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Bounded linear operators for some

new matrix transformations

M. Aiyub1

Abstract

In this paper, we define (σ, θ)-convergence and characterize (σ, θ)-

conservative, (σ, θ)-regular, (σ, θ)-coercive matrices and we also deter-

mine the associated bounded linear operators for these matrix classes.
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1 Introduction and preliminaries

We shall write w for the set of all complex sequences x = (xk)
∞
k=0. Let

φ, `∞, c and c0 denote the sets of all finite, bounded, convergent and null se-

quences respectively; and cs be the set of all convergent series. We write

`p := {x ∈ w :
∑∞

k=0 | xk |p< ∞} for 1 ≤ p < ∞. By e and e(n)(n ∈ N),
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we denote the sequences such that ek = 1 for k = 0, 1, ..., and e
(n)
n = 1 and

e
(n)
k = 0 (k 6= n). For any sequence x = (xk)

∞
k=0, let x[n] =

∑n
k=0 xke

(k) be

its n-section.

Note that c0, c, and `∞ are Banach spaces with the sup-norm ‖x‖
∞
= supk |xk|,

and `p(1 ≤ p < ∞) are Banach spaces with the norm ‖x‖p= (
∑

|xk|
p)1/p;

while φ is not a Banach space with respect to any norm.

A sequence (b(n))∞n=0 in a linear metric space X is called Schauder basis

if for every x ∈ X, there is a unique sequence (βn)
∞
n=0 of scalars such that

x =
∑∞

n=0 βnb
(n).

Let X and Y be two sequence spaces and A = (ank)
∞
n;k=1 be an infinite

matrix of real or complex numbers. We write Ax = (An(x)), An(x) =
∑

k

ankxk provided that the series on the right converges for each n. If x = (xk) ∈

X implies that Ax ∈ Y , then we say that A defines a matrix transformation

from X into Y and by (X, Y ) we denote the class of such matrices.

Let σ be a one-to-one mapping from the set N of natural numbers into

itself. A continuous linear functional ϕ on the space `∞ is said to be an

invariant mean or a σ-mean if and only if (i) ϕ(x) ≥ 0 if x ≥ 0 (i.e. xk ≥ 0

for all k), (ii) ϕ(e) = 1, where e = (1, 1, 1, · · · ), (iii) ϕ(x) = ϕ((xσ(k))) for all

x ∈ `∞.

Throughout this paper we consider the mapping σ which has no finite

orbits, that is, σp(k) 6= k for all integer k ≥ 0 and p ≥ 1, where σp(k) denotes

the pth iterate of σ at k. Note that, a σ-mean extends the limit functional on

the space c in the sense that ϕ(x) = lim x for all x ∈ c, (cf [10]). Consequently,

c ⊂ Vσ, the set of bounded sequences all of whose σ-means are equal.We say

that a sequence x = (xk) is σ-convergent if and only if x ∈ Vσ.

Vσ = {x ∈ `∞ : lim
p→∞

tpn(x) = L, uniformly in n}.

where L = σ − lim x, where

tpn(x) =
1

p+ 1

p
∑

m=0

xσm(n),

Using the concept of Schaefer [17] defined and characterized the σ-conservative,

σ- regular and σ- coercive matrices. If σ is translation then the σ- mean often

called Banach Limit [2] and the set Vσ reduces to the set f of almost convergent

sequence studied by Lorenz [9]. By a lacunary sequence we mean an increasing
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sequence θ = (kr) of integers such that k0 = 0 and hr = kr − kr−1 → ∞ as

r → ∞. Throughout this paper the intervals determined by θ will be denoted

by Ir := (kr−1 − kr], and the ratio kr

/

kr−1 will be abbreviated by qr (see

Fredman et al[8]). Recently, Aydin[1] defined the concept of almost lacunary

convergent as follow: A bounded sequence x = (xk) is said be almost lacunary

convergent to the number ` if and only if

lim
r

1

hr

∑

j∈Ir

xj+n = `, uniformly in n.

the idea of σ-convergence for double sequences was introduced in [4] and further

studied recently in [3] and [15]. In [11]-[14] we study various classes of four

dimensional matrices, e.g. σ-regular, σ-conservative, regularly σ-conservative,

boundedly σ-conservative and σ-coercive matrices.

In this paper, we define (σ, θ)-convergence. We also generalize the above

matrices by characterizing the (σ, θ)-conservative, (σ, θ)-regular and (σ, θ)-

coercive matrices. Further, we also determine the associated bounded linear

operators for these matrix classes, which is the generalized result of Mursaleen,

M.A. Jarrah and S.Mouhiddin in [15].

2 (σ, θ) -Lacunary convergent sequences

We define the following:

Definition 2.1. A bounded sequence x = (xk) of real numbers is said to be

(σ, θ) -lacunary convergent to a number ` if and only if limr
1
hr

∑

j∈Ir
xσj(n) = `,

uniformly in n, and let Vσ(θ),denote the set of all such sequences, i.e where

Vσ(θ) = {x ∈ `∞ : lim
r

1

hr

∑

j∈Ir

xσj(n) = `, uniformly in n}

Note that for σ(n) = n + 1, σ- lacunary convergence is reduced to almost

lacunary convergence. Results similar to that Aydin [1] can easily be proved

for the space Vσ(θ).
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Definition 2.2. A bounded sequence x = (xk) of real numbers is said to

be σ -lacunary bounded if and only if supr,n |
1
hr

∑

j∈Ir
xσj(n)| < ∞, and we let

V ∞
σ (θ), denot the set of all such sequences

V ∞
σ (θ) = {x ∈ `∞ : sup

r,n
|τr,n(x)| < ∞}.

Where

τrn(x) =
1

hr

∑

j∈Ir

xσj(n),

Note that c ⊂ Vσ(θ) ⊂ V ∞
σ (θ) ⊂ `∞.

Definition 2.3. An infinite matrix A = (ank) is said to be (σ, θ)-conservative

if and only if Ax ∈ Vσ(θ) for all x = (xk) ∈ c and we denote this by

A ∈ (c, Vσ(θ)).

Definition 2.4. We say that, infinite matrix A = (ank) is said to be

(σ, θ)-regular if and only if it is Vσ(θ)-conservative and (σ, θ)- limAx = lim x

for all x ∈ c and we denote this by A ∈ (c, Vσ(θ))reg.

Definition 2.5. A matrix A = (ank) is said to be (σ, θ)-coercive if and only

if Ax ∈ Vσ(θ) for all x = (xk) ∈ `∞ and we denote this by A ∈ (`∞, Vσ(θ)).

Remark 2.6. If we take hr = r then Vσ(θ) is reduced to the space Vσ

and (σ, θ)-conservative, (σ, θ)-regular, (σ, θ)-coercive matrices are respectively

reduced to σ-conservative, σ-regular, σ-coercive matrices (cf [15]); and in ad-

dition if σ(n) = n+1 then the space Vσ(θ) is reduced to the space f of almost

convergent sequences (cf [9]) and these matrices are reduced to the almost

conservative, almost regular (cf [7]) and almost coercive matrices respectively

(cf [6]).
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3 (σ, θ)-conservative matrices and bounded

linear operators

In the following theorem we characterize (σ, θ)-conservative matrices and

find the associated bounded linear operator.

Theorem 3.1. A matrix A = (ank) is (σ, θ)-conservative, i.e. A ∈ (c, Vσ(θ))

if and only if it satisfies the condition

(i) ‖A‖ = sup
n

∑

k

|ank| < ∞;

(ii) a(k) = (ank)
∞
n=1 ∈ Vσ(θ), for each k;

(iii) a =

(

∑

k

ank

)∞

n=1

∈ Vσ(θ).

In this case, the (σ, θ)-limit of Ax is

lim x

[

u−
∑

k

uk

]

+
∑

k

xkuk,

where u = (σ, θ)- lim a and uk = (σ, θ)- lim ak, k = 1, 2, · · · .

Proof.Sufficiency. Let the conditions hold. Let r be any non-negative

integer and x = (xk) ∈ c. For every positive integer n; write

τrn(x) =
1

hr

∞
∑

k=1

∑

j∈Ir

aσj(n),kxk

Then we have

|τrn(x)| ≤
1

hr

∞
∑

k=1

∑

j∈Ir

|aσj(n),k||xk|

≤
‖x‖

hr

∞
∑

k=1

∑

j∈Ir

|aσj(n),k| ≤ ‖A‖‖x‖.

Since τrn is obviously linear on c, it follows that τrn ∈ c′ and ‖τrn‖ ≤ ‖A‖.

Now,

τrn(e) =
1

hr

∞
∑

k=1

∑

j∈Ir

aσj(n),k =
1

hr

∑

j∈Ir

∞
∑

k=1

aσj(n),k
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that is, lim
r

τrn(e) exists uniformly in n and lim
r

τrn(e) = u uniformly in n, the

(σ, θ)-limit of a, since a ∈ Vσ(θ). Similarly, lim
r

τrne
k = uk, the (σ, θ)-limit of

a(k) for each k, uniformly in n. Since {e, e1, e2, · · · } is a fundamental set in c,

and supr |τr,n(x)| is finite for each x ∈ c, it follows that

lim
r

τrn(x) = τn(x),

exists for all x ∈ c (cf [5]). Furthermore, ‖τn‖ ≤ lim inf
r

‖τrn‖ ≤ ‖A‖ for each

n and τn ∈ c′. Thus, each x ∈ c has a unique representation

x = (lim x)

[

e−
∑

k

ek

]

+
∑

k

xkek

τn(x) = (lim x)

[

tn(e)−
∑

k

tn(ek)

]

+
∑

k

xktn(ek)

τn(x) = (lim x)

[

u−
∑

k

uk

]

+
∑

k

xkuk.

By L(x), we denote the right hand side of the above expression which is inde-

pendent of n. Now, we have to show that lim
r

τrn(x) = L(x) uniformly in n.

Put

Frn(x) = τrn(x)− L(x).

Then Frn ∈ c′, ‖Frn‖ ≤ 2‖A‖ for all r, n, lim
r

Frn(e) = 0 uniformly in n, and

lim
r

Frn(e
k) = 0 uniformly in n for each k. Let K be an arbitrary positive

integer. Then

x = (lim x)e+
K
∑

k=1

(xk − lim x)ek +
∞
∑

k=K+1

(xk − lim x)ek.

Now applying Frn on both sides of the above equality, we have

Frn(x) = (lim x)Frn(e) +
K
∑

k=1

(xk − lim x)Frn(e
k) + Frn

( ∞
∑

k=K+1

(xk − lim x)ek
)

.

(3.1.1)

Now,
∣

∣

∣

∣

Frn

( ∞
∑

k=K+1

(xk − lim x)ek
)∣

∣

∣

∣

≤ 2‖A‖
∑

k≥K+1

{|xk − lim x|},

for all r, n. After choosing fixed K large enough, it is easy to see that the

absolute value of each term on the right hand side of (3.1.1) can be made
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uniformly small for all sufficiently large r. Therefore, limr Frn(x) = 0 uniformly

in n; so that Ax ∈ Vσ(θ) and the matrix A is (σ, θ)-conservative.

Necessity. Suppose that A is (σ, θ)-conservative. Then

Ax = (An(x))
∞
n=1 =

(

∑

k

ankxk

)∞

n=1

∈ Vσ(θ),

for all x ∈ c. Let x = (xk) = ek. Therefore

(σ, θ)- lim
n

∑

k

anke
k = (σ, θ)- lim

n
ank = a(k).

Hence (ii) holds. Now, let x = e. Then

(σ, θ)- lim
n

∑

k

anke = (σ, θ)- lim
n

∑

k

ank = a,

so that (iii) must hold. Since Ax = (An(x)) ∈ Vσ(θ) ⊂ `∞. It follows that

supn |An(x)| < ∞, (An) is a sequence of bounded operators. Therefore, by

Banach-Steinhaus theorem, supn |An| < ∞, which implies supn

∑

k |ank| < ∞

and hence ‖A‖ = supn

∑

k

|ank| < ∞, i.e. (i). This completes the proof of the

theorem.

Now, we deduce the following.

Corollary 3.2. A = (ank) is (σ, θ)-regular if and only if the conditions (i),

(ii) with (σ, θ)-limit zero for each k, and (iii) with (σ, θ)-limit 1 of Theorem

3.1 hold.

Proof.For x ∈ c, (σ, θ)- limAx = L(x), which reduces to lim x, since u = 1

and uk = 0 for each k. Hence A is (σ, θ)-regular.

Conversely, let A be (σ, θ)-regular. Then (σ, θ)-limAe = 1 = (σ, θ)-limAa,

(σ, θ)-limAek = 0 = (σ, θ)-limA(k) and ‖A‖ is finite as condition (i) of Theorem

3.1. This completes the proof of the Corollary 3.2.
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4 (σ, θ)-coercive matrices

We use the following lemma in our next theorem.

Lemma 4.1. Let B(n) = (bmk(n)), n = 0, 1, 2, · · · be a sequence of infinite

matrices such that

(i) ‖B(n)‖ < H < +∞ for all n; and

(ii) lim
m

bmk(n) = 0 for each k, uniformly in n.

Then

lim
m

∑

k

bmk(n)xk = 0 uniformly in n for each x ∈ `∞ (4.1.1)

if and only if

lim
m

∑

k

|bmk(n)| = 0 uniformly in n. (4.1.2)

Theorem 4.2. A matrix A = (ank) is (σ, θ)-coercive, i.e. A ∈ (`∞, Vσ(θ))

if and only if (i) and (ii) of Theorem 3.1 hold, and

(iii) lim
r

∞
∑

k=1

|
∑

j∈Ir

aσj(n),k − uk| uniformly in n.

In this case, the (σ, θ)-limit of Ax is

∑

k

xkuk ∀x ∈ `∞,

where uk = (σ, θ)- lim ak.

Proof. Sufficiency. Let the conditions hold. For any positive integer K

K
∑

k=1

|uk| =
K
∑

k=1

lim
r

∣

∣

∣

∣

∑

j∈Ir

aσj(n),k

∣

∣

∣

∣

/

hr = lim
r

K
∑

k=1

∣

∣

∣

∣

∑

j∈Ir

aσj(n),k

∣

∣

∣

∣

/

hr

≤ lim sup
r

∑

j∈Ir

∞
∑

k=1

∣

∣

∣

∣

aσj(n),k

∣

∣

∣

∣

/

hr ≤ ||A||.



M. Aiyub 95

This shows that
∞
∑

k=1

|uk| converges, and that
∞
∑

k=1

ukxk is defined for every x =

(xk) ∈ `∞.

Let x = (xk) be any arbitrary bounded sequence. For every positive

integer r
∥

∥

∥

∥

∞
∑

k=1

(

1

hr

∑

j∈Ir

aσj(n),k − uk

)

xk

∥

∥

∥

∥

=

∥

∥

∥

∥

∞
∑

k=1

[

∑

j∈Ir

[aσj(n),k − uk]

/

hr

]

xk

∥

∥

∥

∥

≤ sup
n

[∣

∣

∣

∣

∞
∑

k=1

[

∑

j∈Ir

[aσj(n),k − uk]

/

hr

]

xk

∣

∣

∣

∣

]

≤ ‖x‖ sup
r

[ ∞
∑

k=1

∣

∣

∣

∣

∑

j∈Ir

[aσj(n),k − uk]

∣

∣

∣

∣

/

hr

]

.

Letting r → ∞ and using condition (iii), we get

1

hr

∞
∑

k=1

∑

j∈Ir

aσj(n),kxk −→
∞
∑

k=1

ukxk.

Hence Ax ∈ Vσ(θ) with (σ, θ)-limit
∞
∑

k=1

ukxk.

Necessity. Let A be (σ, θ)-coercive matrix. This implies that A is (σ, θ)-

conservative, then we have condition (i) and (ii) from Theorem 3.1. Now we

have to show that (iii) holds.

Suppose that for some n, we have

lim sup
r

∞
∑

k=1

∣

∣

∣

∣

∑

j∈Ir

[aσj(n),k − uk]

∣

∣

∣

∣

/

hr = N > 0.

Since ‖A‖ is finite, therefore N is also finite. We observe that since
∞
∑

k=1

|uk| <

+∞ and A is (σ, θ)-coercive, the matrix B = (bnk), where bnk = ank − uk, is

also (σ, θ)-coercive matrix. By an argument similar to that of Theorem 2.1 in

[6], one can find x ∈ `∞ for which Bx /∈ Vσ(θ). This contradiction implies the

necessity of (iii).

Now, we use Lemma 4.1 to show that this convergence is uniform in n.

Let

trk(n) =
∑

j∈Ir

[aσj(n),k − uk]

/

hr
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and let T (n) be the matrix (trk(n)). It is easy to see that ‖H(n)‖ ≤ 2‖A‖ for

every n; and from condition (ii)

lim
r

trk(n) = 0 for each k, uniformly in n.

For any x ∈ `∞

lim
r

∑

j∈Ir

trk(n)xk = (σ, θ)- limAx−

∞
∑

k=1

ukxk

and the limit exists uniformly in n, since Ax ∈ Vσ(θ). Moreover, this limit is

zero since
∣

∣

∣

∣

∞
∑

k=1

trk(n)xk

∣

∣

∣

∣

≤ ‖x‖
∞
∑

k=1

∣

∣

∣

∣

∑

j∈Ir

[aσj(n),k − uk]

∣

∣

∣

∣

/

hr.

Hence

lim
r

∞
∑

k=1

∣

∣

∣

∣

trk(n)

∣

∣

∣

∣

= 0 uniformly in n;

i.e. the condition (iii) holds. This completes the proof of the theorem.

Acknowledment: I would like to thank to the Deanship of scientific
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References

[1] B. Aydin, Lacunary almost summability in certain linear topological

spaces, Bull. Malays Math. Sci. Soc., 2, (2004), 217-223.

[2] S.Banach, Theorie des operations lineaires, Warsaw, 1932.
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