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Abstract 

This paper proposes another realistic application of the economic order quantity 

EOQ model. Researchers have studied EOQ models that assume the received lot 

contains items that are perfect and imperfect. All models in the literature assume 

that the received lot goes through a 100% inspection to separate acceptable items 

from the non-acceptable items. This paper argues that 100% inspection is not 

always a cheap option to the buyer; instead, the received lot is subjected to an 

acceptance sampling plan before the lot can be accepted. In addition, for real life 

cases, destructive testing of items in the acceptance sample must be performed to 

test the acceptability of the items in the lot, as in packaged food and electrical 

wires. This paper will develop an EOQ model when items are of perfect and 

imperfect quality and a single acceptance sampling plan with destructive testing 

and inspection errors is adopted. It is assumed that when the lot is rejected, items 

in the rejected lot are sold at a secondary market at a reduced price and the buyer 

will place another order. It is also assumed that there are inspection errors. 
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1 Introduction 

Different products need different kinds of quality assessment tests, to insure a 

product meets the required specifications, such as electric current load, shear 

strength, fatigue, and heat tolerance. A destructive test results in either destruction 

of the product or failure of product’s design margin, for the purpose of evaluating 

the quality and reliability of the product either during or after the normal operating 

conditions ([1], [2]).  A 100% inspection plan with destructive testing requires 

testing all units in the lot and destroying all of them; hence this inspection plan 

does not provide a viable option to both the producer and the buyer, because when 

the lot is destroyed, the buyer will be in constant shortage and the producer will 

not gain enough on return on investment. Therefore, acceptance sampling when 

destructive testing is required provides a lot screening plan that will be more 

acceptable ([3], [4], [5]). 

As it is well known, acceptance sampling is a screening strategy used to judge the 

acceptability of a received lot; that is, whether the lot contains an acceptable 

number of defects (read more in [6], [7], and [8]). Acceptance sampling plans are 

conveniently described by operating characteristic or OC curves, which estimate 

the probability of acceptance of a lot for a given incoming quality level. To fit 

various needs for different OC curves, a number of acceptance sampling plans 

have been developed, such as single, double, multiple, sequential, etc (see [9] and 

[10]).  In this research, it is assumed that incoming lots will be subjected to a 

single acceptance sampling plan for attributes, which consists of taking a random 

sample of size n drawn from a lot of size Q. A predetermined acceptance number  

c ≥ 0 specifies the allowable number of nonconforming items within the selected 
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items in the sample. If the number of non-conforming items is less than or equal to 

c, the lot will be accepted, otherwise it will be rejected. 

As one of the parameters of the OC curves, the acceptance number c has to be 

selected carefully that will result in an acceptable sampling plan.  In expensive 

tests and in tests that require destructive testing in particular, c becomes more 

critical. Even the selection of c is arbitrary, when destructive testing is employed 

by the receiving agent, the acceptance number is commonly set to zero as in [11], 

[12], and [13] and implied in [14]. 

In the literature, there have not been studies that are involved in the determination 

of the optimal order quantity when items are with imperfect quality and a 

destructive testing policy is being followed by the buyer. This article intends to 

investigate and explore the relationship between the incoming quality level, on 

one side, and the optimal lot size and the sample size decisions, on the other side. 

The function that will be minimized is the difference between the expected total 

cost and total profit.  The total cost consists of ordering cost, holding cost, 

destructive testing cost, shortage cost due to defective items in the accepted lot 

that cannot meet any of the demand, and rejection cost.  The profit is the return 

from selling the items in the rejected lot in a secondary market.  The shortage cost 

can be thought of as the cost of accepting a lot, which is associated with the 

buyer’s risk. 

The economic order quantity with imperfect incoming quality and destructive 

testing has not been investigated by researchers. In the literature, nondestructive 

acceptance sampling plans have been proposed for lot acceptance; which have 

been designed to fit certain OC curves.  This paper will further advance the study 

of the economic order quantity for the practical case when the single acceptance 

sampling plan for attributes and destructive testing are implemented. Specifically, 

this paper will develop a cost function for optimal determination of the lot size and 

sample size when items are with imperfect quality and the buyer will impose a 
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destructive testing plan on the received lot. The total cost has the following 

components: 

 Ordering cost 

 Holding cost 

 Destructive testing cost 

 Shortage cost 

 Profit from selling unacceptable lot. 

The acceptance number c will be taken as zero, as it was argued before (see the 

introduction). To further limit the scope of this research, the following 

assumptions are made: 

 The demand rate is constant and known, 

 The replenishment is infinite and instantaneous, 

 There is a single product, 

 Shortages are not back-ordered (lost sales case), 

 The buyer will place a new order when the received lot is rejected. 

For the inspection process, the following are assumed: 

 The number of nonconforming items follows the binomial distribution, 

 The inspection time is negligible, 

 The inspection plan is without replacement of destroyed items, 

 The inspection process is not perfect. 

 

2 Literature Review 

The literature dealing with the economic order quantity with imperfect incoming 

quality has exclusively been based on a screening, 100% inspection strategy; none 

of the studies on this topic have applied some form of acceptance sampling. The 

literature proposes a number of strategies on how imperfect quality can be treated 

within the classical economic order quantity methodology. The first study that 

includes imperfect quality in the economic order quantity model is [15], which is 
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based on profit maximization. [16] present a simple approach for determining the 

economic order quantity for an item with imperfect quality. [17] have treated the 

proportion of the imperfect items as random variable and affirmed that a profit 

maximization model will lead to the same solution drawn from a cost 

minimization model. [18] consider defective products and Taguchi’s cost of poor 

quality in the economic order quantity model, where the product quality follows a 

normal distribution function. 

[19] present an inventory model for imperfect items under a one-time-only 

discount, where the defectives can be screened out by a screening process and then 

can be sold in a single batch by the end of the screening process. [20] has 

developed an inventory model for items with imperfect quality and quantity 

discounts in response to the request of the powerful buyer. 

[21] analyze the effect of screening speed and variability of the supply process on 

the order quantity when items are imperfect and extend the model by allowing for 

several batches of imperfect quality items to be consolidated and shipped in one 

lot. [22] apply the concept of entropy cost to extend the classical EOQ model 

under the assumptions of perfect and imperfect quality.  

Stochastic analysis of the economic order quantity with imperfect quality has been 

developed. [23] investigate the economic order quantity with imperfect quality 

items, where the percentages of defective items and poor-quality items in each 

delivered lot are assumed to be random variables, and the inspection cost, holding 

cost, ordering cost are characterized as fuzzy variables, respectively. [24] consider 

items to be of different qualities, perfect and imperfect, and the percentage of the 

yield rate from the perfect items is assumed to be a random variable with known 

probability distribution. 

Some studies have included imperfect quality as a form of shortage that has to be 

carried to future orders. [24] and [26] have assumed bad items can be back-

ordered and developed the total profit function per cycle. [27] develop an EOQ 
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model in which each received lot contains some defective items and shortages 

backordered. It has been assumed that 100% of the items in each lot are inspected 

to separate good from defective items, which are imperfect quality and scrap 

items. The effect of percentage defective on optimal solution is studied. [28] have 

developed an economic order quantity model with defective items and shortages 

in fuzzy random environment; where the percentage of defective items is a 

random variable and the defective items contain imperfect quality items and scrap 

items; the rate of scrap items in defective items is a fuzzy variable.  They have 

written an expression for the expected profit, which has been proven to be 

concave. 

There are studies that examine the effect of learning on the economic order 

quantity with imperfect quality items. The first study on the learning effects was 

presented by [29]. They have developed models in which the percentage defective 

per lot is assumed to decline according to a learning curve. Based on previous 

studies, [30] present the optimal lot sizes for an item with imperfect quality when 

different holding costs for the good and defective items are considered. They have 

studied two situations: without a learning effect and with learning effect. They 

have noted that when there is learning effects, the lot size with different holding 

costs for the good and defective items is more than the one with same holding 

costs for the good and defective items. [31] consider learning in inspection with 

three cases: partial transfer of learning, total transfer of learning, and no transfer of 

learning. [32] examine a case when the screening process is imperfect and errors 

can happen during inspection. The probability of misclassification errors is 

assumed to be known.  

In the literature review, it has been highlighted the advancements in the design of 

realistic economic order quantity models when items in the received lot are 

classified as either defective or non-defective. All proposed models assume a 

screening, 100% inspection of the lot; unacceptable items are either backordered 

or sold at a discounted price. These assumptions not necessarily hold for all real 
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life cases; usually buyers do not have the resources to examine every item in the 

lot, so they are apt to adopt an acceptance sampling plan. For certain types of 

products, a destructive testing is required to ensure the items meet certain 

requirements. 

 

3 The mathematical Model 

The article will develop an economic order quantity model for the case when 

items are classified as defective and nondefective and the received lot is subjected 

to a single acceptance sampling plan and destructive testing and inspection errors. 

The cost function of the model is equal to the total costs minus total profits. Total 

costs include the costs of ordering, holding, destructive testing, and lot acceptance. 

Profits include revenue from selling the remaining items of the rejected lot. The 

variables of the model are the lot size and the sample size. The acceptance number 

will be assumed zero, as commonly used in destructive tests that are based on 

acceptance sampling. 

Consider a buyer who places orders of size Q from a supplier with a fixed 

ordering cost A and unit variable ordering cost Co and faces a constant demand 

rate D. The inventory holding cost is h and the cycle length is T. When a lot is 

received, the buyer uses a destructive testing acceptance sampling plan to decide if 

the lot should be accepted and placed in inventory or rejected. A sample of size n 

units is taken from the lot and inspected. The probability that an item is defective 

is p. The buyer accepts a lot when the number of defective items in the sample is 

equal to or less than c, the acceptance number. The destructive testing cost is 

( )g n . The shortage cost is Ca per unit. The probability of classifying a defective 

item as nondefective is m, with probability distribution function ( )f m  and 

cumulative distribution function ( )F m . When the result of destructive testing 

acceptance plan is to reject the lot, the buyer can sell the remaining items in the 
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rejected lot for K per unit and place a new order. The behavior of the inventory 

level is illustrated in Figure 1. 

 

 

 

 

The aim is to find an optimal ordering quantity and optimal sample size with zero 

acceptance number that will minimize the average total cost with an acceptable 

inspection service level: 

              min [ ( , )]E TC Q n   subject to 1(inspection yield)P p                             (1) 

The service level 1p  is the least acceptable probability that the acceptance 

sampling plan can offset the effect of inspection errors. The service level value is 

specified by the buyer. 

The probability that a lot is accepted is equal to the probability that there are c or 

less defective parts in the lot: 
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Figure 1: Behavior of the inventory level over time 
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The received lot is rejected when the number of defects in the sample exceeds the 

acceptance number c. 

When the lot is accepted, the expected number of short units that otherwise must 

meet part of the demand is equal to ( )Q n p n  , and these units will cause the 

buyer to incur shortage cost. Therefore, the cost of accepting a lot is: 

                                   ( ) ( ) ( )a a aC Q n p n P x c C Q n p n p                        (3)                         

The average expected total cost in a cycle consists of the difference between the 

total costs and the total benefits. The costs are the fixed ordering cost, the variable 

ordering cost, holding cost, cost of destructive testing, cost of lot rejection, and 

cost of lot acceptance; and the benefits are equal to the revenue from selling the 

remaining items in the rejected lot: 
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The expected total cost can be written as 
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In the expression of the expected total cost, ap  is a function of the sample size n  

and the acceptance number c . 

 

 



68                                                          Economic order quantity with imperfect quality 

Theorem 3.1  

The infinite series   
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Proof.  We can begin by expanding the expression of the series: 
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The three resulting infinite series are convergent: 
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Hence, the series converges and it is equal to 
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Substituting out the infinite series, the expected cost becomes: 
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When the acceptance number c is set to zero, the lot acceptance probability 

becomes (1 )n
ap p  , and the expected total cost reduces to 
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In considering the inspection yield, the number of defects in the sample is equal to 

pn . But because of the error in inspection, the reported number of defects in the 

sample is only (1 )pn m . Therefore, we can define the yield of the inspection to 

be whether (1 ) 1pn m c   . Therefore, the sample size n should be selected such 

that: 

                                             1( (1 ) 1)P pn m c p                                               (8) 

The probability of misclassification of a defective item m  is the only random 

variable in the inspection yield constraint; hence we can write: 

                                                  1

1
(1 )

c
P m p

pn


                                                (9) 

                                                             1

1
( 1 )

c
P m p

pn


                                                       (10) 

                                                           
1

1

10
( )

c

pn f m dm p



                                                     (11) 

The limits of the integration might exceed the permissible range of m , which can 

be defined as  min max,m m .  A better description of the integration can be: 
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The economic order quantity with destructive testing acceptance sampling and 

inspection errors is found by minimizing [ ( , )]E TC Q n , defined by Eq. (7), subject 

to the inspection yield constraint, defined by Eq. (13). 
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4 Numerical Analysis 
Consider a buyer who replenishes the inventory from a production system that 

produces perfect and imperfect items. The relevant costs and parameters are: 

 $0.7aC    

0 $2C    per unit 

$50A   

$0.5h   

1000D   units per year 

0.01p   

$0.4K   per unit 

( )f m   normal (μ 0.002 , 1  ) 

1 0.1p   

0c    

 In this analysis of the model, the inspection cost function will be assumed to be 

linear; ( ) 5 10g n n  . A linear inspection cost function reasonably describes the 

all costs associated with inspection, such as managerial cost, engineering cost, 

labor cost, etc. Examples of studies that assume linear inspection costs include 

[33] and [5]. The model is solved using GAMS-BARON solver. The optimal 

solution for the parameters selected above is 1,112Q   and 30n  . 

The sample size as determined by the inspection yield probability is shown in 

Figure 2. The sample size is calculated from Eq. (13) for the case of normal 

distribution as 
1

1

(1 ( ))
n

p p


, where 1  is the normal inverse cumulative 

distribution function, and 0c  . The plot of n  vs 1p  shows that the sample size 

increases when the inspection yield probability is raised. This result is consistent 

with a prior expectation that when the probability is high, we need a large sample 

in order for the number of defects in the sample which have been correctly 
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classified as defective to exceed the critical number. The plot also shows that the 

sample size increases when the standard deviation declines. For example, for 

1 0.1p  , the sample size 44n    when 1  ,  and 53n   when 0.7  . 

 
The effect of the selling price K  on the lot size, sample size, and the expected 

cost is illustrated in Table 1. The lot size Q  seems to increase only slightly with 

the increase in K , while the expected cost declines with the increase in the selling 

price. 

 

Table 1. Selling price 

K  Q  n   ( , )E TC Q n  

0.4 1,112 30 3,111.038 
0.5 1,114 30 3,076.797 
0.6 1,116 30 3,042.554 

 

 
 
 

 
Figure 2: Sample size 

0.7 

1   
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Table 2 illustrates the effect of the probability of a defective item on the lot size, 
sample size, and the expected cost.  With the increase in p , all variables decline. 

The decline in the lot size Q  with the increase in p  is consistent with the 

expectation that when the probability of defective is high, we better order less 
quantity to reduce the shortage cost per cycle. 
 

Table 2. Probability of defective 

p  Q  n   ( , )E TC Q n

0.01 1,112 30 3,111.038 

0.02 884 15 3,014.729 

0.03 793 10 2,982.461 

 

 

 

5 Conclusion 

This article provides an economic order quantity model in which the buyer orders 

items from a production process that produces perfect and imperfect products. As 

a result, the buyer applies an acceptance sampling plan; because of the nature of 

the items, destructive testing is required to assess quality. The inspection process 

is not perfect; defective items can be still classified by the inspection as 

nondefective. If the received lot is rejected, the remaining items are sold in a 

secondary market for a reduced price and a new order is place. It has been found 

that the increase the selling price reduces the lot size, and that increase the 

probability of a defect item reduces both the lot size and the sample size. 
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