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Abstract

In this paper some of the results on the endomorphism rings of es-

sentially pseudo injective modules have been obtained. In particular, it

is proved that for a uniform essentially pseudo injective module M , the

socle of M is essential in M iff Jacobson radical of endomorphism ring

of M is equal to the set of all homomorphisms from socle of M to M .

It has been shown that the endomorphism ring of an essentially pseudo

injective uniform module is local and the mono-endomorphism of an es-

sentially pseudo injective uniform module is an automorphism. Finally,

we found a characterization for a uniform module M to be essentially

pseudo injective in terms of its injective hull.
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1 Introduction

Throughout this paper the basic ring R is supposed to be ring with unity

and all modules are unitary left R-modules.

A submodule N of a module M is called essential in M and is denoted as

N ⊆e M , if N ∩ L = 0 where L ⊆ M implies that L = 0. A nonzero module

is called uniform if every nonzero submodule is essential in it.

A ring R is called regular (in the sense of Von-Neumann) if for each r ∈ R

there exists x ∈ R such that r = rxr. The Jacobson radical of a module

M , denoted by J(M) is the intersection of all maximal submodules of M .

An R-module M is called local if it has a unique maximal submodule which

contains every proper submodules of M . If M is an R-module then socle of

M denoted by Soc(M) is defined as intersection of essential submodules ofM .

An R-module M is called π-injective if for all submodules U , V of M with

U ∩ V = 0, there exists f ∈ S with U ⊂ Kerf and V ⊂ Ker(1− f). We call

a module M , a duo module if every submodule of M is fully invariant. An

R-module M is called extending module if every submodule of M is essential

in a direct summand of M .

2 Preliminary Notes

Definition 1. A module M is said to be essentially pseudo injective if for

any module A, any essential monomorphism g : A→M and monomorphism

f : A→M there exists h ∈ End(M) such that f = hog.

Definition 2. A submodule T of a module M is said to be essentially

pseudo stable if for any essential monomorphism g : A → M and monomor-

phism f : A→M with Img+ Imf ⊆ T, there exists h ∈ End(M) such that

f = hog then h(T ) ⊆ T .
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3 Main Results

Proposition 3.1. LetM be an essentially pseudo injective uniform module.

Then every monomorphism in End(M) is an automorphism.

Proof. Let g : M → M be any monomorphism then Img 6= 0 and since M is

uniform, g is an essential monomorphism. By essential pseudo injectivity of

M , IM :M →M can be extended to a homomorphism h :M →M such that

hog = IM ⇒ h is onto.

Again h is one-one as kerh = 0, for if kerh 6= 0 then Img ∩ kerh 6= 0 ⇒ ∃

0 6= x ∈ Img ∩ kerh ⇒ x ∈ Img and x ∈ kerh ⇒ g(y) = x for some y ∈ M

and h(x) = 0.

Now h(x) = 0 ⇒ hog(y) = 0 ⇒ IM(y) = 0 ⇒ y = 0

⇒ x = 0, a contradiction.

So kerh = 0 . Hence h is an isomorphism and therefore h−1 = g is an auto-

morphism.

Proposition 3.2. If S is the endomorphism ring of an essentially pseudo

injective uniform module M then S is local.

Proof. If α ∈ S then kerα ⊆M . Either kerα = 0 or kerα 6= 0.

Case(1) Let kerα = 0 then α is a mono-endomorphism ofM which by Propo-

sition 1 implies that α is an isomorphism, hence α is invertible.

Case(2) If kerα 6= 0. Consider the map g = (IM − α) :M →M . Claim that

kerg = 0. Let kerg 6= 0 then kerα ∩ kerg 6= 0 ⇒ ∃ 0 6= x ∈ kerα ∩ kerg,

then x ∈ kerα and x ∈ kerg ⇒ α(x) = 0 and g(x) = 0 ⇒ (IM − α)(x) = 0

⇒ IM(x) = 0 ⇒ x = 0, a contradiction.

So, kerg = 0 ⇒ g is a mono-endomorphism of M ⇒ g is an isomorphism

⇒ g = (IM − α) is invertible.

Thus for any α ∈ S either α or IM − α is mono-endomorphism of M .

So, S is local.

Proposition 3.3. LetM be an essentially pseudo injective uniform module.

Let S be the endomorphism ring of M and J(S) be the Jacobson radical of S.

Let T = {α ∈ S|kerα is essential in M} then
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(a) T = J(S)

(b) J(S) ⊆ Hom(Soc(M),M).

(c) S/J(S) is Von-Neumann regular ring.

Proof. (a) Let α ∈ T . Consider the map g = (1−α) :M →M , then kerg = 0

follows from the proof of Proposition 2. So g is an isomorphism. Whence

(1−α) is an isomorphism. As (1−α) is invertible ⇒ α ∈ J(S). So, T ⊆ J(S).

Conversly, let α ∈ J(S) and let Kerα∩K = 0 for some K ⊆M . Let ν : K →

M be the inclusion map. There are two possibilities either Im(αoν) = 0 or

Im(αoν) 6= 0.

Case 1. If Im(αoν) = 0 then αoν(K) = 0 ⇒ α(K) = 0 ⇒ K ⊆ Kerα

⇒ K = 0. This shows that Kerα is an essential submodule of M and so

α ∈ T .

Case 2. If Im(αoν) 6= 0 ⇒ Im(αoν) is an essential submodule of M . So

by essential pseudo injectivity of M ∃ ψ ∈ End(M) such that ν = ψoαoν i.e.

ν(K) = ψoαoν(K) ⇒ (1−ψoα)ν(K) = 0 ⇒ ν(K) = 0 ⇒ K = 0. Thus Kerα

is an essential submodule of M ⇒ α ∈ T . Thus, J(S) ⊆ T .

(b) Let α ∈ J(S) then Kerα is essential in M and so Soc(M) ⊆ Kerα ⊆M

Now, Kerα ⊆e M and Soc(M) ⊆ M ⇒ Soc(M) ∩ Kerα ⊆e Soc(M), which

by [3, Proposition 5.16(2)] implies Kerα ⊆e Soc(M) ⇒ Kerα ⊆ Soc(M)

⇒ α ∈ Hom(Soc(M),M) ⇒ J(S) ⊆ Hom(Soc(M),M).

(c) Let α ∈ S be such that α /∈ J(S) then Kerα ∩ K = 0 and K 6= 0 for

some K ⊆ M . If ν : K → M is the inclusion map, then (αoν) is an essential

monomorphism from K toM , since α|K is an essential monomorphism. By es-

sential pseudo injectivity ofM , there exists ψ ∈ End(M) such that ν = ψoαoν.

We have αoν(K) = αoψoαoν(K) which implies that (α − αoψoα)ν(K) = 0

⇒ (α − αoψoα)K = 0 ⇒ K ⊆ Ker(α − αoψoα) ⊆ M . As K is essential

in M and K is a nonzero submodule of M , it implies that K is essential in

Ker(α − αoψoα) and Ker(α − αoψoα) is essential in M . This shows that

(α− αoψoα) ∈ J(S) and hence S/J(S) is Von-Neumann regular ring.

Notation: If N is a direct summand of M it will be denoted by N ⊆⊕ M .
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Proposition 3.4. Let M be any pseudo injective module and End(M) be

the endomorphism ring of M . If kerα ⊆⊕ M for every α ∈ End(M) then

α(M) ⊆⊕ M .

Proof. Follows from [5, Proposition 9].

Proposition 3.5. Let M be any pseudo injective module and End(M) de-

notes the endomorphism ring of M . Then if kerα ⊆⊕ M for every α ∈

End(M) then End(M) is regular.

Proof. Follows from [5, Proposition 11].

Corollary 5.1: Endomorphism ring of a completely reducible pseudo injective

module is regular.

Proposition 3.6. LetM be an essentially pseudo injective uniform module.

If S = End(M) then Soc(M) is essential in M iff J(S) = Hom(Soc(M),M).

Proof. Let J(S) = Hom(Soc(M),M) and α ∈ J(S) then by Proposition 3(a),

Kerα is essential in M . As α ∈ J(S), α ∈ Hom(Soc(M),M) which implies

that Kerα ⊆ Soc(M) ⊆M ⇒ Soc(M) is essential in M .

Conversly, let Soc(M) be essential in M . Let α ∈ J(S) then by 3(b) J(S) ⊆

Hom(Soc(M),M).

Now, let α ∈ Hom(Soc(M),M) then Kerα ⊆ Soc(M). As Soc(M) ⊆e M

and Kerα ⊆ M ⇒ Kerα ∩ Soc(M) ⊆e Kerα and by [3, Proposition 5.16(2)]

we get Soc(M) ⊆e Kerα ⇒ Soc(M) ⊆ Kerα ⊆ M ⇒ Kerα ⊆e M , which in

turn implies that α ∈ J(S) and hence

Hom(Soc(M),M) ⊆ J(S) ⇒ J(S) = Hom(Soc(M),M).

Proposition 3.7. [6, Proposition 3.3(1)] If Soc(M) ⊆e M, then ∆ =

lS(Soc(M)), where ∆ = {α ∈ S|kerα is essential in M} and lS(Soc(M)) is

the annihilator of Soc(M) in S.
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Proposition 3.8. If M is an essentially pseudo injective uniform module

and if Soc(M) ⊆e M then J(S) = lS(Soc(M)).

Proof. By Proposition 3(a) we have J(S) = ∆ and so by Proposition 7 we get,

J(S) = lS(Soc(M))

Proposition 3.9. Let M be a duo, essentially pseudo injective module. Let

S = End(M) and T = {α ∈ S|kerα is essential in M}. Then:

(a) for every f ∈ T , Kerf is an essentially pseudo stable submodule of M .

(b) if M is extending then every submodule of M is essentially pseudo stable

submodule of any direct summand of M .

Proof. (a) Let f ∈ T then Kerf is essential in M . Let g : A → Kerf be

an essential monomorphism, ψ : A → Kerf be a monomorphism and ν :

Kerf →M be the inclusion map. Then clearly Im(νog) + Im(νoψ) ⊆ Kerf .

By essential pseudo injectivity of M there exists h ∈ End(M)

such that hovog = νoψ. Since M is duo and Kerf ⊆ M , h(Kerf) ⊆ Kerf ,

proving that Kerf is an essentially pseudo stable submodule of M .

(b) Let A be any submodule of M . As M is extending there exists a direct

summand N of M such that A is essential in N . Since direct summand of

essentially pseudo injective module is essentially pseudo injective implies that

N is essentially pseudo injective. Rest of the proof follows from (a).

For a uniform module M we give below a characterization as to when M

is essentially pseudo injective in terms of its injective hull.

Proposition 3.10. Let M be a uniform module. Then M is essentially

pseudo injective iff for every f ∈ End(E(M)), f(M) ⊆ M ,where E(M) is

the injective hull of M .

Proof. Let M be essentially pseudo injective, let f ∈ End(E(M)) and N =

{m ∈ M |f(m) ∈ M}. Then N is an essential submodule of M . Let i :

N → M be inclusion map. As M is essentially pseudo injective, the map

f |N can be extended to a map g : M → M such that g|N = f |N . Claim
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that M ∩ (g − f)(M) = 0. If not then there exists 0 6= m ∈ M such that

m = (g−f)(m
′

) for some m
′

∈M . This implies that f(m
′

) = g(m
′

)−m ∈M .

So, m
′

∈ N . Hencem = g(m
′

)−f(m
′

) = 0. We haveM is essential submodule

of E(M). So, (g − f)(M) = 0 ⇒ f(M) ⊆M .

The converse follows from [5, Proposition 17] with suitable changes.

Proposition 3.11. Let M be an essentially pseudo injective uniform, duo

module. Let S = End(M). For every f ∈ J(S), Kerf is an essentially pseudo

stable submodule of M .

Proof. By Proposition 3(a) we have T = J(S). Rest of the proof follows from

Proposition 9(a).

References

[1] A.K. Tiwary and K.N. Chaubey, Small projective modules, Indian J. Pure

Appl. Math., 16(2), (February, 1985), 133-138.

[2] Chen Zhizhong, Direct injective modules, Acta Mathematica Sinica, New

Series, 9(3), (1993), 307-310.

[3] F.W. Anderson and K.R. Fuller, Rings and categories of modules,

Springer-Verlag, 1974.

[4] M.J. Canfell, Completion of diagrams by automorphisms and Bass first

stable range condition, Journal of Algebra, 176, (1995), 480-503.

[5] Ritu Jaiswal and P.C. Bharadwaj, On Pseudo-Projective And Essen-

tially Pseudo Injective Module, International Mathematical Forum, 6(9),

(2011), 415-422.

[6] S. Wongwai, On the endomorphism ring of a semi-injective module, Acta

Math Univ. Comeniance, LXXI(1), (2002), 27-33.


