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Abstract

In this paper, we studied the stabilty of general situation of non-

smooth slow-varying systems. We gave an exponential stability theorem

for linear time-varying systems with undifferential right-hand, which

only satisfies Lipschitz condition. Furthermore, the upper bound of ε is

given.
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1 Introduction

The interest in the study of the nonsmooth analysis for discontinuous sys-

tems is essentially motivated by many practical problems. The main reason is

there are many systems which have nonsmooth dynamics, such as the systems
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have Coulomb friction, contact interaction, and variable structure. So it is es-

sential for us to analyze these systems and address such issues as the existence

of equilibria, their stability, and qualitative dynamics. Such systems arise in a

large variety of important engineering applications such as the control of fric-

tion and pendulums([1],[2],[3],[4]). It is therefore of great interest in control

engineering to develop methods for determining whether slowly time-varying

systems are uniformly globally asymptotically stable. As we know, there is a

great different nature between a general slow-varying system

ẋ = f(x, t) (1)

and a invariant system.We can not use eigenvalues, eigenvectors to describe

the solutions. So many author’s work focused on specific slowly varying linear

and nonlinear systems.

Consider time-varying linear system

ẋ = A(t)x (2)

where all the elements ai,j(t)(i, j = 1, 2, · · · , n) of A(t) are continuous and

bounded, and all the eigenvalues of A(t) have strict negative real parts, but

this does’t ensure that the system (2) is asymptotically stable. In 1963,

H.H.Rosonblock[4] pointed out that for some special A(t), if |ȧi,j(t)| is small

enough, then the system (2) is stable. In 2001, Wang Yibing and Han Zengjin

[5] studied the stability of general nonlinear slow-varying system, and obtained

an exponential stability theorem. But in their results, they need A(t) is dif-

ferential. In this paper, we will consider that A(t) is not differential , then the

Lyapunov function V (t, x) is also not differential. That is to say, it is enough

ensure the system (2) is stable if A(t) is only Lipschitz.

2 Main Results

Consider initial value problem of the following general nonlinear slow-

varying system

ẋ = f(t, x(t)), x(0) = x0, t ≥ 0 (3)

where x(t) ∈ Rn. We assume:

(H1) f : [0,+∞) × Rn is continuous differentiable function, Dxf(t, x) is
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uniformly continuous about x on [0,+∞)×Ω, and Ω is an compact neighbor-

hood of x = 0.

(H2) f(t, x) = 0, t ≥ 0 if and only if x = 0.

(H3) There exist positive constants σ and M such that

Reλ(Dxf(t, 0)) ≤ −σ < 0, ‖Dxf(t, 0)‖ ≤ M, t > 0.

According to condition (H3), it is easy for us to get: for any k(0 < k < σ),

there must exist K > 0 which depends on σ,M, k, n such that

‖eDxf(t,0)s‖ ≤ Ke−ks, s > 0.

Theorem 2.1. Suppose the system (3) satisfies conditions (H1),(H2),(H3).

Let A(t) = Dxf(t, 0). If A(t) satisfies Lipschitz condition, and for any small

enough ε > 0,

sup
h>0

‖
A(t+ h)− A(t)

h
‖ < ε <

σ2

2K2 +K2σ
,

then the trivial solution x = 0 of system (3) is exponential stable.

In the following discussion, we always assume that the system satisfies the

condition (H1),(H2),(H3). Now, for x ∈ Rn, we can get

f(t, x) =

∫ 1

0

d

dθ
f(t, θx)dθ. (4)

Let

Ã(t, x) = Dxf(t, x), C̃(t, x) =

∫ 1

0

(Ã(t, θx)− Ã(t, 0))dθ.

By (4) we can get

f(t, x) = Ã(t, 0)x(t) + C̃(t, x(t))x(t).

Let

A(t) = Ã(t, 0), C(t) = C̃(t, 0).

Then the system (3) can be rewritten as

ẋ(t) = A(t)x(t) + C(t)x(t), x(0) = x0, t ≥ 0. (5)
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Corollary 2.2. For any given one constant η > 0, there must exist a δ̃ > 0

such that ‖C(t)‖ ≤ η when ‖x(t)‖ ≤ δ̃, t ≥ 0.

Proof. By the condition (H1),we know, for any given η > 0, there exists

one δ > 0 such that ‖Ã(t, x)− Ã(t, 0)‖ ≤ η if ‖x‖ ≤ δ. Then for any θ ∈ [0, 1],

we know ‖Ã(t, x)− Ã(t, 0)‖ ≤ η if ‖x‖ ≤ δ.Thus

‖C̃(t, x(t))‖ = ‖

∫ 1

0

(Ã(t, θx)− Ã(t, 0))dθ‖ ≤

∫ 1

0

‖Ã(t, θx)− Ã(t, 0)‖dθ ≤ η,

that is to say, for any t ≥ 0, if ‖x(t)‖ ≤ δ̃, then we can get ‖C(t)‖ ≤ η, the

proof is completed.

Now consider Lyapunov matrix equation

AT (t)R(t) +RT (t)A(t) = −I (6)

Owing to Reλ(A(t)) ≤ −σ, for each t ≥ 0, the matrix function

R(t) =

∫ +∞

0

eA
T (t)seA(t)sds (7)

is continuous and the only definite solution of (6), and if A(t) satisfies the

Lipschitz condition, then R(t) also. Now we prove it by mean value theorem.

For any t1, t2 > 0, if ‖A(t1)− A(t2)‖ ≤ L|t1 − t2|, then

‖R(t1)−R(t2)‖ = ‖

∫ +∞

0

eA
T (t1)seA(t1)s − eA

T (t2)seA(t2)sds‖

≤

∫ +∞

0

(‖eA
T (t1)s[eA(t1)s − eA(t2)s]‖+ ‖[eA

T (t1)s − eA
T (t2)s]eA(t2)s‖)ds.

By the mean value theorem, there exist t3, t4 ∈ (t1, t2), such that the above

equation can be reduced to
∫ +∞

0

(‖eA
T (t1)seA(t3)s[A(t1)s− A(t2)s]‖+ ‖eA

T (t4)s[AT (t1)s− AT (t2)s]e
A(t2)s‖)ds

≤

∫ +∞

0

2K2e−σssds · ‖A(t1)− A(t2)‖

≤

∫ +∞

0

2K2e−σssL|t1 − t2|ds ≤
2K2L

σ2
|t1 − t2|,

because of ‖eA(t)s‖ ≤ Ke−
σ

2
s. So we prove

‖R(t1)−R(t2)‖ ≤
2K2L

σ2
|t1 − t2|.
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Construct the Lyapunov function as follow

V (t, x) = xTR(t)x,

thus V (t, x) satisfies the Lipschitz condition by the reason of function R(t).

Corollary 2.3. There exist constants b ≥ a > 0 such that

a‖x‖2 ≤ V (t, x) ≤ b‖x‖2, t ≥ 0, x ∈ Rn.

Proof. Suppose all the eigenvalues, eigenvectors of A(t) are λi(t), ξi(t)(i =

1, 2, · · · , n) respectively. then

ξ̄Ti (t)R(t)ξi(t) =

∫ +∞

0

ξ̄Ti (t)ξi(t)e
2Reλi(t)sds = −

ξ̄Ti (t)ξi(t)

2Reλi(t)
,

that is to say
−1

2Reλi(t)
is a eigenvalues of R(t), then we let

0 < a
1

n ≤ min
i=1,2,··· ,n

{
−1

2Reλi(t)
}, b

1

n ≥ max
i=1,2,··· ,n

{
−1

2Reλi(t)
},

the Corollary can be proved.

Proof of Theorem 2.1 First, from Corollary 2.2, for any δ ∈ (0, δ̃], there

must exist a ta > 0 such that ‖x(t)‖ ≤ δ, ∀ t ∈ [0, ta], otherwise, assume

‖x(ta)‖ = δ, for x(t+ h) = x(t) + hẋ(t) + o(h), consider

V (t, x(t+ h))− V (t, x(t))

= xT (t)(R(t+ h)−R(t))x(t) + hxT (t)R(t+ h)ẋ(t) + hẋT (t)R(t+ h)x(t) + o(h),

owing to ‖R(t+ h)−R(t)‖ ≤ 2K2

σ2 ‖A(t+ h)− A(t)‖, so we can get

DV (t, x(t))

≤ −‖x(t)‖2 +
2K2

σ2
lim
h→0

sup
h>0

‖
A(t+ h)− A(t)

h
| · ‖x(t)‖2 + 2‖R(t)‖ · ‖C(t)‖ · ‖x(t)‖2

≤ −(1−
2K2

σ2
ε−

K2

σ
ε)‖x(t)‖2.

By Corollary 2.3, we know

V (ta, x(ta)) ≥ a‖x(ta)‖
2 = aδ2, V (0, x0) ≤

K2

σ2
‖x0‖

2 < bδ21 =
aδ2

2
.
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On the other hand, there exists a tb ∈ (0, ta) such that

V (tb, x(tb)) =
aδ2

2
, V (t, x(t)) >

aδ2

2
, t ∈ (tb, ta),

thus we can get

‖x(t)‖2 >
aδ2

2
, t ∈ (tb, ta).

But

V (ta, x(ta))− V (tb, x(tb)) ≤ −(1−
2K2

σ2
ε−

K2

σ
ε)

∫ ta

tb

‖x(t)‖2dt,

then

V (ta, x(ta)) ≤
aδ2

2
−

aδ2µ(ta − tb)

2b
<

aδ2

2
,

where µ = 1−
2K2

σ2
ε−

K2

σ
ε, that is to say

aδ2 = a‖x(ta)‖
2 ≤ V (ta, x(ta)) <

aδ2

2
,

Obviously, this is a contradiction, so there does not exist such ta, thus we can

obtain

DV (t, x(t)) ≤ −
µ

b
V (t, x(t)), t ≥ 0.

So the trivial solution of system (3) is exponentially stable. And also it is easy

for us upper bound of ε is
σ2

2K2(1 + σ)
.
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