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Abstract

The Collatz conjecture (or 3n+1 problem) has been explored for about 86
years. In this article, we prove the Collatz conjecture. We will show that
this conjecture holds for all positive integers by applying the Collatz inverse
operation to the numbers that satisfy the rules of the Collatz conjecture. Fi-
nally, we will prove that there are no positive integers that do not satisfy this
conjecture.
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1 Introduction

The Collatz conjecture is one of the unsolved problems in mathematics. In-
troduced by German mathematician Lothar Collatz in 1937 [1], it is also
known as the 3n + 1 problem, 3x + 1 mapping, Ulam conjecture (Stanislaw
Ulam), Kakutani’s problem (Shizuo Kakutani), Thwaites conjecture (Sir Bryan
Thwaites), Hasse’s algorithm (Helmut Hasse), or Syracuse problem [2–4].

The Collatz conjecture or 3n+1 problem can be summarized as follows:

Take any positive integer n. If n is even, divide n by 2 (n/2). Otherwise, if
n is odd, multiply n by 3 and add 1 (3.n+1). By repeatedly applying this
rule of the conjecture to the chosen number n, we obtain a sequence. The next
term in the sequence is found by applying arithmetic operations (n/2 or 3n+1)
to the previous term according to the assumption rule. The conjecture states
that no matter what number you start with, you will always reach 1 eventually.

For example, if we start with 17, multiply by 3 and add 1, we get 52. If we
divide 52 by 2, 26, and so on, the rest of the sequence is: 13, 40, 20, 10, 5, 16,
8, 4, 2, 1. Or if we start 76, the sequence is: 76, 38, 19, 58, 29, 88, 44, 22, 11,
34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

This sequence of numbers involved is sometimes referred to as the hailstone
sequence, hailstone numbers or hailstone numerals (because the values are
usually subject to multiple descents and ascents like hailstones in a cloud) [2,6],
or as wondrous numbers [2, 5].

In this paper, N ={0, 1, 2, 3, 4, 5, . . .}, the symbol N represents the natural
numbers. N+ ={1, 2, 3, 4, 5, 6, . . .}, the symbol N+ represents the positive in-
tegers. Nodd ={1, 3, 5, 7, 9, 11, 13, . . .}, the symbol Nodd represents the positive
odd integers.

2 The Conjecture and Related Conversions

Definition 2.1 Let n, k ∈ N+ and a function f : N+→N+, Collatz defined the
following map:

f(n) =

{
n
2
, if n is even

3n+ 1, if n is odd

The Collatz conjecture states that the orbit formed by iterating the value of
each positive integer in the function f(n) will eventually reach 1. The orbit of
n under f is n; f(n), f(f(n)), f(f(f(n))), . . . fk(n) = 1 (k ∈ N+).
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In the following sections, we will call these two arithmetic operations (n/2 and
3n + 1), which we apply to any positive integer n according to the rule of
assumption, Collatz operations (CO).

Remark 2.2 According to the definition of the Collatz conjecture, if the num-
ber we choose at the beginning is an even number, then by continuing to divide
all even numbers by 2, one of the odd numbers is achieved. So it is sufficient
to check whether all odd numbers reach 1 by the Collatz operations.

Therefore, if we prove that it reaches 1 when we apply the Collatz operations
to all the elements of the set Nodd ={1, 3, 5, 7, 9, 11, 13, 15, . . .}, we have proved
it for all positive integers.

Remark 2.3 If the Collatz operations are applied to the numbers 2n (n ∈ N+),
then eventually 1 is reached. If we can convert all the elements of the set Nodd

into 2n numbers by applying the Collatz operations, we get the result. There-
fore, our goal is to convert all positive odd integers into 2n numbers by applying
Collatz operations.

2.1 Collatz Inverse Operation (CIO)

Let n ∈ N+and a ∈ Nodd ; for a to be converted to 2n by the Collatz operation
(CO), it must satisfy the following equation,

3.a+ 1 = 2n

then,

a =
2n − 1

3
(1)

Lemma 2.4 In (1) a = 2n−1
3

, a cannot be an integer if n is a positive odd
integer.

Proof. If n is a positive odd integer, we can take n = 2m + 1 (m ∈ N), then
substituting 2m+ 1 for n in (1) we get,

a =
22m+1 − 1

3
(2)

if we factor 22m+1 + 1,
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22m+1 + 1 = (2 + 1)(22m − 22m−1 + 22m−2 − . . .+ 1) = 3.k

we get 3k, which is a multiple of 3 (k ∈ Nodd).

Since 22m+1 − 1 = (22m+1 + 1)− 2 = 3.k − 2,

(3k − 2) is not a multiple of 3 (k ∈ Nodd), so in (2) a is not an integer for any
number n.

If we substitute 2n for n in (1), we get equation

a =
22n − 1

3
(3)

Lemma 2.5 In (3) a = 22n−1
3

, for each number n there is a different positive
odd integer a, (n ∈ N+).

Proof. When we factorize 22n − 1 for all n numbers, (n ∈ N+), if

n = 1, (22 − 1) = (2− 1)(2 + 1) = 3.1
n = 2, (24 − 1) = (2− 1)(2 + 1)(22 + 1) = 3.5
n = 3, (26 − 1) = (23 − 1)(23 + 1) = 3.3.7
n = 4, (28 − 1) = (2− 1)(2 + 1)(22 + 1)(24 + 1) = 3.(. . .)
n = 5, (210 − 1) = (2− 1)(24 + . . .+ 1)(2 + 1)(24 − . . .+ 1) = 3.(. . .)
n = 6, (212 − 1) = (23 − 1)(23 + 1)(26 + 1) = 3.3.(. . .)
n = 7, (214 − 1) = (27 − 1)(2 + 1)(26 − 25 + . . .+ 1) = 3.(. . .)
...

if we substitute 2n to 2m, (m ∈ N+);

(22
m−1) = (2−1)(2+1)(22+1)(24+1)(28+1)(216+1). . .(22

m−1
+1) = 3.(. . .)

...

(22n − 1) = (2x1 − 1)(2x1 + 1)(2x2 + 1)(2x3 + 1). . ..(2xn−1 + 1)(2xn + 1) or

(22n−1) = (2x1−1)(2x1+1) in these equations, x1 is a positive odd integer
and x2, x3, x4 . . . xn are positive even integers. Since x1 is a positive odd
number,

(2x1 + 1) = (2 + 1)(2x1−1 − 2x1−2 + 2x1−3 − . . .+ 1) = 3.(. . .) so,

(22n − 1) = 3.(. . .)

Since each of these numbers has a multiplier of 3, we can find positive odd
integers a for all n, and when we apply Collatz operations to these a numbers,
we always get 1.

22n+1 is not a multiple of 3, since 22n−1 is a multiple of 3, for all n (n ∈ N+).
In (3),
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a =
22n − 1

3
;

If n = 1, a1 = 1
n = 2, a2 = 5
n = 3, a3 = 21 = 3.7
n = 4, a4 = 85
n = 5, a5 = 341

...
...

22 24 26 28 210 212 214 216 218 . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

A= { 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381 . . . }

Corollary 2.6 We get a set A with infinite elements, these numbers reach
1 when we apply the Collatz operations. This is because when we apply the
Collatz operations to these numbers, they become 22n numbers (Remark 2.3).
(In the following sections, we will refer to the elements of the set A and other
numbers that satisfy the Collatz conjecture as Collatz numbers).

Example 2.7 5 (odd number) → 16 →8→4→2→1.
21 (odd number) → 64→32→16→8→4→2→1.

If we can generalize the elements of the setA = {1, 5, 21, 85, 341, 1365, 5461, 21845,
87381, . . .} to all positive odd numbers, we have proved the Collatz conjecture.

2.2 Transformations in the Set A with Infinite Elements

Let the elements of the set A = {1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, . . .}
be {a0, a1, a2, a3, a4, a5, a6, a7, . . .} respectively.

Lemma 2.8 In the set A\{a0}, if an ≡ 1 (mod 3)

bn =
22m.an − 1

3
(4)

m ∈ N+, if we value m from 1 to infinity, we get Bn set with infinite bn ele-
ments (Collatz numbers) from each an.These numbers satisfy the conjecture.
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Proof. If an≡1 (mod 3), we can take an as 3.p+ 1, (p ∈ N)
an = 3.p+ 1 substituting in (4),

bn =
22m.(3.p+ 1)− 1

3
=

22m3p+ 22m − 1

3
= 22mp+

22m − 1

3

22m−1 is divisible by 3 (Lemma 2.5). So we get an infinite number of different
bn elements, which can be converted to an, i.e. 1, by the Collatz operation. The
numbers bn are Collatz numbers and are a sequence of the form bn+1 = 4.bn+1.

Example 2.9 Let a1 = 85, then a1≡1 (mod 3),in (4),

a1 = 85 → b1 =
22.85−1

3
= 113, b2 =

24.85−1
3

= 453, b3 =
26.85−1

3
= 1813

b4 =
28.85−1

3
= 7253, b5 =

210−1
3

= 29013, b6 =
212.85−1

3
= 116053

B = {113, 453, 1813, 7253, 29013, 116053, . . .}

Lemma 2.10 In the set A\{a0}, if an ≡2 (mod 3),

bn =
22m−1.an − 1

3
(5)

m ∈ N+, if we value m from 1 to infinity, we get Bn set with infinite bn el-
ements (Collatz numbers) from each an. These numbers satisfy the conjecture.

Proof. If an ≡2 (mod 3), we can take an as 3.p+ 2 (p ∈ N)
an = 3.p+ 2 substituting in (5),

bn =
22m−1.(3p+ 2)− 1

3
=

22m−1.3p+ 22m − 1

3
= 22m−1p+

22m − 1

3

22m−1 is divisible by 3 (Lemma 2.5). So we get an infinite number of different
bn elements, which can be converted to an, i.e. 1, by the Collatz operation. The
numbers bn are Collatz numbers and are a sequence of the form bn+1 = 4.bn+1.

Example 2.11 Let a1 = 5, then a1 ≡ 2 (mod 3) ;

a1 = 5 → b1 =
21.5−1

3
= 3, b2 =

23.5−1
3

= 13, b3 =
25.5−1

3
= 53

b4 =
27.5−1

3
= 213, b5 =

29.5−1
3

= 853, b6 =
211.5−1

3
= 3413. . .

B = {3, 13, 53, 213, 853, 3413, 13653, 54613, . . .}
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Lemma 2.12 In the set A\{a0}, if an ≡0 (mod 3),

bn =
2m.an − 1

3
(6)

m ∈ N+, there is no such integer bn.

Proof . If an≡ 0 (mod 3), we can take an as 3.p (p ∈ N)

an = 3.p substituting in (6),

bn =
2m(3.p)− 1

3
=

2m3.p− 1

3
= 2m.p− 1

3
,

is not integer.

Similarly, using equations (4) and (5), from each bn that is not a multiple of 3
we obtain Cn sets with infinite elements and from each cn that is not a multiple
of 3 we obtain Dn sets with infinite elements, . . . and so on forever. In the
following sections, we will call the operations of deriving new Collatz numbers
from Collatz numbers by equations (3), (4) or (5) as Collatz inverse operations
(CIO).

2.3 Conversion of all Positive Odd Integers to Collatz
Numbers

In the previous sections, when we applied the Collatz operations, we called
the numbers that reached 1 as Collatz numbers. Now let’s see how all positive
integers can be converted to these Collatz numbers.

22 24 26 28 210 212 214 216 218 . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
A= { 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381 . . . } (Collatz

Numbers)

If we apply the Collatz inverse operations [equations (4) or (5)] continuously
to each Collatz number, we get infinitely many new Collatz numbers.

Nodd → Set of A → 22n → 1 (Direction of conversion of numbers with CO).

Nodd ← Set of A ← 22n (Direction of conversion of numbers with CIO).

Example 2.13 A small fraction of the Collatz numbers, that can be converted
to 24, i.e. 1, by applying CO. These numbers are obtained by applying the CIO
to each of the numbers. New numbers are obtained by repeatedly applying
CIO to any number that is not a multiple of 3.
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...
...

...
...

...
...

46421 2389 4949 1077 34581 69173 . . .
11605 597 1237 269 8645 17293 . . .
2901 149 309 67 2161 4323 . . .

24 725 37 77 ↑ ↑ ↑
↓ 181, 9, 19 → 25, 101, 405, 1621, 6485, . . .
5 45, ↑ ↑
↓ 11 → 7, 29, 117, 469, 1877, 7509, 30037, . . .
3 ↑
13→ 17, 69, 277, 1109, 4437, 17749, 70997, . . .
53 ↓ ↓ ↓ ↓
213 151 739 23665 47331 . . .
853 605 2957 94661 189325 . . .
3413 2421 11829 378645 757301 . . .
13653 9685 47317 1514581 3029205 . . .
54613 38741 189269 6058325 12116821 . . .
218453 154965 757073 24233331 48467285 . . .

...
...

...
...

...

Example 2.14 Collatz numbers that can be converted to 26, i.e. 1, by applying
CO.

21 ← 26 There are no other Collatz numbers. Because the resulting num-
ber is a multiple of 3. (Lemma 2.12).

Lemma 2.15 There is only one different Collatz number, which is converted
to each of the numbers 26n; (26, 212, 218, 224 . . . ) (n ∈ N+).

Proof. If we factor 26n - 1,

26n − 1 = (23n − 1)(23n + 1), there is always a multiplier of (23 + 1) in this
equation. Because when we factor (23n − 1) and (23n + 1);

if n is even, (23n − 1) = . . . (23f + 1), 3f is odd integer.
if n is odd in (23n + 1), 3n is odd integer.
And if 3f or 3n are odd,
23n + 1 = (23 + 1)(23n−3 − 23n−6 + 23n−9 − 23n−12 + 23n−15. . .+ 1)
23f + 1 = (23 + 1)(23f−3 − 23f−6 + 23f−9 − 23f−12 + 23f−15. . .+ 1)

Therefore 26n − 1 = (23 + 1).(. . .) = 9. (odd integer)
And, when we divide (26n−1) by 3, we get only one Collatz number. We can’t
obtain another Collatz number because it is a multiple of 3 (Lemma 2.12).

Example 2.16 There is only one different Collatz number for each of 26n,
because the resulting Collatz numbers are the multiples of 3 (Lemma 2.12).
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21←26

1365←212

87381←218

5592405←224
...

...

But, for n, k ∈ N+ and n ̸= 3k, when all 22n − 1 numbers (except 26n − 1) are
divided by 3, we get positive odd integers that are not multiples of 3. This is
because when we factor 22n − 1, there is only one multiplier of 3.

(22n − 1) = (2x1 − 1)(2x1 + 1)(2x2 + 1)(2x3 + 1). . ..(2xn−1 + 1)(2xn + 1) or
(22n − 1) = (2x1 − 1)(2x1 + 1)

In these equations, x1 is a positive odd integer and not a multiple of 3, and x2,
x3, x4, . . . xn are positive even integers. (2x1−1), (2x2+1), (2x3+1), . . . (2xn−1+
1) and (2xn + 1) do not have a multiplier of 3 (Lemma 2.4. and Lemma 2.5).
And since x1 is not a multiple of 3, (2x1 + 1) has only one multiplier of 3, so
an infinite number of Collatz numbers are converted to each of the numbers
22n with CO.

Example 2.17 A small fraction of the Collatz numbers that can be converted
to 28, i.e. 1, by applying CO. These numbers are obtained by applying the CIO
to each of the numbers. New numbers are obtained by repeatedly applying
CIO to any number that is not a multiple of 3.

28

↓
85

↓ ...
...

...
... . . .

113 → 75, 301, 1205, 4821, 19285, 77141, 308565 . . .
453 ↓
1813 401 → 267, 1069, 4277, 17109 . . .
7253 1605 ↓ ↓
29013 6421 1425 2851 → 3801 . . .
116053 25685 5701 11405 → 7603 . . .
464213 102741 22805 45621 ↓
...

...
...

...
... . . .

Similarly, all positive odd integers are converted to 22n ( n ∈ N+ ), i.e. to
1 by applying CO. All positive numbers are obtained by repeatedly applying
the Collatz inverse operations to each element of the set A and the Collatz
numbers generated from these numbers.
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Lemma 2.18 If we apply the Collatz inverse operations (2
m.an−1

3
) (m ∈ N+)

to the different Collatz numbers, we obtain new Collatz numbers that are all
different from each other.

Proof. Let a1 and a2 be arbitrary Collatz numbers and a1 ̸= a2, when we
apply the Collatz inverse operations to each of them, the resulting numbers
are b1 and b2. If b1 = b2 then,

b1 =
2m.a1−1

3
= 2t.a2−1

3
= b2 then 2m.a1 = 2t.a2 for odd positive integers (a1

and a2), must be a1 = a2 and m = t (contradiction), so if a1 ̸= a2 then b1 ̸= b2.

Lemma 2.19 If an≡ 0 (mod 3) and an numbers are odd Collatz numbers, we
can derive an from other Collatz numbers.

Proof. If an≡ 0 (mod 3) and an numbers are odd Collatz numbers, then
by applying CO to an we get odd positive integers bn. Since an numbers are
the Collatz numbers, bn numbers are also the Collatz numbers and bn ̸≡ 0
(mod 3).

an → bn (apply CO to an)

an ← bn (apply CIO to bn)

since Collatz numbers cover bn numbers, by applying the Collatz inverse op-
eration to bn we get an,

2t.bn−1
3

= an

Corollary 2.20 By applying the Collatz inverse operations [equation (3)] to
the numbers 22n, we get a set A with infinite elements of positive odd num-
bers. The elements of the set A are the Collatz numbers. We get new Collatz
numbers by applying Collatz inverse operations [equation (4) or (5)] to each el-
ement of this set A. From these new infinite Collatz numbers, infinitely many
new Collatz numbers are formed by applying the Collatz inverse operations
(CIO) again and again, and this goes on endlessly. So we get the whole set of
positive odd numbers as Collatz numbers.

As a result, Collatz numbers fill the Hilbert’s Hotel (David Hilbert) until there
is no empty room left. The Hilbert Hotel is a thought experiment that has a
countable infinity of rooms with room numbers 1, 2, 3, etc., and demonstrates
the properties of infinite sets. In this hotel with an infinite number of guests,
an infinite number of new guests (even finite layers of infinite) can be accom-
modated, provided that only one guest stays in each room [7]. When we fill
the odd-numbered rooms of the Hilbert Hotel with Collatz numbers, we also
fill the entire hotel with Collatz numbers. Let n ∈ N+ and x, y ∈ Nodd, and let
the odd-numbered rooms of the Hilbert Hotel be 1, 3, 5, 7, . . . , i.e. elements
of the set Nodd. The result of the Collatz inverse operation is the following
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equation,
2n.x− 1

3
= y (7)

In equation (7), n depends on the values of x. If x ≡ 1 (mod 3) we replace
n with all even numbers n ={2,4,6,8,. . . }, and if x ≡ 2 (mod 3) we replace n
with all odd numbers n ={1,3,5,7,. . . } respectively (Lemma 2.8 and Lemma
2.10). In (7) we obtain an infinite number of y as Collatz numbers starting
from x = 1 (Lemma 2.5). Then, by substituting y values for x in (7), we
obtain the sets of Collatz numbers with infinite elements for each y that is
not a multiple of 3. (Although we cannot replace x with numbers that are
multiples of 3, we get infinite numbers that are multiples of 3 in every set
of Collatz numbers (Figure 1). Because, the numbers in each set give the
remainder of 0,1,2 respectively according to (mod 3), as in the Nodd set). If
the same process is repeated and the generated numbers are placed according
to the room numbers, there will be no empty rooms left in the Hilbert Hotel.
This is because infinite layers of infinite Collatz number sets are formed until
all odd-numbered rooms are filled, i.e. until all odd numbers are obtained
(Figure 1). By multiplying these numbers by 2m (m ∈ N+), we find that all
even numbers are Collatz numbers (Remark 2.2). Therefore, Collatz numbers
fill the Hilbert Hotel and the set of Collatz numbers is equal to the set N+.
By taking x=1 in (7), we obtain infinite layers of infinite Collatz number sets
(Figure 1).

{1}
Y=1*={1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, . . . } |Y| = ℵ0

Y1 =1*=
[
5*= {3,13,53,. . . } 85*={113,453,1813,. . . } 341*={227,909,3637,. . . }

5461*={7281,29125,116501,. . . } . . .
]

|Y1| = ℵ0+ℵ0+ ℵ0 . . . =ℵ0.ℵ0

Y2 =1*=
[
5*={13*={17,69,. . . } 53*={35,141,. . . }. . . } 85*= { 113*={75,301. . . }

1813*={2417,9669. . . } . . . } . . .
]

|Y2| = ℵ0.ℵ0.ℵ0

Y3 =1*=
[
5*={ 13*= {17*={11,45,. . . } . . . } 53*= {35*={23,93,. . . } . . . }

. . . } 85*={113*={301*={401,1605, . . . }. . . } 1813*={2417*={1611,6445,. . . }. . . }

. . . } . . .
]

|Y3| = ℵ0.ℵ0.ℵ0.ℵ0

...
...

...
...

...
...

...
...

... |Yn| = ℵ0.ℵ0.ℵ0 . . .

Figure 1: Collatz numbers. | | represents the cardinality of a set, and *
represents conversions of numbers that are not multiples of 3 using equation
(7).
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In set theory, the cardinality of a set S represents the number of elements in
the set, and is denoted by |S|. The aleph numbers (ℵ) indicate the cardinality
(size) of well-ordered infinite element sets. ℵ0 is the notation for the cardinal-
ity of the set of natural numbers, the next larger cardinality is ℵ1, then ℵ2 and
so on. The cardinality of a set is ℵ0 if and only if there is a one-to-one corre-
spondence (bijection) between all elements of the set and all natural numbers.
Since there is a one-to-one correspondence between the infinite sets in Figure
1 and the set of natural numbers, the cardinality of each set is ℵ0 [8].

The cardinality of the set of real numbers is ℵ1. The order and operations
between the cardinality of the sets are as follows: |N|=ℵ0, |R|=ℵ1;

ℵ0<ℵ1<ℵ2<. . .

ℵ0+ℵ0+ℵ0+. . . = ℵ0.ℵ0=ℵ0

ℵ0.ℵ0.ℵ0=ℵ0

ℵ0.ℵ0.ℵ0. . . ℵ0.ℵ0 = ℵk0 = ℵ0 (k is a finite positive integer)

ℵ0.ℵ0.ℵ0. . . = ℵℵ0
0 = ℵ1

The elements of each set in Figure 1, obtained by converting each Collatz num-
ber, form a sequence such that the next term is 4 times the previous term plus
1. Thus, the elements of each set form a loop with remainders 0,1,2 according
to (mod 3). New sets are continuously formed from numbers with remain-
ders 1 and 2 according to (mod 3). Therefore, the cardinality of the sets of
odd Collatz numbers in Figure 1 is donated as ℵ10, ℵ20, ℵ30, ℵ40,. . . ℵk0, ℵk+1

0 . . .
(k ∈ N+).

Infinite layers of infinite Collatz number sets are continuously formed from
equation (7) without any restrictions, as shown in Figure 1. If there is no
restriction, the cardinality of the set of odd Collatz numbers (ℵ0.ℵ0.ℵ0 . . . =
ℵℵ0
0 = ℵ1 ) is equal to the cardinality of the set of real numbers. This leads

to a big contradiction. Because the cardinality of the set of Collatz numbers
(Collatz numbers are positive integers) cannot be equal to the cardinality of
the set of real numbers. To avoid this contradiction, the infinite layers of the
set of Collatz numbers (continuous production of new Collatz numbers) must
stop somewhere (Figure 1). This is possible if and only if the set of the odd
Collatz numbers covers the Nodd set, i.e. is equal to it. Thus we find that the
set of Collatz numbers is equal to the set N+ (Remark 2.2) and and we prove
the Collatz conjecture for the set N+.
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3 The Absence of any Positive Integer other

than Collatz Numbers

In this section, we prove that there are no positive integers that do not satisfy
the conjecture.

Lemma 3.1 There cannot be any positive integer other than Collatz numbers.

Proof. Let t0 be a number that is not a Collatz number and (t0 ∈ Nodd), then
when we apply Collatz inverse operations to t0,

CIO → t0 we get T = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, . . .}, and the ele-
ments of the set T are not Collatz numbers.
Also, when we apply the Collatz operation to t0, until we find odd numbers;

t0→ 3.t0 +1
2n

, s1 → s2 → s3 → s4→ s5 → s6 → s7 → s8 → s9 → s10 . . .

we get S = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, . . .} and the elements of the set S
are not Collatz numbers (sn ∈ Nodd).

If t0 is a multiple of 3, the CIO cannot be applied to t0, so we take t0 instead
of the set T. If we apply the Collatz inverse operations to every number in
the sets T and S, we get infinitely many new numbers that are not Collatz
numbers (Figure 2 and Figure 3).

t0

↓ ...
...

...
...

...
...

...
...

... . . .
t1 → t1(1), t1(2), t1(3) , t1(4), t1(5), t1(6), t1(7), t1(8), t1(9), t1(10) . . .
t2 ↓
t3 t11(1) →t111(1), t111(2), t111(3), t111(4), t111(5), t111(6), t111(7), . . .
t4 t11(2) ↓ ↓ ↓ ↓ ↓ ↓ ↓
t5 t11(3) t1111(1) t1112(1) t1113(1) t1114(1) t1115(1) t1116(1) t1117(1) . . .
t6 t11(4) t1111(2) t1112(2) t1113(2) t1114(2) t1115(2) t1116(2) t1112(2) . . .
t7 t11(5) t1111(3) t1112(3) t1113(3) t1114(3) t1115(3) t1116(3) t1112(3) . . .
t8 t11(6) t1111(4) t1112(4) t1113(4) t1114(4) t1115(4) t1116(4) t1112(4) . . .
t9 t11(7) t1111(5) t1112(5) t1113(5) t1114(5) t1115(5) t1116(5) t1112(5) . . .
t10 t11(8) t1111(6) t1112(6) t1113(6) t1114(6) t1115(6) t1116(6) t1112(6) . . .
...

...
...

...
...

...
...

...
... . . .

Figure 2: Numbers obtained by applying CIO to t1. New numbers are ob-
tained by repeatedly applying CIO to any number that is not a multiple of 3.
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s1→ t0

↓ ...
...

...
...

...
...

...
...

... . . .
s1(1) → s11(1), s11(2), s11(3) , s11(4), s11(5),s11(6), s11(7), s11(8), s11(9), s11(10) . . .
s1(2) ↓
s1(3) s111(1)→ s1111(1), s1111(2), s1111(3) , s1111(4), s1111(5),s1111(6), s1111(7) . . .
s1(4) s111(2)→ s1112(1), s1112(2), s1112(3) , s1111(4), s1111(5),s1111(6), s1111(7) . . .
s1(5) s111(3)→ s1113(1), s1113(2), s1113(3) , s1113(4), s1113(5),s1113(6), s1113(7) . . .
s1(6) s111(4)→ s1114(1), s1114(2), s1114(3) , s1114(4), s1114(5),s1114(6), s1114(7) . . .
s1(7) s111(5)→ s1115(1), s1115(2), s1115(3) , s1115(4), s1115(5),s1115(6), s1115(7) . . .
s1(8) s111(6)→ s1116(1), s1116(2), s1116(3) , s1116(4), s1116(5),s1116(6), s1116(7) . . .
...

...
...

...
...

...
...

...
... . . .

Figure 3: Numbers obtained by applying CIO to s1. New numbers are ob-
tained by repeatedly applying CIO to any number that is not a multiple of 3.

In the same way, an infinite number of new numbers are formed by apply-
ing CIO to each of (t2, t3, t4, t5, . . . and s2, s3, s4, s5, . . . ). We get infinite
new numbers that are not Collatz numbers, repeated application of CIO to
these numbers produces infinite new numbers, this result contradicts (Corol-
lary 2.20).

Lemma 3.2 The elements of the set S do not loop with any element of the
sets S or T.
Proof. We assume that such a loop exists.

t0→ s1 → s2 → s3 → s4 → s5 → s6 → s7 → s8→s9
↑ ↓

CIO ↓ ... s10 ↓ CO
↑ ↓
sn← . . . . . . . . . . . . ← . . . . . . ← . . . . . . . . . . . . ← s12← s11

Figure 4
For such a loop to be exist (Figure 4), if we choose t0, sn or any other number
as the starting and ending terms of the loop, which cannot be a number other
than 1. If we choose sn as the first and last terms of the loop, when CO is
applied to all elements of the loop, they all turn into sn, but when CO is ap-
plied to sn, it cannot produce a number other than the loop numbers. In other
words, while infinitely different numbers turn into sn with CO, sn cannot turn
into a number different from those numbers. Such a restriction is only possible
if sn is 1. Then the other elements of the loop are also 1. For such a loop to be
exist in positive odd integers, all the elements of the loop must be 1. By an-
other method, all the elements of the loop must be equal, because the infinite
set of numbers obtained by applying the CIO to each element of the loop is the
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same, that is, {t0, t1, t2, . . . s1, s11, s12, . . . s2, s21, s22, . . . s3, s31, s31, . . . sn, sn1,
sn2, . . .}. In the positive odd integers, only the number 1 can form a loop with
itself, so all elements of the loop are 1.

Example 3.3 Lets take t0 in the loop, t0 ̸≡ 0 (mod 3) and ( n,m ∈ N+ ),
then if t0→CIO = t0→CO,

2nt0−1
3

= 3t0+1
2m

2n+m.t0 − 2m = 9t0 + 3, t0 =
2m+3

2n+m−9

t0 cannot be any positive odd integer other than 1 in this equation.
Since we assume that there is a number t0 which is not a Collatz number,
we obtain two sets (T and S) with infinite elements from this number. The
elements of the sets T and S are not Collatz numbers. By repeatedly applying
the Collatz inverse operations (CIO) to these numbers and the new numbers
formed from them, an infinite number of new numbers are created, and this
continues indefinitely. And they don’t form a loop. From each of the infinite
numbers in the sets T and S, new numbers are continuously generated without
any limitation by repeated application of Collatz inverse operations.

Similar to the operations in Corollary 2.20, if there were a number t0 that was
not a Collatz number, it would fill the Hilbert Hotel until there was no room
left. Because when we apply Collatz operations (CO) to t0, we get an infinite
set. When we repeat the Collatz inverse operations on the elements of this
set as in Figure 1, we get infinite layers of infinite sets with no Collatz num-
bers, thus filling the odd-numbered rooms of the Hilbert hotel until there are
no rooms left (Figure 5). Thus, the set of odd numbers that are not Collatz
numbers covers the Nodd set, i.e. is equal to it.

Y={t0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, . . .} |Y| = ℵ0

Y1 =
[
t∗0 ={t1, t2, t3,. . . } s∗1 ={s11, s12, s13,. . . } s∗2 ={s21, s22, s23,. . . }

s∗3={s31, s32, s33,. . . } . . .
]

|Y1| = ℵ0 + ℵ0 + ℵ0 . . . = ℵ0.ℵ0

Y2 =
[
t∗0={t∗1={t11, t12,. . . } t∗2={t21, t22. . . }. . . } s∗1 = { s∗11={s111, s112. . . }

s∗12 ={s121, s122. . . } . . . }. . .
]

|Y2| = ℵ0.ℵ0.ℵ0

...
...

...
...

...
...

...
...

... |Yn| = ℵ0.ℵ0.ℵ0 . . .

Figure 5: Numbers that are not Collatz numbers.| | represents cardinality
of a set, and * represents conversions of numbers that are not multiples of 3
using equation (7).
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The elements of each set in Figure 5, obtained by converting each number that
is not a Collatz number, form a sequence such that the next term is 4 times
the previous term plus 1. Thus, the elements of each set form a loop with
remainders 0,1,2 according to (mod 3). New sets are continuously formed
from numbers with remainders 1 and 2 according to (mod 3). Therefore, the
cardinality of the sets of odd numbers that are not Collatz numbers in Figure
5 is donated as ℵ10, ℵ20, ℵ30, ℵ40,. . . ℵk0, ℵk+1

0 . . . (k ∈ N+).

In Figure 5, the cardinality of the set of odd numbers that are not Collatz
numbers (positive integers) must not be equal to the cardinality of the set of
real numbers (ℵ0.ℵ0.ℵ0 . . . = ℵℵ0

0 = ℵ1 ). This happens if and only if the set
of odd numbers that are not Collatz numbers covers the Nodd set, i.e. is equal
to it.Thus we find that the set of the numbers that are not Collatz numbers is
equal to the set N+ (Remark 2.2). This leads to a contradiction with Corollary
2.20. Either all elements of the set N+ are Collatz numbers or none of them
are. Therefore, all elements of the set N+ are Collatz numbers.

4 Conclusion

We proved the Collatz conjecture using the Collatz inverse operation method.
It is shown that all positive integers reach 1, as stated in the Collatz conjec-
ture. With the methods described in this study for 3n + 1, it can be found
whether numbers such as 5n+ 1, 7n+ 1, 9n+ 1, . . . also reach 1.
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