G10, 91G70, 91G99 

Keywords: Utility function; Liquidity, Higher-order moments, Equity Portfolio 

Optimization 

 

 

1 Introduction  

Since Harry Markowitz’s 1952 seminal work “Portfolio Selection”, techniques 

attempting to optimize portfolios have been ubiquitous in financial industry.  

Traditionally, risk-averse investors have considered only the first two moments of 

a portfolio return’s distribution, namely, the mean and the variance, as measures 

of the portfolio’s reward and risk, respectively. Subsequently, theoretical 

extensions aimed at addressing complexities associated with higher-order 

moments of return, particularly, the third and fourth moments (i.e., skewness and 

kurtosis), have been paid attention by some researchers (see for example, Kane 

(1982), Barone-Adesi (1985), Lai (1991) and Athayde and Flores (2004)). Still, 

specific analytical generalizations of the return skewness and kurtosis calculation 

have appeared only recently.  
In addition to the higher moments of return, the first moment of liquidity, i.e., 

the level of liquidity, has been shown to affect expected return, and the second 

moment of liquidity, namely, liquidity co-movement, has been shown to exist 

across securities4. Even asymmetry in liquidity co-movement, that is, liquidity’s 

skewness (third moment), has been documented by various papers, such as 

Chordia, Sarkar and Subrahmanyam (2005), Kempf and Mayston (2005) and 

                                                 

4 See for example, Amihud and Mendelson (1986) and Brennan and Subrahmanyam 
(1996) for the effect of the level of liquidity on expected return.  The study on liquidity 
co-movement is ample, see for example, Hasbrouck and Seppi (2001), Hulka and 
Huberman (2001), Amihud (2002), Pastor and Stambaugh (2003), Brockman, Chung, and 
Perignon (2006), Karolyi, Lee and Dijk (2007), and Chordia, Roll and Subrahmanyam 
(2008). 
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Hameed, Kang, and Viswanathan (2006).  Since liquidity measures an investor’s 

ability to realize a particular return, proper portfolio construction cannot be 

achieved without due consideration of liquidity level, liquidity commonality, 

liquidity skewness and even higher moments in liquidity. An investor’s objective 

is to achieve the expected level of return with minimized risk, and to achieve this 

goal, the investor must trade, and to trade, (il)liquidity and its cross-security 

interactions naturally become a concern and cannot be ignored.  

Unlike previous research that internalizes the level of (il)liquidity as a 

premium for expected return, we single out liquidity as a separate concern for an 

investor’s utility function.  We believe that adding liquidity to an investor’s 

utility function as a separate consideration is more appropriate than internalizing 

liquidity into return premium.  Though internalizing the first moment of liquidity 

(liquidity level) as a premium to expected return is feasible, internalizing the 

subsequent higher moments of liquidity may result in the loss of some important 

mathematical characteristics for portfolio optimization.  After all, sorting out 

each additional return premium due to the addition of a certain moment of 

(il)liquidity can be a quite demanding task, while if we list each liquidity moment 

out in the utility function, just like the way return moments are listed, the effect 

from each moment on the optimal portfolio can be observed more transparently 

and examined more directly. The consideration for the incorporation of higher 

moments of return and the inclusion of moments of liquidity into portfolio 

optimization is necessary, not only due to the skewed nature of return distributions 

and the sole claim that liquidity simply matters, but rather, for more practical 

reasons, particularly after witnessing the financial market turmoil in 2008. This 

crisis, like many other crises in history, had a liquidity crisis embedded within.  It 

was not a simple lack of liquidity in some securities, but more of a systemic 

liquidity crunch across the board that choked the entire market, and affected 

countless portfolios held by investors.  Therefore, the theoretical extension to 

portfolio theory and its potential practical application in the industry warrants a 
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study that incorporates moments of liquidity, not simply the level of liquidity.  

 This paper extends classical modern portfolio theory by including higher 

moments of return as well as, and perhaps more importantly, moments of liquidity. 

We first extend the Markowitz model theoretically by adding the 3rd and 4th 

moments of return and the 1st, 2nd, 3rd and 4th moments of liquidity into an 

investor’s utility function, respectively.   Thus, using first and second-order 

optimality conditions, we identify an optimal portfolio incorporating the 

portfolio’s mean, variance, skewness, and kurtosis with respect to both its return 

and liquidity. We demonstrate the changes in portfolio allocations with respect to 

a two-asset portfolio as well as a three-asset portfolio.  Then, using daily data on 

50 pairs of S&P500 stocks in the first half of 2010, we find that not only do higher 

moments of return significantly change optimal portfolio construction, the 

addition of the first four moments of liquidity necessitates a further adjustment in 

portfolio allocations. Additional cross-sectional analysis shows that among the 

moments added, liquidity’s mean, skewness and kurtosis have the most significant 

impact on allocation change.  These findings illustrate the empirical importance 

of our theoretical extension to the Markowitz model.  In this paper, we show that 

an optimal allocation can change dramatically when higher moments of return and 

moments of liquidity are included in an investor’s utility function.  

The rest of this paper is organized as follows.  Section 2 reviews current 

literature and then extends it by discussing the importance of higher moments of 

return and moments of liquidity in portfolio construction. Section 3 theoretically 

extends the Markowitz optimization problem by including the higher return 

moments as well as the first four liquidity moments. Section 4 commences our 

empirical investigation with respect to a two-asset portfolio and later extends it to 

a three-asset portfolio. Section 5 provides cross-sectional analysis on the factors 

contributing to the importance of higher moments.  Section 6 conducts a 

robustness check and sensitivity analysis with alternative preference parameters in 

the model.  Section 7 offers conclusions, identifies limitations of the paper and 
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suggests areas for future research. In addition, the theoretical derivation of the 

solution to the extended optimization problem shown in Section 3 is presented in 

the appendix of the paper. 

 

 

 

2 Motivation and Extension to the Current Literature 

2.1 The Lack of Higher Moments in Classic Markowitz Portfolio 

Theory  

Reilly and Brown (2000) and Engels (2004) provide a thorough summary of 

Modern Portfolio Theory.  The Markowitz model assumes a quadratic utility 

function, or normally-distributed returns (with zero skewness and kurtosis) where 

only the portfolio’s expected return and variance need to be considered, that is,  

the higher-ordered terms of the Taylor series expansion of the utility function in 

terms of moments are set to be zero. Empirical evidences on return distributions 

have demonstrated abnormal distributions of return.5  When the investment 

decision is restricted to a finite time interval, Samuelson (1970) shows that the 

mean-variance efficiency becomes inadequate and that the higher-order moments 

of return become relevant.  In addition, Scott and Horvath (1980) shows that if (i) 

the distribution of returns for a portfolio is asymmetric, or (ii) the investor’s utility 

is of higher-order than quadratic, then at the very least, the third and fourth 

moments of return must be considered.   

 

                                                 

5  For example, Arditti (1971), Fielitz (1974), Simkowitz and Beedles (1978), and 
Singleton and Wingender (1986) all show that stock returns are often positively skewed. 
Later studies by Gibbons, Ross, and Shanken (1989),Ball and Kothari (1989), Schwert 
(1989), Conrad, Gultekin and Kaul (1991), Cho and Engle (2000) and Kekaert and Wu 
(2000) further document asymmetries in return covariances. 
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2.2 Incorporating Skewness and Kurtosis of Return  

To date, many studies have examined the efficacy of non-normal returns 

and/or higher-order moments of return, and have deemed them not only important, 

but of critical importance in optimal portfolio construction.  Earlier work such as 

Simonson (1972), Kane (1982), Barone-Adesi (1985), Lai (1991), and Konno, 

Shirakawa and Yamazaki (1993) discusses the inclusion of the third moment in 

portfolio optimization and indicate that improved mean-variance portfolio 

efficiency can be achieved by including skewness of return. Moreover, the return 

distribution’s fourth moment, namely, kurtosis, notwithstanding the 

disproportionate attention pointed at skewness in the literature, has recently 

received increased attention. The, perhaps (mis-)appropriated attention to 

skewness, is due to the relatively slower development of techniques in dealing 

with the algebraic challenges associated with the kurtosis calculation. Recent work 

by Castellacci and Siclari (2003), Malevergne and Sornette (2005), Jarrow and 

Zhao (2006), Hong, Tu and Zhou (2007), Mitton and Vorkink (2007), Guidolin 

and Timmermann (2008), Martellini (2008), Wilcox and Fabozzi (2009), and Li, 

Qin and Kar (2010) all confirm the importance of higher moments of returns in 

portfolio construction, with the exception of Cremers, Kritzman and Page (2005) 

that documents that much of the non-normality in returns survives into the 

mean-variance efficient portfolios if log wealth utility is used.   

In this paper, we first show the changes in optimal portfolio allocation by 

establishing and studying the utility function with a consideration of return 

skewness and kurtosis, and subsequently examine allocation changes resulting 

from the addition of liquidity moments.  
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2.3 Incorporating Liquidity---Mean, Variance, Skewness and 

Kurtosis 

2.3.1. Liquidity Level---the First Moment of Liquidity 

Most discussions on portfolio theory assume a frictionless world, and neglect 

the potential difficulty to actually realize returns, i.e., transaction costs (illiquidity).  

However many studies have documented the relationship between transaction cost 

and expected return.  Brennan and Subrahmanyam (1996) find a significant 

return premium associated with both the fixed and variable costs of transacting.  

Amihud and Mendelson (1986) document that investors require higher returns on 

stocks with higher bid-ask spreads as a compensation for illiquidity.  More 

recently, Pastor and Stambaugh (2003) find that market-wide liquidity is a state 

variable important for asset pricing.  Liu (2006) documents a significant liquidity 

premium robust to the CAPM model. Steuer and Qi (2007), Garleanu (2009) find 

that portfolio choice depends significantly and naturally on liquidity.  Huang 

(2009) shows that illiquidity can, theoretically, significantly affect asset returns.  

Applied finance research work, for example, by Borkovec, Domowitz, Kiernan, 

and Serbin (2010) also shows that cost-aware portfolio construction leads to 

different investment decisions. These theoretical and empirical studies all confirm 

that the mean liquidity level, or the first moment of liquidity can affect returns.  

  

2.3.2. Liquidity Commonality---the Second Moment of Liquidity 

Recent research on liquidity has also focused increasingly on the basic 

interactions among securities in liquidity.  Empirical papers, including 

Hasbrouck and Seppi (2001), Hulka and Huberman (2001), Amihud (2002), 

Pastor and Stambaugh (2003), Brockman, Chung, and Perignon (2006), Karolyi, 

Lee and Dijk (2007) and Chordia, Roll and Subrahmanyam (2008) have 

documented the existence of cross-stock liquidity commonality. While Fabre and 

Frino (2004) and Sujoto, Kalev and Faff (2005) find liquidity commonality is 
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more apparent among large stocks, Chordia, Roll and Subrahmanyam (2008) and 

Brockman, Chung and Perignon (2006) do not find the same pattern under their 

framework.  But in any case, liquidity commonality seems hardly to be neglected 

entirely in portfolio construction. 

If liquidity commonality exists, will it have any implication on asset pricing?  

Fernando, Herring and Subrahmanyam (2006) develop a theoretical model to 

explain how liquidity commonality can affect market performance.  Korajczyk 

and Sadka (2008) show that across-measure systemic liquidity is a priced factor 

while within-measure systemic liquidity does not exhibit additional pricing 

information.  However, neither of these papers builds liquidity, and its different 

moments, into a portfolio construction framework, which is one goal of our paper. 

 

2.3.3. Asymmetry in Liquidity Commonality---the Third Moment in 

Liquidity 

On top of liquidity co-movement, what if there is an asymmetry in this 

co-movement?  Domowitz, Hansch and Wang (2005) highlight the downside risk 

of liquidity commonality through its asymmetry.  Common liquidity 

deterioration usually happens more often than systemic improvement in liquidity, 

particularly during down markets.  This asymmetry poses a new threat to 

efficient diversification, especially after what happened to the market during the 

1998 LTCM meltdown, after Lehman Brothers filed for bankruptcy in September 

2008, and the flash crash in 2010.  Acharya and Pedersen (2005) find that when 

aggregate market liquidity falls, it falls primarily for illiquid assets - a notion often 

termed “flight to liquidity”.  Chordia, Sarkar and Subrahmanyam (2005) show 

that during crisis periods, effects from liquidity commonality are maximized. 

Kempf and Mayston (2005) also observe that liquidity commonality is stronger in 

falling markets than in rising markets.  Hameed, Kang, and Viswanathan (2006) 

document that liquidity levels and co-movement in liquidity are, indeed, higher 

during large negative market moves because of aggregate collateral deterioration 
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of financial intermediaries and the concurrent forced liquidation of many asset 

holders, making it difficult to provide liquidity precisely when the market most 

demands it.  They also show that the cost of supplying liquidity is highest 

following market downturns. All evidence here suggests that the third moment of 

liquidity is also embedded within the endogeneity between return and liquidity, 

and cannot be ignored in (optimal) portfolio construction.   

 

2.3.4. Incorporating Moments of Liquidity into Optimal Portfolio 

Construction 

We conjecture that, not only does the first moment of liquidity matter in 

portfolio optimization, so do liquidity’s higher moments, just as the higher 

moments of return do.  A traditional diversified portfolio aims to have securities 

with little return interactions, but their liquidity may co-move. Not only can 

liquidity level affect expected return level like many pervious papers have 

documented, but the co-movement of liquidity may not follow exactly the same 

pattern as the co-movement of return. Hence, although appropriately diversified in 

terms of return, when one security’s liquidity diminishes, other securities, in turn, 

may experience similar deterioration, especially during periods of systemic 

liquidity draught. Thus, cross-sectional systematic illiquidity poses a great 

challenge to traders who try to enforce the diversification: the diversification 

benefit can evaporate significantly. This difficulty of actually realizing the benefit 

of diversification posed by co-movements in liquidity is thus a separate risk that 

needs to be minimized together with the co-movement risk of return.  In addition, 

the asymmetry in liquidity co-movements adds a further layer of complexity to the 

issue.  Positive skewness in liquidity, just like positive skewness in return, is 

desirable for investors as it represents increased systematic liquidity overweighing 

decreased systematic liquidity.  On the contrary, negative skewness in liquidity 

implies bigger deterioration of systemic liquidity than its improvement, and is thus 

to be avoided by rational risk-averse investors. Kurtosis in liquidity, i.e., the fat 
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tails in liquidity, represents severe outliers and variation in liquidity and, just like 

the fat tails in return distribution, high kurtosis in liquidity is undesirable to 

investors as well.   

 

 

3 Main Results in Theoretical Extension 

3.1 Introduction to Notation 

Before proceeding, an introduction to notation is in order. Given a portfolio 

of n assets, we identify the n-dimensional random vector of returns.  The 

associated return moments can be considered tensors, i.e., geometrical entities 

used to extend the notion of scalars. Utilizing the methodology introduced by 

Athayde and Flores (1997), we can identify the returns’ covariance matrix as the 

second moment’s tensor, the returns’ co-skewness matrix as the third moment’s 

tensor, and the returns’ co-kurtosis matrix as the fourth moment’s tensor. With the 

n-asset portfolio, these tensors can be visualized, respectively, as an (nxn) matrix 

(covariance), an (nxnxn) cube (co-skewness), and an (nxnxnxn) four-dimensional 

cube (co-kurtosis). We can then transform the respective cubes into matrices, 

suggesting and allowing for the application of matrix differential calculus 

techniques. For example, the (nxnxn) co-skewness cube is transformed into an 

(nxn2) matrix and the (nxnxnxn) co-kurtosis cube is transformed into an (nxn3) 

matrix. (Note that the (nx1) return vector is already in the desired matrix form.)  

Upon transforming the moments into tractable matrices, an important 

characteristic of the resulting matrices stands out, i.e., the repetition of matrix 

elements.  In the case of a 2-asset portfolio, the co-skewness matrix will be a 

(2x22) matrix, or a (2x4) matrix, as illustrated below:   










222221122121

212211112111




       (1) 

In fact, there are only four distinct elements in the above co-skewness matrix, as 
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follows: 

111 , 

112 121 211    , 

122 212 221    , 

222 .         (2) 

Again, in the case of a 2-asset portfolio, the co-kurtosis matrix will be a (2x23) 

matrix, or a (2x8) matrix as illustrated below: 

  









22222221221222112122212121122111

12221221121212111122112111121111




         (3) 

in which there are only five distinct elements, as follows: 

1111 , 

1112 1121 1211 2111      , 

1122 1212 1221 2112 2211         , 

1222 2122 2212 2221      , 

2222 .         (4) 

Given n risky assets, we must consider an n-dimensional return vector, which 

is associated with an n x n square co-variance matrix, of which n(n+1)/2 elements 

are distinct.  Similarly, the associated skewness tensor matrix will consist of 

n(n+1)(n+2)/6 distinct elements.  This repetition in the moments’ tensors 

matrices continues as the order increases.  For example, the p-th moment of a 

2-asset return vector can be represented with a (2x2p−1) matrix, consisting of 2p 

elements, of which significantly less than 2p are distinct.  Knowledge of the 

repetition of the matrix entries can be tremendously helpful when considering the 

“curse of dimensionality”.  For example, the co-kurtosis matrix for a common 

portfolio of 500 assets, like the S&P 500, would consist of 62,500,000,000 entries; 

the S&P 500 co-kurtosis matrix would be a (500 x 5004) matrix, or a (500 x 

62,500,000,000) matrix.  Even though this matrix holds a majority of repeated 



24                      Mean-Variance-Skewness-Kurtosis Portfolio Optimization  

values, it still illustrates the intractability often inherent in larger portfolio 

analyses. 

 

 

3.2 The Extended Framework for Optimal Portfolio 

Construction---Adding Higher Moments of Return and Moments 

of Liquidity 

First, we include the higher-order moments of return by extending the 

traditional Markowitz quadratic utility UR
MV= γ1*MeanR – γ2*VarianceR to a 

fourth-degree utility function with return, UR
MVSK = γ1*MeanR – γ2*VarianceR + 

γ3*SkewnessR – γ4*KurtosisR.  Then, we incorporate liquidity and its higher 

moments, by further extending a risk-averse investor’s utility function to the 

following, namely,:  

URL
MVSK = λR[γ1*MeanR – γ2*VarianceR + γ3*SkewnessR – γ4*KurtosisR] 

+λL[γ1*MeanL – γ2*VarianceL + γ3*SkewnessL – γ4*KurtosisL].   

Utilizing matrix notation, the investor’s objective is to: 

Maximize  

URL
MVSK = )]()([ 44332211   MMMM TTTT

R

 )]()([ 44332211   LLLL TTTT
L  

 subject to: 11                      (5) 

Where Mi (i=1,2,3,4) stands for the ith moment matrix of return, while Li(i=1, 2, 3, 

4) stands for the ith moment matrix of liquidity.6  M1(L1) represents the vector, 

M2(L2) represents the covariance matrix, M3 (L3) represents the co-skewness 

matrix, and M4(L4) represents the co-kurtosis matrix, for return and liquidity 

                                                 

6 Similarly, Serbin, Borkovec and Chigirinskiy (2011) include transaction costs into the 
optimization objective function, without the higher moments though.   
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respectively. Here   represents the Kronecker Product and αi represents the 

percentage allocation to asset i.  Note that in a general model, we do not prohibit 

short sales, but if short selling is forbidden, we can simply add a further restriction 

that requires non-negativity constraints on the allocations.  One primary hurdle 

with the extension of the Markowitz quadratic utility UR
MV to a fourth-degree 

utility function including skewness and kurtosis of both return and liquidity, is the 

kurtosis calculation. The problem formulation indicates a need for nonlinear 

and/or non-convex techniques in the solution of the utility function.  

Here is an explanation of the extended utility function shown in Equation (5).  

A high expected return level and a high expected liquidity level are the reward for 

the investor, while further moments in both represent the uncertainty, i.e., the risk, 

in return and in realizing the return (liquidity).  Even moments represent extreme 

values, disliked by investors.  Positive (negative) odd moments represent good 

surprises overweighing bad surprises.  Therefore, a risk-averse investor will 

prefer a portfolio with a higher expected level, a lower variance, a higher 

skewness, and a lower kurtosis … which can be extended to the limit in terms of 

additional moments. In this paper, we stop at Kurtosis. The coefficients γi and σi 

(i=1, 2, 3, 4) represents an investor’s preference among the four moments. We will 

try equal preferences first with the understanding that all the preference 

parameters (γ’s,σ’s and λ’s) can be adjusted to suit each investor’s need, without 

loss of generalization.  For example, if an investor favors higher moments, s/he 

can choose γ1< γ2< γ3< γ4 and vice versa for an investor who favors lower 

moments.7  In addition, different investors may assign different preferences 

between return and liquidity, represented by λR and λL. A theoretical derivation of 

the solution to the optimization problem shown in Equation (5) is presented in the 

appendix of the paper. 

                                                 

7 For robustness check, we repeat our analyses with (γ1-γ2-γ3-γ4) being (1-2-3-4) and 
(4-3-2-1) among the four moments and present the results in Section 5.    
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 Incorporating higher moments of return only, Athayde and Flores (2004) 

compares the Markowitz solution with two special higher-moment cases, in which 

variance is minimized given the same expected excess return and either a given 

skewness or a given kurtosis in return. They find that even though the Markowitz 

solution may have come close to a higher-moment optimal solution, the two 

solutions differ most of the time.  In fact, they find that apart from a 

zero-measure set, the Markowitz solution is never equal to the other 

higher-moment optimal solutions. Consequently, the need to consider higher-order 

moments is supported.  Lai (1991) argues that an inefficient mean-variance 

portfolio may in fact be an optimal portfolio in the mean-variance-skewness 

context and vice-versa.  Athayde and Flores (1997) extend the initial 

three-moment portfolio frontier investigation of Ingersoll (1975) by developing a 

methodology for analytically solving a three-moment portfolio optimization.  

Earlier works generalizing portfolio construction with the inclusion of 

higher-order moments of return considered only the marginal higher moments, 

disregarding completely the co-moments of the same order. The technique 

developed by Athayde and Flores (1997) allows for the appropriate consideration 

of co-moments in the portfolio construction which we adopt in this paper.  In 

addition, the most significant contribution of our paper is to include the moments 

of liquidity into the framework and demonstrate the further change in optimal 

allocation caused by the inclusion of moments of liquidity. 

 

 

4 Empirical Investigation  

4.1 A Sample of Two-Asset Portfolio  

In this section, we empirically solve the 4-moment portfolio optimization 

problem shown in Equation (7) with the following two stocks, AMD and WYNN 

from January 6, 2010 to June 30, 2010 with daily data. Daily data is chosen due to 
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a practical presumption that liquidity is a bigger concern for active traders than 

long-term, buy-and-hold investors.  We start with the Markowitz mean-variance 

utility function for mean return and variance, i.e., UR
MV (when γ1=γ2=1, γ3=γ4=0), 

move on to a utility function for mean return, variance, and skewness, i.e., UR
MVS 

(γ1=γ2=γ3=1, γ4=0) and a utility function for mean return, variance, skewness, and 

kurtosis, i.e., UR
MVSK (γ1=γ2=γ3=γ4=1).  Next, we add liquidity, measured by daily 

trading volume (scaled down by dividing 109), into the framework and maximize 

URL
MV(γ1=γ2=1, γ3=γ4=0; σ1=σ2=1, σ3=σ4=0; λR=λL=1), URL

MVS (γ1=γ2=γ3=1; γ4=0; 

σ1=σ2=σ3=1; σ4=0; λR=λL=1), and URL
MVSK(γ1=γ2=γ3=γ4=1; σ1=σ2=σ3=σ4=1; 

λR=λL=1), respectively.  As said earlier, for the time being, we assign equal 

preference between return and liquidity so that λR=λL=1.   

We adopt the aforementioned Kronecker product in the implementation of 

the Athayde and Flores (1997) technique. The addition of higher moments creates 

a nonlinear, non-convex objective function.  For this reason, we will utilize 

Maple and solve it with the aid of Lagrange’s method and the consideration of 

first- and second-order optimality conditions. It should be noted that the addition 

of the third and fourth moments, or any higher-order moment for that matter, will 

result in a polynomial utility function. Therefore, polynomial optimization 

techniques are appropriate, i.e., we can consider the function smooth or, in other 

words, once and twice differentiable which justifies the use of first- and 

second-order optimality conditions. The resulted optimal allocations and the 

corresponding utility values are presented in Table 1. 

As we can see, for the baseline Markowitz portfolio optimization, Maple 

generates a portfolio consisting of 620% of AMD and -520% of WYNN with a 

maximal utility of UR
MV = 0.314.  The allocations vary greatly when 

incorporating return skewness and kurtosis to -2398% of AMD and 2498% of 

WYNN with a maximum utility of UR
MVSK= 0.024. When including liquidity, the 

allocations change once again before finally arriving at 340% of AMD and -240% 

of WYNN with URL
MVSK= 0.237 for the 4-moment return and liquidity included 
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utility function. Clearly, as the higher moments of return and moments of liquidity 

are added into the framework, the optimal allocations change significantly, and the 

corresponding optimal utility level changes as well.  It is our purpose in this 

paper to simply document the dramatic change in allocations without investigating 

how and why they change in a particular way or other.  Note that the maximum 

utility level does not necessarily increase because including these other terms into 

the utility function may not add to utility, but it is certainly something that needs 

to be considered as the optimal allocation is affected by it. Additionally, in reality, 

short selling a large proportion of stock requires a prohibitively high level of 

margin and/or leverage and is therefore not entirely realistic for most investors, 

especially when the optimal allocation requires the amount of short selling shown 

in Table 1.8 

 

 

4.2 A Sample of Three-Asset Portfolio 

 To provide another empirical example, and to illustrate the difficulty in 

dealing with larger portfolios, we investigate a three-asset portfolio in this section, 

namely, AMD, HCBK, and WYNN, for the same sample period as in the last 

section. We will move through the empirical solutions quickly to arrive at the 

ultimate comparison. Note that the covariance matrix now consists of 9 

components, 6 of which are distinct; the co-skewness matrix has 27 components, 

10 of which are distinct; and the co-kurtosis matrix has 81 entries, 16 of which are 

distinct. As mentioned previously, the analysis for larger portfolios can become 

                                                 

8 We understand that an investor can put on specific restrictions suitable for his/her own 
margin level with regards to short selling.  The theoretical derivation in the appendix has 
the boundary a and b set up for this purpose, therefore the results here with short sale 
allowed are provided without loss of generalization.  In addition, the results so far 
correspond to equal preference among the moments; alternative preferences can be found 
in Section 5.   
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prohibitively intractable as the portfolio, and resulting matrices grow larger.   

Table 2 presents the results from Maple.  Markowitz portfolio optimization 

with optional short selling generates a portfolio consisting of -2455% of AMD, 

-522% of HCBK, and 3077% of WYNN with a maximal utility of UR
MV = 0.025.  

Incorporating return skewness suggests that the investor allocate 100% of 

available capital to WYNN to generate an optimal utility of 0.002.  

Considering liquidity in addition to the return vector introduces further 

changes into the optimal allocations. The mean-variance scenario yields optimal 

allocations of 686% to AMD, 81% to HCBK, and -667% to WYNN for an optimal 

utility of 0.443. Adding liquidity skewness changes the optimal allocation to a 

100% investment in HCBK and none in the other two. Lastly, adding liquidity 

kurtosis suggests the following optimal portfolio mix, namely, 389% allocated to 

AMD, 33% allocated to HCBK, and -323% allocated to WYNN generating a 

utility value of 0.320. Clearly, we can see that the optimal allocations are affected 

by the extent to which moments of liquidity are considered, each requiring a 

significant rebalancing of the optimal portfolio, and thus meriting the importance 

of liquidity and its moments in optimal portfolio construction. 

 

 

5  What Factors Cause the Most Significant Changes in 

Allocation? 

Though Section 3 demonstrates a couple of examples where portfolio 

allocation changes significantly when higher moments of return and moments of 

liquidity are added into the optimization framework, we do realize that not all 

stocks will experience a significant re-allocation. In this section, we examine the 

issue more generally by looking at what factors can cause the most significant 

changes in allocation when higher moments of return and moments of liquidity are 

added. 
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 To start, we sort the S&P 500 stocks based on daily return skewness, and 

starting from the 6th stock, pick one stock for every 10 stocks down the list, 

resulting in a sample of 50 stocks, from which we form 1225 pairs.  For each pair, 

we solve for the allocation on each stock for six different Utility functions (UR
MV, 

UR
MVS, UR

MVSK, URL
MV, URL

MVS, and URL
MVSK).  Like in Table 1 and 2, the six 

utility functions start from the basic Markowitz return-mean-variance form and 

end with the full 4-moment return-liquidity form.  The cross-pair average 

allocations when maximizing the six utility functions and the resulting five 

changes in average allocations are listed in Table 3.  We report the absolute 

values of the changes to prevent increases in allocation cancelling out with 

decreases through averaging, as our purpose is to see how much the change is in 

allocation, not on whether the allocation increases or decreases, per se.  Because 

we are dealing with 2-stock portfolios, we only present the results for the 

allocation in one stock (α1), with the understanding that the allocation to the other 

stock is always going to be 1- α1.   

As we can see from Table 3, the mean allocation on the first stock ranges 

from 55% for UR
MV, to 465% for UR

MVS, to 72% for UR
MVSK when higher moments 

of returns are added, before shifting to 57% for URL
MV, -145% for URL

MVS and 68% 

for URL
MVSK when moments of liquidity are further added.  When the mean 

absolute change in this allocation is examined, we see that the absolute change in 

α1 from the baseline Markowitz UR
MV allocation is impressive: the smallest change 

from the baseline is 33%, occurring from the baseline Markowitz UR
MV to the 

inclusion of the third and fourth moments in return (UR
MVSK), while the largest 

change is 1641%, when liquidity’s first three moments are added to the first three 

moments of return in the utility function (URL
MVS).   

To examine what factors are the most influential in causing allocation 

changes, for each change in the allocations caused by the inclusion of additional 

moment(s) of return and/or liquidity, we regress it cross-sectionally against the 

additional moments of return and/or liquidity that cause the change. The 
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independent variables are measured by the absolute percentage difference between 

the two stocks.  A total of eight regressions are run as follows: 

When return is the only concern in the utility function:  

Regression 1: from UR
MV to UR

MVS,Δα1,p=β0+β1*(|%ΔSR
p|)+εp,       (6) 

Regression 2: from UR
MVSto UR

MVSK, Δα1,p=β0+β1*(|%ΔKR
p|)+εp,      (7) 

Regression 3: from UR
MV to UR

MVSK,Δα1,p=β0+ β1*(|%ΔSR
p|)+β2*(|%ΔKR

p|)+εp,  (8) 

When the utility function adds liquidity as an additional term:  

Regression 4: from UR
MV to URL

MV,Δα1,p=β0+ β1*(|%ΔML
p|)+ β2*(|%ΔVL

p|)+εp, (9) 

Regression 5: from URL
MV to URL

MVS,Δα1,p=β0+ β1*(|%ΔSL
p|)+εp,     (10) 

Regression 6: from URL
MVS toURL

MVSK,Δα1,p=β0+ β1(|%ΔKL
p|)+εp,     (11) 

Regression 7: from URL
MV to URL

MVSK,Δα1,p=β0+ β1*(|%ΔSL
p|)+ β2(|%ΔKL

p|)+εp,(12) 

The overall change: 

Regression 8: from UR
MV to URL

MVSK, 

Δα1,p=β0+ β1*(|%ΔSR
p|)+β2*(|%ΔKR

p|) 

  + β3*(|%ΔML
p|)+ β4*(|%ΔVL

p|)+ β5*(|%ΔSL
p|)+ β6(|%ΔKL

p|)+εp,    (13)   

where,  p=1,2,…, 1225 pairs, Δα1,pis the change in allocation on stock 1 in the pth  

pair, and,  

|%ΔSR
p|= |(SR

2,p-S
R

1,p)/[(SR
1,p+SR

2,p)/2]|, 

|%ΔKR
p|= |(KR

2,p-K
R

1,p)/[(KR
1,p+KR

2,p)/2]|, 

|%ΔML
p|= |(ML

2,p-M
L

1,p)/[(ML
1,p+ML

2,p)/2]|, 

|%ΔVL
p|= |(VL

2,p-V
L

1,p)/[(VL
1,p+VL

2,p)/2]|, 

|%ΔSL
p|= |(SL

2,p-S
L

1,p)/[(SL
1,p+SL

2,p)/2]|, 

|%ΔKL
p|= |(KL

2,p-K
L

1,p)/[(KL
1,p+KL

2,p)/2]|,         (14) 

Where R stands for return, L stands for liquidity, M stands for Mean, V stands for 

Variance, S stands for Skewness and K stands for Kurtosis. 

Table 4 reports the regression results. When return skewness and kurtosis 
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are added separately into the utility function, their percentage difference between 

the two stocks does not significantly affect the average allocation change. 

However, when they are added jointly from UR
MV to UR

MVSK, the percentage 

difference in return kurtosis significantly decreases the allocation change. When 

liquidity mean and variance are added, the percentage difference in mean liquidity 

significantly increases the allocation change.  When added alone, liquidity 

skewness significantly reduces while liquidity kurtosis significantly increases the 

allocation change, and the significant negative impact from liquidity skewness 

persists when both liquidity skewness and kurtosis are added simultaneously.   

Perhaps, the result that is worth the most investigation is from the overall 

regression when the utility function changes from UR
MV to URL

MVSK.  Consistent 

with individual regressions, the percentage difference in return skewness and 

liquidity variance continue to be insignificant, while return kurtosis, liquidity 

mean, liquidity skewness and liquidity kurtosis continue to be significant.  This 

result highlights the importance of incorporating liquidity, not only with respect to 

its first moment (i.e., mean), but also its higher moments such as skewness and 

kurtosis, into portfolio optimization.  It is in this respect that we do not feel it is 

sufficient nor appropriate to simply internalize liquidity level into a premium of 

the expected return as in many previous research, because not only does liquidity 

level matter (its first moment), liquidity skewness and especially liquidity kurtosis 

also matters significantly.  In a sense, this result demonstrates that the inclusion 

of higher moments of return, such as return skewness and return kurtosis, is still 

not enough for a complete portfolio optimization framework; the inclusion of 

moments of liquidity is necessary.  In addition, our result demonstrates that 

higher moments of return, such as return kurtosis, need to be considered even if 

return skewness may not matter to the optimal portfolio construction. The recent 

increasing attention paid on to return kurtosis is a step towards this direction. 
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6 Robustness Check with Unequal Preference among the 

Moments and Between Return and Liquidity 

Until now, we have assumed equal preference (γ1= γ2= γ3= γ4=1, and 

σ1=σ2=σ3=σ4=1) among the four moments of return and liquidity, and equal 

preference (λR=λL=1) between return and liquidity in the utility function. Different 

investors can have different preferences and these different preferences will cause 

the allocations to change as well.  In this section, we first examine a case of 

increasing preference among the four moments with γ1=σ1=1, γ2=σ2=2, γ3=σ3=3, 

γ4=σ4=4 and a case of decreasing preference with γ1=σ1=4, γ2=σ2=3, γ3=σ3=2, 

γ4=σ4=1 while holding the preference between return and liquidity equal 

(λR=λL=1).  We then examine a case of higher preference on return than on 

liquidity (λR=2, λL=1) and a case of lower preference on return than on liquidity 

(λR=1, λL=2) while holding the preference among the four moments equal 

(γ1=γ2=γ3=γ4=1, and σ1=σ2=σ3=σ4=1).  For the same 1,225 pairs of stocks as in 

Section 4, we re-maximize the six utility functions with the new preferences and 

report the results in Table 5. 

Like the results in equal preferences reported in Table 3, results in Table 5 

show that the average allocation to the first stock of each pair changes 

tremendously. The mean α1 increases from 55% for UR
MV to 348% for UR

MVS, 

before dropping to 68% for UR
MVSK when the preference among the four moments 

is increasing and from 61% to 876% to 85% when the preference is decreasing. 

With liquidity added, the average α1 decreases from 54% to -78% before rising to 

62% for increasing preferences, and changes from 63% to -335% to 73% for 

decreasing preferences. When holding the four preferences among the four 

moments equal but increasing and decreasing the preference between return and 

liquidity, we also observe changes in the mean α1, moving from 59% to 1404% to 

68% for higher preference on liquidity than return, while going from 56% to 663% 

to 73% for higher preference on return than liquidity.  These results show that 
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with alternative preference parameters, optimal allocation continues to change 

when higher moments of return and moments of liquidity are added into the 

portfolio optimization framework. 

 

 

7 Conclusions  

In this paper, we examine the generalization of the Markowitz mean-variance 

portfolio theory with the inclusion of the 3rd and 4th moments of return and the 1st, 

2nd, 3rd and 4th moments of liquidity.  With new analytical techniques available 

for the higher moment analyses, we are able to compare and contrast the optimal 

portfolio constructions with varying moments included.  We confirm the notion 

that the addition of return skewness and kurtosis can affect the optimal portfolio 

construction, as previously presented by significant research.  More important, 

the addition of the first four moments of liquidity, that is, liquidity mean, liquidity 

variance, liquidity skewness and liquidity kurtosis, further adjusts the allocation in 

the optimal portfolio. 

Cross-sectionally, among the newly included moments, mean liquidity and 

liquidity skewness and kurtosis are the most influential in changing portfolio 

allocations, while return skewness is, surprisingly, not statistically significant.  

This finding illustrates the importance of not stopping at the 3rd moment of return 

(return skewness) when considering portfolio optimization.  In addition, the 

preference parameters between return and liquidity concerns in the utility function, 

together with the preference parameters among the four moments of return and 

liquidity, continue to cause changes in optimal allocations.   

 We realize that the above conclusions are limited in certain ways. In this 

paper, we are simply documenting that the optimal allocation of securities can 

change when higher moments of return and moments of liquidity are added, with 

no attention being paid on why the allocations change in a certain way, which by 
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itself, is a very interesting question that warrants further study.  The non-linear 

optimization problems encountered in this paper can be examined with the use of 

analytical nonlinear programming techniques, which, in some instances, require 

the use of gradients and hessian matrices, often causing some consternation due to 

the additional complexity. These non-linear algorithms may aid in the 

development of efficient analyses of the portfolio problem when higher moments 

are considered.  It may be possible for even higher moments (higher than the four 

moments we address here in this paper) of return and liquidity to impact portfolio 

choice; this is an area not yet developed deeply. Another potential area of new 

research lies in the discovery of a tractable methodology for higher moment 

portfolio construction with respect to extremely large portfolios, which would be a 

significant contribution and would likely find immediate implementation in the 

investment industry.   
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Appendix 

Theoretical Derivation  

In this section, we consider a two-asset optimization problem incorporating 

mean, variance, skewness, and kurtosis of return as well as liquidity.  The 

corresponding optimization problem is as follows (assuming equal preference 

between return and liquidity, that is λR=λL=1 from Equation (5)): 

Maximize  
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with 

2112 ww  , 211121112 www  , 221212122 www  ,  and     

2111121111211112 wwww  , 2211211212121122 wwww  ,     (A.5) 

2221221221221222 wwww  . 

If we let x1 , then x12 . For convenience of further calculations, we set 
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Notice that the critical points of )()( xgxfU MVSK
RL   satisfy '( ) '( ) 0f x g x  .  

Thus we derive the following theorem: 

 

Theorem 2.1  We consider the following optimization problem: 

Maximize 
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Then the maximum occurs either at x1  (if ),( bax  ), a root of the following 

third-order polynomial equation 
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If we incorporate only the mean, variance, and skewness, but not the kurtosis, we 
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Corollary 2.2 We consider the following optimization problem: 

Maximize    
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 subject to .,1 
2

1i
i ba i 



  

Then the maximum occurs either at x1  (if ),( bax  ) given by (A.10) or at 

the endpoint a1 or  b1 .  

The above derivation is for the optimization problem consisting of two assets. 

For more than two assets, the essential of the approach remains, however, the 

symbolic calculations would quickly become massive and the high computational 

cost would be a serious issue. 

Table 1 reports the optimal weights on a two-stock portfolio when utility 

functions with different objectives are maximized. The most inclusive utility 

function is:  

URL
MVSK = λR(γ1*MeanR – γ2*VarianceR + γ3*SkewnessR – γ4*KurtosisR) 

 + λL(σ1*MeanL –σ2*VarianceL + σ3*SkewnessL – σ4*KurtosisL),  

from which, all the other utility functions are parts of.  In a utility function, R 

stands for return, and L stands for liquidity. M/V/S/K stands for the 1st/2nd/ 

3rd/4thmoment (Mean, Variance, Skewness, Kurtosis).  

αiis the weight on the ith stock.  Daily return and volume (measure of liquidity, 

scaled down by dividing 109) data for AMD and WYNN is from January 6, 2010 

to June 30, 2010. 

 

Table 1: Optimal portfolio construction for a pair of stocks--AMD and WYNN 

 Utility λ preference 

γ and σ 

preference α1 α2 utility 

       

Return 

only UR
MV - 1-1-0-0 620% -520% 0.314 

 UR
MVS - 1-1-1-0 0% 100% 0.002 

 UR
MVSK - 1-1-1-1 -2398% 2498% 0.024 

Adding 

liquidity URL
MV 1-1 1-1-0-0 940% -840% 0.314 
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 URL
MVS 1-1 1-1-1-0 782% -682% 0.383 

 URL
MVSK 1-1 1-1-1-1 340% -240% 0.237 

 

 

Table 2 reports the optimal weights on a three-stock portfolio when utility 

functions with different objectives are maximized.  The most inclusive utility 

function is:  

URL
MVSK = λR(γ1*MeanR – γ2*VarianceR + γ3*SkewnessR – γ4*KurtosisR) 

 +λL(σ1*MeanL –σ2*VarianceL + σ3*SkewnessL – σ4*KurtosisL), from which, 

all the other utility functions are parts of.  In a utility function, R stands for return, 

and L stands for liquidity. M/V/S/K stands for the 1st/2nd/ 3rd/4thmoment (Mean, 

Variance, Skewness, Kurtosis). αi is the weight on the ith stock.  Daily return and 

volume (measure of liquidity, scaled down by dividing 109) data for AMD, HCBK, 

and WYNN is from January 6, 2010 to June 30, 2010. 

 

Table 2: Optimal portfolio construction for a trio of stocks--AMD, HCBK,  

        and WYNN 

  Utility  λ preference 

γ and σ 

preference α1 α2 utility  

       

Return 

only UR
MV - 1-1-0-0 620% -520% 0.314 

 UR
MVS - 1-1-1-0 0% 100% 0.002 

 UR
MVSK - 1-1-1-1 -2398% 2498% 0.024 

Adding 

liquidity URL
MV 1-1 1-1-0-0 940% -840% 0.314 

 URL
MVS 1-1 1-1-1-0 782% -682% 0.383 

 URL
MVSK 1-1 1-1-1-1 340% -240% 0.237 
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Table 3 reports the average optimal weights on 1225 pairs of two-stock 

portfolio when utility functions with different objectives are maximized.  The 

1225 pairs are from 50 stocks selected from the S&P 500 stocks based on the 

ranking of daily return skewness: starting from stock #6, and select one stock for 

every 10 stocks down the rank.  The most inclusive utility function is:  

URL
MVSK = λR(γ1*MeanR – γ2*VarianceR + γ3*SkewnessR – γ4*KurtosisR) 

 +λL(σ1*MeanL –σ2*VarianceL + σ3*SkewnessL – σ4*KurtosisL), from which, 

all the other utility functions are parts of.  In a utility function, R stands for return, 

and L stands for liquidity. M/V/S/K stands for the 1st/2nd/ 3rd/4thmoment (Mean, 

Variance, Skewness, Kurtosis). α1is the weight on the 1ststock.  Daily return and 

volume (measure of liquidity, scaled down by dividing 109) data for the S&P 500 

stocks is from January 6, 2010 to June 30, 2010.  The results assume equal 

preferences among the moments and between return and liquidity. Average |Δα1| 

from Markowitz UR
MV records the cross-pair average of the absolute change in α1 

when the Utility function changes from the base-line Markowitz UR
MV. 

 

 

Table 3:  Allocations averaged over 1225 pairs of stocks--equal preferences 

 UR
MV UR

MVS UR
MVSK URL

MV URL
MVS URL

MVSK 

       

Mean α1 

Mean|Δα1| from Markowitz 

UR
MV 

55% 465% 

558% 

72% 

33% 

57% 

114% 

-145% 

1641% 

68% 

137% 
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In Table 4, the dependent variable is the change in allocation on the first 

stock in the 1225 pairs when utility functions with different objectives are 

maximized.  The independent variables are the absolute percentage difference in 

moments of return and/or liquidity between the two stocks in the pair:|%ΔXR
p|= 

|(XR
2,p-X

R
1,p)/[(XR

1,p+XR
2,p)/2]|, where X= M/V/S/K, which stands for the 1st/2nd/ 

3rd/4th moment (Mean, Variance, Skewness, Kurtosis). R stands for return, and L 

stands for liquidity. The 1225 pairs are from 50 stocks selected from the S&P 500 

stocks based on the ranking of daily return skewness: starting from stock #6, and 

select one stock for every 10 stocks down the rank.  The most inclusive utility 

function is:  

URL
MVSK = λR(γ1*MeanR – γ2*VarianceR + γ3*SkewnessR – γ4*KurtosisR) 

   + λL(σ1*MeanL – σ2*VarianceL + σ3*SkewnessL – σ4*KurtosisL), from 

which, all the other utility functions are parts of.  Daily return and volume 

(measure of liquidity, scaled down by dividing 109) data for the S&P 500 stocks is 

from January 6, 2010 to June 30, 2010. The results assume equal preferences 

among the moments and between return and liquidity. 
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Table 4: Regressions of change in allocation on moments of return and/or liquidity 

 Dependent=Δα1  n=1225  intercept |%ΔSR
p| |%ΔKR

p| |%ΔML
p| |%ΔVL

p| |%ΔSL
p| |%ΔKL

p| adj R2 

          

UR
MV to UR

MVS coefficient 0.2410 0.0011       -0.0008 

  t value 0.9039 0.1509             

UR
MVS to UR

MVSK coefficient -0.1242  -0.2880      0.0008 

  t value -0.4534   -1.3943           

UR
MV to UR

MVSK coefficient 0.1150 -0.0005 -0.2422      0.0370 

  t value 2.4985 -0.3704 -6.9774           

UR
MV to URL

MV coefficient 1.9043   14.6400 -1.3910    0.0729 

  t value 1.4652     3.6337 -0.4827       

URL
MV to URL

MVS coefficient -2.3404     -6.3671   0.0736 

  t value -2.2942         -9.9134     

URL
MVS to URL

MVSK coefficient -0.3111      2.0951 0.4255 

  t value -2.6463           30.1233   

URL
MV to URL

MVSK coefficient -2.5310     -13.2319 8.5451 0.0346 

  t value -2.5279         -1.8655 1.2839   

UR
MV to URL

MVSK coefficient -0.8971 0.0167 -5.3781 13.9845 -5.7418 -16.2495 17.8984 0.0746 

  t value -1.0598 0.7209 -6.6998 3.8919 -0.9617 -1.8367 2.8386   

Note: coefficients in bold (italic) are statistically significant at 1% (10%) level. 
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Table 5 reports the average optimal weights on 1225 pairs of two-stock 

portfolio when utility functions with different objectives are maximized.  The 

1225 pairs are from 50 stocks selected from the S&P 500 stocks based on the 

ranking of daily return skewness: starting from stock #6, and select one stock for 

every 10 stocks down the rank.  The most inclusive utility function is:  

URL
MVSK = λR(γ1*MeanR – γ2*VarianceR + γ3*SkewnessR – γ4*KurtosisR) 

   + λL(σ1*MeanL – σ2*VarianceL + σ3*SkewnessL – σ4*KurtosisL), from 

which, all the other utility functions are parts of.  In a utility function, R stands 

for return, and L stands for liquidity. M/V/S/K stands for the 1st/2nd/ 3rd/4thmoment 

(Mean, Variance, Skewness, Kurtosis). αiis the weight on the ith stock.  Daily 

return and volume (measure of liquidity, scaled down by dividing 109) data for the 

S&P 500 stocks is from January 6, 2010 to June 30, 2010.  The results assume 

either increasing or decreasing preferences among the four moments or increasing 

or decreasing preferences between return and liquidity. 

 

 

Table 5: Allocations averaged over 1225 pairs of stocks--unequal preferences 

 

  Utility  λ preference 

γ and σ 

preference α1 α2 utility  

       

Return 

only UR
MV - 1-1-0-0 620% -520% 0.314 

 UR
MVS - 1-1-1-0 0% 100% 0.002 

 UR
MVSK - 1-1-1-1 -2398% 2498% 0.024 

Adding 

liquidity URL
MV 1-1 1-1-0-0 940% -840% 0.314 

 URL
MVS 1-1 1-1-1-0 782% -682% 0.383 

 URL
MVSK 1-1 1-1-1-1 340% -240% 0.237 
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