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The Stability of Non-smooth
Slow-varying Systems
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Abstract

In this paper, we studied the stabilty of general situation of non-
smooth slow-varying systems. We gave an exponential stability theorem
for linear time-varying systems with undifferential right-hand, which
only satisfies Lipschitz condition. Furthermore, the upper bound of ¢ is

given.
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1 Introduction

The interest in the study of the nonsmooth analysis for discontinuous sys-
tems is essentially motivated by many practical problems. The main reason is

there are many systems which have nonsmooth dynamics, such as the systems

! Huanghe Science and Technology College, Huazhai Road, Zhengzhou, Henan 450000,
China, e-mail: fengjuntang@126.com

2 Huanghe Science and Technology College, e-mail: moonstarsun@126.com

3 Information Engineering University, Science college, e-mail: lixiaonan2008@126.com

Article Info: Received : March 21, 2012. Rewised : April 25, 2012
Published online : June 30, 2012



70 The Stability of Non-smooth Slow-varying Systems

have Coulomb friction, contact interaction, and variable structure. So it is es-
sential for us to analyze these systems and address such issues as the existence
of equilibria, their stability, and qualitative dynamics. Such systems arise in a
large variety of important engineering applications such as the control of fric-
tion and pendulums([1],[2],[3],[4]). It is therefore of great interest in control
engineering to develop methods for determining whether slowly time-varying
systems are uniformly globally asymptotically stable. As we know, there is a

great different nature between a general slow-varying system

i= flx,t) (1)

and a invariant system.We can not use eigenvalues, eigenvectors to describe
the solutions. So many author’s work focused on specific slowly varying linear
and nonlinear systems.

Consider time-varying linear system
T = A(t)x (2)

where all the elements a;;(t)(i,7 = 1,2,--- ,n) of A(t) are continuous and
bounded, and all the eigenvalues of A(t) have strict negative real parts, but
this does’t ensure that the system (2) is asymptotically stable. In 1963,
H.H.Rosonblock[4] pointed out that for some special A(t), if |G, ;(¢)| is small
enough, then the system (2) is stable. In 2001, Wang Yibing and Han Zengjin
[5] studied the stability of general nonlinear slow-varying system, and obtained
an exponential stability theorem. But in their results, they need A(t) is dif-
ferential. In this paper, we will consider that A(t) is not differential , then the
Lyapunov function V' (¢, z) is also not differential. That is to say, it is enough

ensure the system (2) is stable if A(t) is only Lipschitz.

2 Main Results

Consider initial value problem of the following general nonlinear slow-
varying system
T = f(t,xz(t)),z(0) = xo,t >0 (3)

where z(t) € R™. We assume:
(Hy) f :]0,400) x R" is continuous differentiable function, D, f(¢,x) is
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uniformly continuous about x on [0, +00) x 2, and € is an compact neighbor-
hood of z = 0.

(Hy) f(t,x) =0,t >0 if and only if x = 0.

(Hj3) There exist positive constants o and M such that

ReMD. f(t,0)) < —a < 0, | Dof(t,0)|| < M,t > 0.

According to condition (Hj3), it is easy for us to get: for any k(0 < k < o),
there must exist K > 0 which depends on o, M, k,n such that

||6Dxf(t’0)s|| < Ke ™ s> 0.

Theorem 2.1. Suppose the system (3) satisfies conditions (Hy),(Hsz),(Hs).
Let A(t) = D, f(t,0). If A(t) satisfies Lipschitz condition, and for any small
enough € > 0,

(t+h) — A(t) o?
I<e< sy rme

1A
sup
h>0 h

then the trivial solution x = 0 of system (3) is exponential stable.

In the following discussion, we always assume that the system satisfies the
condition (H,),(Hs),(Hs). Now, for x € R", we can get

f(t,ac):/0 d%f(t,@x)d&. (4)
Let .
A(t,z) = D, f(t,z),C(t,z) —/ (A(t,0z) — A(t,0))d6.

By (4) we can get

f(t,x) = A(t,0)x(t) + C(t, z(t))x(t).

Let

A(t) = A(t,0),C(t) = C(t,0)

Then the system (3) can be rewritten as

#(t) = AW (t) + C()a(t), 2(0) = wo,t > 0. (5)
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Corollary 2.2. For any given one constant nn > 0, there must exist a 6>0
such that ||C(t)|| < n when ||z(t)|| < d,t > 0.

Proof. By the condition (H;),we know, for any given n > 0, there exists
one ¢ > 0 such that ||A(t,z) — A(t,0)|| < nif |z]| <. Then for any 8 € [0, 1],
we know ||A(t, ) — A(t,0)| < nif ||z|| < 6. Thus

1C(t, 2(2) |_||/ (t,02) — A(t,0)) d0||</||At0x) A(t,0)]1do < n,

that is to say, for any ¢ > 0, if ||z(¢)|| < 0, then we can get ||C(t)|| < 7, the
proof is completed. O]

Now consider Lyapunov matrix equation
AT(HR(t) + RT(H)A(t) = -1 (6)
Owing to Re\(A(t)) < —o, for each t > 0, the matrix function
R(t) = / " AT 08 A0 4 (7)
0

is continuous and the only definite solution of (6), and if A(t) satisfies the
Lipschitz condition, then R(t) also. Now we prove it by mean value theorem.
For any t1,t2 > 0, if ||A(t1) — A(t2)|| < L|t1 — to|, then

+o0
L S ] A
0
“+oo
= / (||6AT(t1)s[eA(t1)s _ eA(t2)s]|| + ||[€AT(t1)s _ eAT(m)s]eA(w)sH)d&
0

By the mean value theorem, there exist t3,t4 € (¢1,t2), such that the above

equation can be reduced to

/ooo(HeAT(“)SeA(tS)S[A(h)S— Alta)s]l| + e (AT (11)s — AT (85)s]e2|)ds

+oo
< / 2K sds - | A(ty) — Aty)]
0

+o00 2K2L
S / 2K2€_JSSL|t1 — t2|d3 S |t1 — t2|
0
because of [eA®%|| < Ke™2%. So we prove
2K2L
[B(t1) — R(t2)|| < |t — .




Tang Fengjun, Liu Chao and Li Xiaonan 73

Construct the Lyapunov function as follow
V(t,x) = 2" R(t),

thus V (¢, z) satisfies the Lipschitz condition by the reason of function R(t).

Corollary 2.3. There exist constants b > a > 0 such that
allz||* < V(t,z) < bllz]*t > 0,2 € R".

Proof. Suppose all the eigenvalues, eigenvectors of A(t) are \;(t),&(t)(i =
1,2,--+ ,n) respectively. then

& (&)

+o00
EHRE)E() = /0 & (t)&(t)eQReMt)Sds:—QRBAZ.@’

that is to say is a eigenvalues of R(t), then we let

0<at < min {—— 15t > -1,
n m _— n a _—
= QRN T i Y 2ReN (1)
the Corollary can be proved. O]

Proof of Theorem 2.1 First, from Corollary 2.2, for any ¢ € (O,S],there
must exist a t, > 0 such that [|z(¢)| < 0, Vt € [0,t,], otherwise, assume
|z(to)|| =6, for x(t + h) = z(t) + hi(t) + o(h), consider

V(t,z(t+h)) —V(t,x(t))
=2 (t)(R(t + h) — R(t))x(t) + ha” () R(t + h)@(t) + hi” () R(t + h)z(t) + o(h),

owing to ||R(t+ h) — R(t)]] < QUL;HA(t + h) — A(t)]], so we can get
DV (t,x(t))
[z @1 + 2RO - ICO - 2]

2K? A(t+h) — A1)
< ~lle@®I° + —5- limsup | -

By Corollary 2.3, we know

KQ
V(ta,x(ta)) > allz(ta)||* = ad®, V(0,20) < —5[lxol® < b6 = —-.
o
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On the other hand, there exists a ¢, € (0,t,) such that

52 52
vmﬂﬁ@y:%P V@x@)>%?,te@m%%
thus we can get
,  ad?
eI > % e (tn,ta)
But
2K? K? ta
Vit alta)) = Vit olt) < (1= = e = 2 =e) [ att P,
b
then , » ) )
ad ad”u(ty, — ty ad
V(te, 2(te)) < —— ———5—7 < —,
(ta 2(ta)) = = 5 <5
2K? K?
where y =1— ———¢&— —¢, that is to say
o o
ad?

a8 = alle(t)|* < Vita,a(t)) < -
Obviously, this is a contradiction, so there does not exist such ¢,, thus we can
obtain

DV@x@)g—%V@w@» t>0.

So the trivial solution of system (3) is exponentially stable. And also it is easy
2
for us upper bound of € is m. [l
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