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Abstract 
 

 

Allingham and Sandmo (J. Public Econ., 1972) analyze by the example of tax 

evasion and non-compliance the intended underreporting of taxpayers via concave 

and twice differentiable utility functions within Becker's economics-of-crime 

theory (J. Political Econ., 1968) on behavioral aspects of illicit activities. This work 

is concerned with how to build feasible utility functions applicable for experiments, 

theoretical investigations and / or numerical simulations of any kind of such illicit 

activities. It turns out that feasible utility functions form a set of Allingham-

Sandmo-Functions applicable for Risk Averse and Neutral Taxpayers (ASFRANT) 

which is a non-commutative semiring with left-annihilating zero and unity. 
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1. Introduction  

Hokamp et al. (2018) make use of five criteria to compare the two standard 

neoclassical expected utility models for tax evasion and non-compliance, i.e. 

Allingham and Sandmo (1972) and Srinivasan (1973) – who applied the 

economics-of-crime approach by Becker (1968, 1993): "(i) mathematical modeling, 

(ii) taxpayer's optimal choice, (iii) comparative statics, (iv) framework extensions, 

and (v) model critique" (p. 5 ibid.), e.g. the famous critique by Yitzhaki (1974) on 

ambiguous income and substitution effects. Hokamp and Cuervo Diaz (2018) show 

by means of computational agent-based modeling that in an Allingham-Sandmo 

setting the tax rate has positive whereas the fine rate has negative effects on the 

overall extent of tax evasion. Alm et. al (2020) enlighten the ambitious effects of 

the audit rate. 

Tax experiments, theoretical approaches to tax evasion and non-compliance as well 

as computerized numerical agent-based tax compliance modeling (sometimes in 

combination with public goods provision) make use of payment and / or utility 

functions often with origins in the Allingham-Sandmo approach (see Zelmer, 2003; 

Hokamp, 2013; Hokamp et al., 2018; Robbins and Kiser, 2018, and Alm and 

Malezieux, 2021, for meta-analyses and literature reviews). Rizzi (2017) presents 

indices and profiles for tax evasion without discussing utility functions in detail. 

Hence, the leading open questions for this work are: (i) which properties should 

utility functions have to be in line with the Allingham-Sandmo approach for tax 

evasion and non-compliance and (ii) how to build such Allingham-Sandmo-

Functions (ASFs). Note that such novel utility functions can then be used for 

experiments, theoretical investigations and / or numerical simulations of any kind 

of illicit activities in line with the economics-of-crime theory by Becker (1968, 

1993). 

Recognize that the set of Allingham-Sandmo-Functions is extended by two adjoint 

neutral elements to form the set of ASFs applicable for Risk Averse and Neutral 

Taxpayers (ASFRANT), which has properties similar to the set of natural numbers. 

In fact, two binary operations, namely addition and composition, are defined, which 

are related to addition and multiplication operating on the set of natural numbers, 

respectively. Hence, this work provides a cookbook how to build novel utility 

functions via such binary operations and which are feasible for the Allingham-

Sandmo approach and, therefore, for Becker's economics-of-crime theory. 

Moreover, individual behavior under extreme conditions and large economic losses 

is modelled via such utility functions, in particular via intertemporal utility 

functions (e.g. see Hokamp and Pickhardt, 2010). 

The work is organized as follows. The next section introduces the formalism of the 

tax evasion framework by Allingham and Sandmo (1972) based on the economics-

of-crime theory by Becker (1968, 1993) together with a definition of Allingham-

Sandmo-Functions (ASFs). Section 3 presents novel insights on the algebraic 

structure as well as the binary operations, which are feasible within the set of ASFs 

applicable for Risk Neutral and Averse Taxpayers (ASFRANT) to build novel utility 
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functions, e.g. for numerical computations. Section 4 provides some examples how 

to build feasible utility functions for Becker's economics-of-crime-approach. The 

final section summarizes, discusses the results and broadens the applicability of this 

work beyond tax evasion and non-compliance. 

 

2. Allingham-Sandmo-Functions 

Following the description by Hokamp et al. (2018, pp. 5-6), Allingham and Sandmo 

(1972) examine – within the neoclassical economics-of-crime approach by Becker 

(1968, 1993) – individuals, i.e. taxpayers, who are faced by a decision-making 

problem on how much income reflected by the decision variable X of their true 

income T to be stated by filing tax returns for authorities given an audit probability 

p, a fine rate f and a tax rate t. In addition, taxpayers are assumed to show risk 

aversion behavior, so that their marginal utility U’ is strictly decreasing, i.e. their 

respective utility function U is concave. To solve the decision-making problem, 

taxpayers conduct an expected maximization procedure with respect to their 

individual utility 

 

      EU[X] = (1 − p)U[T − tX] + pU[(1 − f)T + (f − t)X]             (1) 

 

which reveals the necessary condition for a maximum 

 

   (1 − p)(−t)U‘[T − tX] + p(f − t)U‘ [(1 − f)T + (f − t)X] = 0     (2) 

 

Then, taxpayers are equipped with an incentive towards tax evasion if their 

marginal expected utility is positive for full tax evasion, i.e. X = 0, and negative for 

total compliance, i.e. X = T. Thus, the first derivative of their expected utility with 

respect to filing a tax return with declared income X is forced to show a sign change, 

and, in addition, the second derivative needs to be negative. The latter condition is 

satisfied since the concavity of utility functions has been assumed and the former 

condition leads to 

 

∂EU[X]/∂X|X=0 = (1 − p)(−t)U‘[T] + p(f − t)U‘[(1 − f)T] > 0               (3) 

 

and 

 

∂EU[X]/∂X|X=T = (1 − p)(−t)U‘[(1 − t)T] + p(f − t)U’[(1 − t)]T < 0          (4) 

 

Realigning Equations (3) and (4) results in the condition to guarantee an interior 

solution for the income decision-making problem 

 

t > pf > t(p + (1 − p) U‘[T]/U‘[(1 − f)T])                               (5) 

 

When the tax rate t is changed, then a fixed fine rate f on undeclared income T − X 
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could lead to a conflict by two effects on the optimal income declared X*, that is, 

income versus substitution effect. Yitzhaki (1974) figured out that modeling a fine 

on the evaded tax (instead of a fine on undeclared income) via a sanction rate      

s = f/t > 1 terminates such a conflict. 

In the following Definitions 2.1 and 2.2 sum up the properties of utility functions 

feasible for the Allingham-Sandmo approach, but request slightly more than the 

theoretical model described in Equations (1) to (5) by Allingham and Sandmo 

(1972). 

 

Definition 2.1 (Allingham-Sandmo-Functions, ASFs). Utility functions are said to 

be Allingham-Sandmo-Functions (ASFs) on a set S ⊆ ℝ when they allow to be 

employed for the economics-of-crime approach by Becker (1968, 1993) to model 

tax evasion and non-compliance according to the approach by Allingham and 

Sandmo (1972). Further, ASFs depend on net income N ∈ S and, in addition, 

possibly on a vector of other variables summarized by N^. Hence, ASFs are said to 

have the following properties, whereby all other variables N^ than net income N 

are hold fixed: 

 

(i) Utility functions are differentiable at each net income a ∈ S, i.e. 

 
∀a ∈ S: U is differentiable ⇔  

∀a ∈ S: U’[a, N^] = lim h→0 (U[a + h, N^] − U[a, N^])/h                   (6) 

 

(ii) Taxpayers are risk averse, that is 

 a) strictly increasing utility, i.e. 

 

                     ∂U[N, N^]/∂N > 0                            (7) 

 

and b) strictly decreasing marginal utility, i.e. 

 

                    ∂2U[N, N^]/∂N2 < 0                            (8) 

 

In particular, Definition 2.2 reflects the notion that nothing, i.e. zero net income, 

should lead to a utility of zero. 

 

Definition 2.2 (Allingham-Sandmo-Function with Fixpoint at Zero, ASFF=0). Utility 

functions are said to be Allingham-Sandmo-Functions with fixpoint at zero (ASFF=0) 

on a set S ⊆ ℝ when they fulfill Definition 2.1 for ASFs and have a fixpoint at zero 

net income, N = 0, that is, 

 

U[0, N^] = 0                                 (9) 
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Table 1 provides a summary of the mathematical syntax used for the Allingham-

Sandmo approach to tax evasion and non-compliance. 

 
Table 1: Mathematical Syntax for the Allingham-Sandmo Approach to Tax 

Evasion and Non-Compliance 

Mathematical Syntax Meaning 

f Fine Rate 

p Audit Probability 

s Sanction Rate 

t Tax Rate 

N Net Income 

N^ All Variables, Except Net Income 

T True Income 

X Income Declaration 

X* Optimal Income Declaration 

U Utility 

U‘ Marginal Utility 

EU Expected Utility 

 

The next section sheds light on how to build novel utility functions for the 

Allingham-Sandmo approach to tax evasion and non-compliance. 

 

3. Algebra: How to Build Utility Functions not only for Tax 

Evasion and Non-Compliance 

Binary operations are the key to build novel utility functions not only for the 

Allingham-Sandmo approach to tax evasion and non-compliance but also in general 

for the economics-of-crime approach by Becker (1968, 1993). To put it differently, 

to define a set based on Allingham-Sandmo-Functions (ASFs) there is the need to 

find feasible binary operations and related neutral elements. First, which binary 

operations are able to combine two ASFs to get another ASF on a set S ⊆ ℝ? 

Candidates for binary operations are addition (+), subtraction (−), multiplication (·), 

division (:) and composition (◦). 

 

Theorem 3.1 (Feasible Binary Operations). Addition (+) and composition (◦) are 

feasible binary operations on Allingham-Sandmo-Functions (ASFs) on a set S ⊆ ℝ 

according to Definition 2.1. 
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Proof.  

Let A and B be ASFs. Then, it has to be shown that C: = A+ B and D: = A ◦ B are 

ASFs. Therefore, Definition 2.1 has to be checked for C and D: 

 

(i) Utility functions are differentiable at each a ∈ S, i.e. 

∀a ∈ S: A and B are differentiable 

⇔ ∀a ∈ S: A’[a, N^] = lim h→0 (A[a+h,N^]−A[a,N^])/h  

∧ B’[a, N^] = lim h→0 (B[a+h,N^]−B[a,N^])/h 

⇔ ∀a ∈ S: (A+B)’[a,N^] = A’[a,N^]+B’[a,N^] =  

lim h→0 ((A+B)[a+h,N^]−(A+B)[a,N^])/h 

⇔ ∀a ∈ S: A + B = C is differentiable 

 

∀a ∈ S: A and B are differentiable 

⇔ ∀a ∈ S: A’[a] = lim h→0 (A[a+h]−A[a])/h 

∧ B’[a, N^] = lim h→0 (B[a+h,N^]−B[a,N^])/h 

⇔ ∀a ∈ S: (A ◦ B)’[a, N^] = A’[B[a, N^]] · B’[a, N^] =  

lim h→0 (A[B[a,N^]+h]−A[B[a,N^]])/h · lim h→0 (B[a+h,N^]−B[a,N^])/h 

⇔ ∀a ∈ S: A ◦ B = D is differentiable 

 

(ii) Taxpayers are risk averse, that is 

 a) strictly increasing utility, i.e. 

∂A[N,N^]/∂N > 0 ∧ ∂B[N,N^]/∂N > 0  

⇒ ∂C[N,N^]/∂N =∂(A+B)[N,N^]/∂N = ∂A[N,N^]/∂N + ∂B[N,N^]/∂N > 0 

 

∂A[N]/∂N > 0 ∧ ∂B[N,N^]/∂N > 0  

⇒ ∂D[N,N^]/∂N =∂(A◦B)[N,N^]/∂N =∂A[B[N,N^]]/∂N · ∂B[N,N^]/ ∂N > 0 

 

and b) strictly decreasing marginal utility, i.e. 

∂2 A[N,N^]/∂N2 < 0 ∧ ∂2 B[N,N^]/∂N2 < 0  

⇒ ∂2C[N,N^]/∂N2 =∂2(A+B)[N,N^]/∂N2 =∂2A[N,N^]/ ∂N2 +∂2B[N,N^]/∂N2 < 0 

∂2 A[N]/∂N2 < 0∧ ∂2 B[N,N^]/∂N2 < 0  

⇒ ∂2 D[N,N^]/∂N2 =∂2(A◦B)[N,N^]/∂N2 = ∂2 A[B[N,N^]]/∂N2 · ∂B[N,N^]/∂N 

+∂A[B[N,N^]]/∂N · ∂2 B[N,N^]/∂N2 < 0 

               q.e.d. 

 

Theorem 3.2 (Non-Feasible Operations). Subtraction (−), multiplication (·) and 

division (:) are non-feasible operations on Allingham-Sandmo-Functions (ASFs) 

according to Definition 2.1. 
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Proof.  

It has to be shown by contradiction that Allingham-Sandmo-Functions linked by 

subtraction (−), multiplication (·) and / or division (:) do not generate necessarily 

another ASF: 

 

(Subtraction) Assume A and B are ASFs with ∂B[N,N^]/∂N > ∂A[N,N^]/∂N > 0. 

Then C := A − B is no ASF, since in Definition 2.1 the condition (ii) a) of strictly 

increasing utility is violated according to Equation (7) ∂C[N,N^]/∂N = 

∂(A−B)[N,N^]/∂N =∂A[N,N^]/∂N − ∂B[N,N^]/∂N < 0. 

 

(Multiplication) Assume A is an ASF with A[0, N^] = 0. Then A·A is no ASF, because 

in Definition 2.1 the condition (ii) a) of strictly increasing utility is violated at zero 

according to Equation (7) ∂(A·A)[0,N^]/∂N = 2 · A[0, N^] · ∂A[0,N^]/ ∂N = 0. 

 

(Division) Assume A is an ASF. Then A : A ≡ 1 is no ASF, because in Definition 

2.1 the condition (ii) a) of strictly increasing utility is violated according to 

Equation (7) ∂(A:A)[N,N^]/∂N ≡ ∂1/∂N = 0. 

                                                              q.e.d. 

 

Second, how do neutral elements look like for the two feasible binary operations 

addition and composition? Possible candidates are the utility functions which reflect 

risk neutral taxpayers, i.e. the identity function id[N, N^] = (N, N^) as well as the 

constant function O[N, N^] ≡ 0. 

 

Theorem 3.3 (Neutral Elements). For Allingham-Sandmo-Functions (ASFs) in line 

with Definition 2.1 the identity function id[N, N^] = (N, N^) with (N, 0) = N is the 

neutral element with respect to the binary operation composition (◦) and the 

constant function O[N, N^] ≡ 0 is the neutral element with respect to the binary 

operation addition (+). 

  

Proof. 

Assume A is an ASF. Then A ◦ id = id ◦ A = A as well as A + O = O + A = A are 

ASFs. 

                                                              q.e.d. 

 

Theorem 3.1 to 3.3 also work for ASFF=0, ASFs with fixpoint at zero, according to 

Definition 2.2. Note that these neutral elements for ASFs and ASFF=0 take special 

roles like unity and zero, respectively, for the set of natural numbers. Recognize that 

it depends on the definition whether zero is a natural number or not. Transferred to 

ASFs this means that Definition 2.1 could be changed to allow also for utility 

functions modelling risk neutral taxpayers. Nonetheless, the set of ASFs applicable 

for risk averse and neutral taxpayers can be defined as follows by adjoining the 

function constantly set to zero and the identity function. 
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Definition 3.1 (Set of Allingham-Sandmo-Functions applicable for Risk Averse and 

Neutral Taxpayers, ASFRANT). The set of Allingham-Sandmo-Functions 

applicable for risk averse and neutral taxpayers is defined as ASFRANT := {U | U 

fulfills Definition 2.1 for Allingham-Sandmo-Functions} ∪ {id} ∪ {O}. 
 

Definition 3.2 (Set of Allingham-Sandmo-Functions applicable for Risk Averse and 

Neutral Taxpayers with Fixpoint at Zero, ASFRANTF=0). The set of Allingham-

Sandmo-Functions applicable for risk averse and neutral taxpayers with fixpoint at 

zero is defined as ASFRANTF=0 := {U | U fulfills Definition 2.2 for Allingham-

Sandmo-Functions} ∪ {id} ∪ {O}. 
 

However, which algebraic structure have ASFRANT and ASFRANTF=0 together with 

addition (+) and composition (◦)? Because of ASFRANTF=0 ⊂ ASFRANT, Theorem 

3.4 to 3.7 elaborate on this question. 
 

Theorem 3.4 (Structure of the Algebra (ASFRANT, +, O)). The algebra (ASFRANT, 

+, O ) is a commutative monoid. 
 

Proof.  

According to Theorem 3.1 ASFRANT is equipped with the binary operation +. 

Assume three arbitrary A, B, C ∈ ASFRANT. Then, the binary operation + is 

associative, because of (A+B) +C = A+B+C = A+ (B+C). Further, according to 

Theorem 3.3 there exists a neutral element for each A ∈ ASFRANT, that is O[N, N^ ] 

≡ 0. Finally, the binary operation + is commutative, that is, A + B = B + A ∀ A, 

B ∈ ASFRANT. 

                                                              q.e.d. 
 

To give another example, the set of natural numbers including zero, denoted as ℕ≥0, 

together with the binary operation addition forms the algebra (ℕ≥0, +, 0), which is 

also a commutative monoid. Note that there exists no inverse element since for n ∈ 

ℕ>0, then the inverse −n ∉ ℕ>0. 
 

Theorem 3.5 (Structure of the Algebra (ASFRANT, ◦, id)). The algebra (ASFRANT, 

◦, id) is a non-commutative monoid. 

  

Proof.  

According to Theorem 3.1 ASFRANT is equipped with the binary operation ◦. 

Assume three arbitrary A, B, C ∈ ASFRANT. Then, the binary operation ◦ is 

associative, because of (A ◦ B) ◦ C = A[B[C]] = A ◦ (B ◦ C). Further, according to 

Theorem 3.3 there exist the neutral element id[N, N^] = (N, N^ ), i.e. the identity 

function, for each A ∈ ASFRANT. Finally, the binary operation ◦ is non-

commutative, which is shown by contradiction as follows: Let A[N, ρ] := 1−e−ρN ∈ 

ASFRANT, then B := A + id ∈ ASFRANT because of Theorem 3.4. However, A ◦ B 

≠ B ◦ A and, therefore, the algebra (ASFRANT, ◦, id) is non-commutative.  

                                                              q.e.d. 
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Theorem 3.6 (Structure of the Algebra (ASFRANT, ◦, id, +, O)). The algebra 

(ASFRANT, ◦, id, +, O) is a non-commutative semiring with unity and left-

annihilating zero. 

  

Proof.  

(ASFRANT, +, O) is a commutative monoid according to Theorem 3.4 and 

(ASFRANT, ◦, id) is a non-commutative monoid according Theorem 3.5. Assume 

three arbitrary A, B, C ∈ ASFRANT. Composition left and right distributes over 

addition, that is A ◦ (B + C) = A[B + C] = A ◦ B +A ◦ C and (A+B)◦C = A[C]+B[C] 

= A◦C+B ◦C. Composition with O left-annihilates ASFRANT, that is, O ◦ A = O = 

0 ∀ A ∈ ASFRANT. 

                                                              q.e.d.                       

 

Theorem 3.7 (Structure of the Algebra (ASFRANTF=0, ◦, id, +, O)). The algebra 

(ASFRANTF=0, ◦, id, +, O) is a non-commutative semiring with unity and 

annihilating zero. 

 

Proof.  

Since ASFRANTF=0 ⊂ ASFRANT it obviously follows that the algebra 

(ASFRANTF=0, ◦, id, +, O) is a non-commutative semiring with unity. Composition 

with O annihilates ASFRANTF=0, that is, O ◦ A = O = 0 = A[0] = A ◦ O ∀ A ∈ 

ASFRANTF=0. 

                                                              q.e.d. 

 

Droste et al. (2009) and Karpfinger and Meyberg (2021) provide definitions and 

properties of the algebraic structure monoid and semiring, which have been checked 

within the proofs for Theorem 3.4 to 3.7. The next section gives examples of novel 

utility functions.    

 

4. Examples 

To sum up, the rewards can now be raped. For instance, two examples for novel 

utility functions build in ASFRANTF=0 via the binary operations addition (+) and 

composition (◦) are E1(N, ρ) = 1−e−ρN +id(N) = 1−e−ρN + N and E2(N, ρ) = (1−e−ρN) 

◦ (1−e−ρN), where N stands for net income and ρ for individual risk aversion. 

Because of E1 ◦ E2 ≠ E2 ◦ E1 these functions provide an example that the monoid 

(ASFRANTF=0, ◦, id) is not commutative.  

The next and final section summarizes and broadens the applicability of the results 

beyond tax evasion and non-compliance. 
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5. Discussion and Conclusion 

Utility functions are at the beating heart of many numerical computerized 

simulations, theoretical investigations and / or experiments. By the example of tax 

evasion and non-compliance this work has shed light on Allingham-Sandmo-

Functions (ASFs) given by Definition 2.1 and on the set of ASFs applicable for Risk 

Averse and Neutral Taxpayers (ASFRANT) in line with Definition 3.1. Based on 

these Definitions ASFs have been introduced with fixpoint at zero according to 

Definition 2.2 and the related set ASFRANTF=0 with fixpoint at zero referring to 

Definition 3.2. In particular, it was shown by Theorem 3.1 to 3.7 how to build novel 

utility functions feasible to computational numerical simulate and to investigate tax 

evasion and non-compliance as well as which algebraic structure prevails. To put it 

differently, to find novel ASFs the key is linking two ASFs by the binary operations 

addition (+) and / or composition (◦).  

The algebraic structure of (ASFRANT, ◦, id, +, O) turns out to be a non-commutative 

semiring with unity and left-annihilating zero. The results might be transferred to 

ASFs with fixpoint at zero and (ASFRANTF=0, ◦, id, +, O) is a non-commutative 

semiring with unity and annihilating zero. 

However, results are not restricted to tax evasion and non-compliance because of 

the possibility to broaden it up. In particular, intertemporal utility functions allow 

to incorporate the deterrent effect of large economic losses. Each problem works 

which allows for investigation via Becker's economics-of-crime approach due to 

Becker (1968, 1993). For example, Westmattelmann et al. (2020) successfully 

transferred Hokamp and Pickhardt (2010) to examine via agent-based modeling the 

pecuniary incentives to dope or not to dope in professional sport competitions. Thus, 

the transfer of this work to other topics beyond tax evasion and non-compliance 

delineates a rich research agenda for the future. 
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