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Abstract 

The present study aims at investigating unsteady hydromagnetic flow of viscous 

incompressible, conducting nanofluid over an infinite oscillating surface with 

Joule heating. The governing equations involved are transformed into 

dimensionless form using appropriate non-dimensional variables. The resulting 

dimensionless momentum equation is solved analytically by using the method of 

separation of variables. The Joule heating terms in the energy equation are 

expressed explicitly using this solution. With the help of the superposition 

principle, a complementary function is creatively synthesized and a particular 

integral is obtained by the method of undetermined coefficients. The complete 

solution is obtained by summing the two. The effects of magnetic field strength, 

oscillation frequency, nanoparticle concentration, Prandtl number and the Eckert 

number are illustrated graphically.  
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Nomenclature 

V        velocity                                                             Pr   Prandtl number 
u         velocity component in the x-direction             Ec     Eckert number 
MHD   magnetohydrodynamics                                   T     temperature 
B         magnetic field                                                   θ    dimensionless temperature 
ρ         density                                                               υ    kinematic viscosity 
E         electrical field                                                    φ    nanopaprticle concentration 

pc    specific heat capacity at constant pressure         k    thermal conductivity 

J  electrical current                                                 ( )∗   dimensionless variables 
ω   oscillation frequency                                           ∞      infinity 
 ( )w     surface/wall conditions                                       ( )∞  free stream conditions 

 

 

1  Introduction  

The movement of electrically conducting hydromagnetic flow results to flow 

of electrical current, J . This current results to a force BJF ×=  called the 

Lorentz force and Joule heating expressed mathematically as EJ ⋅ . The heating 

effect is a manifestation of energy dissipation inform of heat due to opposition of 

current. This study aims at analyzing the amount of Joule heating which occurs as 

a result of nanofluid movement triggered by the oscillation of surface and the role 

played by nanofluid in removing the heat generated due to Joule heating.  Studies 

on MHD flows have received a lot of attention by researchers due to their many 

applications in areas like astrophysics, geophysics, Plasma confinement, MHD 

pumps etc..  Such flows over oscillating surfaces have been done. However, the 

Joule heating which occurs due to the oscillation of the surface has not been given 

the seriousness it deserves. Ostrach [1] analyzed aerodynamic heating of an 

oscillating surface. It was demonstrated that aerodynamic heating increases with 
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an increase on the amplitude of oscillation and that oscillation considerably 

increases mechanical dissipation. Soundalgelar [2] studied free convection effects 

on MHD flow past an infinite vertical oscillating plate with constant heat flux. It 

was found that velocity decreases with increasing frequency of oscillation but 

temperature increases with an increase in frequency of oscillation. 

Muthucumaraswamy and Meena [3] theoretically studied chemical reaction effects 

on vertical oscillating plate with variable temperature. It was found that chemical 

reaction has significant effect on heat transfer. An investigation on combined heat 

and mass transfer on MHD free convection flow past an oscillating plate 

embedded in porous medium was done by Chaudhanry and Jain [4]. Here, it was 

discovered that cooling the oscillating plate leads to a decrease in velocity and 

vice versa. Kishore et al. [5] used finite difference method to investigate the effect 

of thermal radiation and viscous dissipation on MHD heat on mass diffusion flow 

past an oscillating vertical plate embedded in a porous medium with variable 

surface conditions. This study showed that plate oscillation, variable mass 

diffusion, radiation, viscous dissipation and porous medium affect the flow pattern 

significantly. Ahmed and Kalita [6] very recently, analytically and numerically 

studied MHD flow over an infinite oscillating vertical surface bounded by porous 

medium in presence of chemical reaction. In this study, it was illustrated that 

results by Laplace technique compare very well with those by Crank-Nicolson 

numerical technique. It was also confirmed that an increase in chemical reaction 

parameter leads to a decrease in fluid velocity and concentration profiles. Very 

recently Abid et al. [7] investigated MHD flow of a casson fluid past an oscillating 

vertical plate with Newtonian heating. It was proved that flow separation can be 

controlled by increasing the value of Casson fluid parameter as well as increasing 

the Prandtl number. It was also shown that velocity decreases as Casson parameter 

increases and thermal boundary layer thickness increases with increasing 

Newtonian heating parameter. Another very recent study on MHD past a vertical 

oscillating plate with radiation and chemical reaction in a porous medium was 
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done by Rudra and Nhaben [8]. It was discovered that temperature decreases with 

chemical parameter. This study also showed that concentration decreases as 

Schmidt and radiation parameters increases. It was found that velocity increases 

with decreasing magnetic parameter and chemical reaction. The science of 

nanofluid and technology was introduced by Nobel prizing winning physicist 

Richard in 1959. Since then much research work has been done to this new type of 

material because of its high rated properties and behavior associated with heat 

transfer as reported by Choi [9]. Xuan and Roetfel [10] investigated conceptions 

for heat transfer correlation of nanofluids. It was proved that thermal dispersions 

plays a key role in increasing  heat transfer in the fluid and in the wall. Li and 

Xuan [11] examined the characteristics of Cu-water nanofluid. Here it was 

demonstrated that nanofluid thermal conductivity is superior to that of pure fluid. 

Raiskinmaki et al. [12] investigation showed that the important nanoparticles  

settles slowly than the larger particles and this prevents channel clogging and any 

other destructive effect. Wen and Ding [13] experimentally investigated 

convective heat transfer of nanofluids at the entrance region under laminar flow 

conditions. By measuring, it was found that heat transfer coefficient is greatest at 

the entry and that an increase in particle concentration enhances it. Thermally 

developing electroosmotic (with Joule heating) transport of nanofluids in a micro 

channels was investigated by  Chakraborty and Roy [14]. It was demonstrated 

that pressure gradient as well as Joule heating affects velocity profile and 

temperature profile of the fluid significantly.Very recently, Ghasemi and 

Aminossadati [15] investigated mixed convection in a lid driven triangular 

enclosure filled with nanofluids. It was shown that addition of AL2O3 nano 

particles enhances heat transfer rate for every value of Richardson number and for 

each sliding wall motion. Chad [16] investigated the thermal instability of rotating 

nanofluid. The effects of the Taylor number, concentration Rayleigh number, 

Prandtl number and Lewis number were investigated for stability purposes. A 

Study on heat exchangers was done by Mehta [17]. This study gave a detailed 
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description of heat exchangers, properties of nanofluids together with their 

preparation. A very important background of nanonfluids is also given.  Anindya 

and Ashok [18], numerically analyzed heat transfer characteristics of combined 

electroosmotic (with Joule heating) and pressure-driven fully developed flow of 

power law nano-fluid in microchannels. Through this study it was observed that 

Nusset number decreases with decreasing viscosity ratio and increasing 

permittivity ratio but it increases with increasing resistivity ratio. Hady [19] 

studied the flow and heat transfer characteristics of a viscous nanofluid over a non 

linearly stretching sheet in the presence of thermal radiation. In this study it was 

found that an increase in solid volume and Eckert number yields an increment in 

the nanofluids temperature. In addition, an increase in the thermal radiation 

parameter and the non linear stretching sheet parameter yields a decrease in the 

nanofluids temperature. Very recently Mohammed [20] studied 

magnetohydrodynamic free convention of nanofluid over a vertical flat plate 

taking into account Newtonian heating boundary condition. It was found that 

dimensionless velocity and temperature distributions increase with the increase of 

Newtonian heating parameter. Ferdows and Khan [20] studied MHD boundary 

layer flow of a nanofluid over an exponentially stretching sheet. It was found that 

momentum, thermal and concentration boundary layer thickness increase as the 

viscous ratio parameter increases. On the other hand skin-friction coefficient, 

surface heat and mass transfer rate decreases. It was also observed that an increase 

in Eckert number results to increase in momentum and thermal boundary layer. 

Bakr and Raizah [21] investigated analytically MHD mixed convection flow of a 

viscous dissipating micropolar nanofluids in a bounding layer slip flow with Joule 

heating. The obtained results showed that physical parameters such as thermal 

Grashof number influence velocity, temperature and the concentration profiles.  

This literature review shows that, studies on MHD flow of nanofluid over 

oscillating surface have not been done yet. In this study we shall take the 

nanofluid as Copper water nanofluid. The properties this type of nanofluid are 
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found in Anjali and Julie [22]. 

            

            
       y          ∞∞ TU          lesnanopartic  

                                                                                                                            

                       momentum layer 

                            Thermal layer 

                               tUu R ωcos=      x     

        
       Figure 1: Physical configuration. 

      

 

2  Mathematical formulation of the problem 

We shall consider unsteady, forced convective MHD flow of incompressible 

and electrically conducting viscous nanofluid taking place over a doubly infinite 

surface oscillating in the x  direction at a velocity  tUu R ωcos=  as shown in 

figure 1. At 0=t  the surface and the fluid are at the same temperature ∞T  

everywhere. Also, a magnetic field of uniform strength is applied perpendicularly 

to the surface. A combination of the Navier-Stoke’s (N-S) equations of fluid 

dynamics and Maxwell’s equations of electromagnetism gives the general 

governing equations of this flow.  Since the surface is doubly infinite, the 

velocity and the temperature of the fluid can be visualized in the tyu and tyT D3  

geometries respectively. Since there is no motion in the y  direction 0=v  . 

Now                           EJ σ=

 

 

                                 ( )BV×=σ  
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00
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B
u

kji
σ=                         

                                 kBuσ= . 

             The Lorentz force
00

00
B

Buσ
kji

BJ =×= i2uBσ−= . 

And the Joule heating term is expressed as; 

( ) ( ) 220,0,0,0, BuuBuB σσ =⋅=⋅EJ .   

Since, the surface is double infinity, all gradients with respect to x and z of 

velocity components must varnish. 

In view of the above discussion the governing equations which describe the flow 

become 
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Subject to: 

0=u ,  0=v ,  ∞= TT ,  for all   y ,  0≤t  

tUu R ωcos= ,  wTT =    at   0=y ,   0>t                        (3) 

0=u ,  ,∞→ TT          as  ,∞→y     0>t  

Here , 

ρ
σ uB 2

   is the MHD term and  
pc
uB

ρ
σ 22

  represents Joule heating.   
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3  Solution of the problem 

To seek the solution the following dimensionless variables are introduced: 

,
Rt
tt =∗  ,

RL
yy =∗   ,
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uu =∗                             

 ,Pr
k
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1
2

1 −∆= TLR υ  ,                         (4) 

( ) ,1−∆= TtR   .
2
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In view of this variables equation (1) becomes 
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Multiply both sides of equation (5) by 3
RU
υ  to get 
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By making use of the dimesionless variables as in (4), (6) becomes 
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Equation (7) is the momentum equation in dimensionless form. 

In view of equation(4) equation (2) becomes 
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Dividing both sides by 
R

w

t
TT ∞−

   
yields  
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Putting the relevant dimensionless variables in (9) gives 

2

2

2

Pr
1 ∗

∗∗ +
∂

∂
=

∂
∂ EcMu

yt
θθ .                                          (10)  

EcM  accounts for Joule heating. 

Equation (10) is the energy equation in dimensionless form.                                                                          

The ICS together with the BCS in dimensionless form are: 

,0=∗u  ,0=θ  for all ∗y  ,   0≤∗t                                                               
∗∗∗ = tu ωcos ,  1=θ   at 0=∗y                                    (11) 

0=∗u ,  ,0=θ    as ,∞→∗y  0>∗t                                                          

Let the solution of the momentum equation be 

 

( ) ( ) ( )∗∗∗∗∗ = tTyYtyu , or simply  YTu =∗ . 

.tan1
2

2

tcons
dy

Yd
Y

M
Tdt
dT

==+
∗

∗
∗                                    (12) 

Since the LHS is a function of independent variable ∗t  and RHS is a 

function of independent variable ∗y , and the two cannot be equal to each other 

unless both reduce to a constant value. Let the constant be 2k  so that 

 

2kM
Tdt
dT

=+ ∗
∗   and  2

2

21 k
dy

Yd
Y

=
∗

. The solutions are 

( ) ∗∗−= tMkAT 2
1 exp   and ( ) ( )∗∗ −+= kyAkyAY expexp 32 . It follows that  

( ) ( ) ( )( ) ( ) .expexpexp, 2 ∗∗∗∗∗∗∗ −−+= tMkkyBkyAtyu                   (13)                                                  

Now since ( ) 0, =∞ ∗∗ tu , we must have 0A = . The solution reduces to  

( ) ( ) ∗∗∗∗∗∗ −−= tMkkyBtyu 2exp)exp(, .                              (14)                                                             
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Applying the boundary condition  ( ) ∗∗∗ = ttu ωcos,0  we have 

( )( ) ( ) ∗∗∗∗∗ −−= tMkkyBti 2exp)exp(expRe ω  meaning that 

1=B  and ∗∗ =− ωiMk 2   or  ∗∗ += ωiMk . 

The unique solution becomes,     

( ) ( ) ∗∗∗∗∗ −−= tMkkytyu 2exp)exp(,  or    

( ) ( )[ ]∗∗∗∗∗∗∗∗ ++−= tiiMytyu ωωexpRe,                           (15)                                            

or      
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Replacing 2∗u  and in equation (10) in view of (16) we have, 
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equation (17) may be written in compact form as 
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Where nfν  and nfα  are the kinematic viscosity and thermal diffusivity of the 
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nanofluid respectively. The kinematic viscosity is given by, 
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υ =                                                       (20)                                                           

And the thermal diffusivity is given by, 
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Thus the Prandtl number may be expressed as, 
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Equation (23) may be written as: 
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Assume a particular integral of the form
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Substituting equation (26) and (27) into equation  (24) and equating coefficients 

we get 
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After solving for B  and  C  in equation (28) we get 
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The particular integral becomes 
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We shall creatively synthesize the complementary function of equation (24) from 

some solution of the homogeneous part of the equation so that the boundary 

conditions are satified. Some of these solutions include: 
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By the principle of superposition  the complementary function may be written as, 
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The sum of equation (29) and (30) gives us the complete solution 
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has the properties ( ) 00 =erf  and  ( ) 1=∞erf . 

 

 

4  Results and Discussions 

Below are graphs of velocity and temperature profiles in connection to the 

parameters of interest. 
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Figure 2: Velocity profiles for different values of ω when M=2 and t=0.8 
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Figure 3: Velocity profiles for different values of  M when 2/pi=ω  and t=0.8. 
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Figure 4: Temperature profiles for different values of tω when M=2, t=10, E=0.3, 

        Pr=7.02. 
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Figure 5: Temperature profiles for different values of M when pi4=ω , t=10,  

        E=0.4, Pr=2.60. 
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Figure  6: Temperature profiles for different values of Ec when 2/pi=ω , M=2, 

          Pr=7.02 and t=5. 
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Figure 7: Temperature profiles for different values of v (nanoparticle 

        concentration) when 2/pi=ω ,  M=2, Ec=0.1 and t=5. 
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Figure 8: Temperature profiles for different values of Pr when 2/pi=ω ,  M=2, 

        Ec=0.1 and t=5. 
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Figure 2 shows the variation of temperature with ω . Here, it can be seen that 

velocity decreases with an increase in ω . Figure 3 depicts the effect of M on 

velocity. Evidently, velocity decreases with an increase in M. increasing M leads 

to an increase of the Lorentz force which opposes the flow of the nanofluid. 

Figure 4 illustrates the relationship between temperature and oscillations 

frequency ω . It is observed that temperature increases with the increase of 

oscillation frequency. Figure 5 shows that temperature increases with a decrease in 

M which is attributed to the fact that smaller M corresponds to higher velocity 

which in turn leads to high electrical current hence the increase in Joule heating. 

Figure 6 indicates that temperature increases with an increase in Ec. Figure 7 

demonstrates the effects of nanoparticle concentration on temperature. Clearly, the 

higher the concentration the higher the temperature. This is due to the fact that 

nanoparticles improves the thermal conductivity of the fluid. From figure 8 it is 

observed that temperature decreases with an increase in Pr. This is because Pr 

reduces the thermal conductivity of the nanofluid.  

From Figures 4-8 it can be observed that the temperature of the nanofluid 

over a stationary surface is the lowest as compared to that of over oscillating 

surface. This means that oscillation of the surface leads movement of the 

nanofluid which in turn leads to flow of electrical current which results to Joule 

heating hence the increase in temperature. 

 

 

5  Conclusion 

Studies on MHD flow of nanofluid over an oscillating surface have been 

carried out. It was found out that velocity decreases with the frequency of 

oscillation as well as with magnetic parameter. It was also observed that 

temperature increases with an increase in Erkert number (Ec), nanoparticle 

concentration and the frequency of oscillation but decreases with an increase in 

magnetic parameter (M) and the Prandtl number (Pr). In summary, oscillation of 
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the surface over which a nanofluid flows increases Joule heating depending on the 

applied magnetic field strength, oscillation frequency of the surface. Increasing 

nanoparticle concentration increases the thermal conductivity of the nanofluid and 

this improves the potential to remove heat added into the fluid as a result of Joule 

heating.  
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