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Abstract 

A mixture of independent component analysis method for temporal data is 

presented in this paper. The method is derived by modeling the observations as a 

mixture of ICA (mICA). mICA model has been applied to data classification and 

image processing. However, it is hard to use mICA in assigning class 

memberships of temporal data. In the proposed method, memberships of the data 

are modified according to its past values in the learning process. It shows that the 

proposed method is able to detect the switch between mixtures in highly 

overlapped data, which have smaller error than traditional mICA method. 
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1  Introduction  

In the last decade, Independent Component Analysis (ICA) [1] [2] became a 

hot topic in the field of signal processing and data mining. The aim of ICA is 

decomposing the observations linearly into a set of independent components 

which are statistically independent. The matrix maps the observations to the 

independent components is called demixing matrix and its inverse is mixing 

matrix. In traditional ICA method, both the mixing and demixing matrices are 

assumed to be constant. This assumption implies that the environment is 

unchanged throughout the time. However, real environment keeps changing, so 

the mixing and demixing matrices change with time. To model the dynamic of the 

mixing matrix, non-stationary independent component analysis [3] [4] and hidden 

Markov independent component analysis (HMICA) [5] [6] are two commonly 

used approaches. These two models have different assumptions about how 

observations are mixed from the independent sources. Assume there are m  

independent sources whose probability density functions are ( )m
mp s . The 

non-stationary ICA assumes that the sources are mixed linearly by the mixing 

matrix tA  with observational noise tw  (Equation 1). The mixing matrix tA  is 

assumed to change with the past observations ( tX ) according to Equation 2. The 

graphical model describes non-stationary ICA is shown in Figure 1.  

                   t t t tX A S w                                   (1)             

                   ( )t tvec A    

                   1t t tF v      
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where, tv
 
is zero-mean Gaussian noise with covariance Q , F  is the state 

transition matrix, and t  denotes the collection of observations 

1 2{ , , , }tX X X .  
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Figure 1:  Generative model of the non-stationary ICA model 

 

 

In the HMICA, every observation at time instant t belong to a state  tq k . Each 

state k is associated with the mixing matrix kA , the demixing matrix kW  and the 

source parameters vector k . With the source generated at time t is given as 

1( , )t t tS f q S  . The observation at time t is generated as t k tX A S . Figure 2 

shows the general model of the HMICA graphically.  

 

 

 

Figure 2:  Generative model of the HMICA model 
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To summarize non-stationary ICA and HMICA, both models have the same 

general form, t t tX A S , which is assumed that the mixing matrix ( tA ) is 

changing with time. The main difference between them is the assumption on the 

dynamic of the mixing matrix. The non-stationary ICA assumes that the mixing 

matrix is a function of past observations. The HMICA assumes that the mixing 

matrix changes in a form of Hidden Markov Model. However, neither the 

non-stationary ICA nor the HMICA can model the observations well when 

observations are generated by a mixture of co-existing systems.  

In this paper, a Temporal Mixture of Independent Component Analysis 

(tmICA) method is suggested to model this kind of mixture system. In the 

proposed method, memberships of the data are modified according to its past 

values in the learning process. It shows that the proposed method is able to detect 

the switch between mixtures in highly overlapped data, which have smaller error 

than traditional mICA method. This paper is organized as follow: In Section 2, 

traditional mixture of ICA modeling was presented. An independent component 

analysis method for temporal data is proposed in section 3. Section 4 and 5 are the 

experiments and conclusion of the paper respectively.  

 

 

2  Mixture of ICA Modeling   

Traditional ICA [7] allows only one mixing matrix in the system. It is unable 

for traditional ICA method to decompose the observations correctly if 

observations are produced by several co-existing mixing/demixing system. mICA 

[8] relaxed the traditional ICA by assuming that the observations are generated 

from sources in more than one mixing systems; keeping the sources within the 

same mixing system statistically independent with others at the same time. Using 

mICA, some applications have been built in image processing [9] [10] and data 

clustering [11].   
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In mICA, the data 1, 2, ,, , ,
T

n n n m nX x x x     is m  dimensional 

observation at time n  generated by a mixture density model [12]. The 

probability of generating a data point, from a K-component mixture model is:     

                  
1

( | ) ( | , ) ( )
K

n n c k kk
p X p X C p C


                 (3) 

Also, the probability that nX  is generated from component iC  is:  

                  
1

( | , ) ( )
( | )

( , ) ( )
n k k k

i n K

n k kk

p X C p C
p C X

p X C p C








                 (4) 

where, k  is the vector of unknown parameters for kth mixture. kC
 
denotes the 

kth mixture and the number of mixture K  is assumed to be known in advance. 

Data within kth mixture is described by the standard ICA model:   

 ,n k k nX A S   (5) 

where kA
 
is a m m  mixing matrix and , ,1, ,2, , ,, , ,

T

k n k n k n k m nS s s s     is 

the m  dimensional source for kth mixture respectively.   

It is shown that the model parameters can be estimated by maximizing the 

sum of the log-likelihood of the data (Equation 6) through 

Expectation-Maximization (EM) algorithm [11].   

                     
1 1

log ( | , ) ( )
N K

n k k kn k
L p X C p C

 
             (6) 

A survey of mICA was given in [13]. The main difficulty for applying mICA on 

temporal data is that a single data does not contain enough information for 

assigning the class membership. This problem is the most serious when 

observations having similar membership values among different mixture. In this 

paper, a temporal mICA method, tmICA hereafter, is proposed. In tmICA, 

memberships for different ICA mixtures are used to model the changes of system 

gating. Take cocktail party as an example, when the microphone was moved from 

one position to another position at time t, the mixing matrix would be changed at 

time t with the position of the microphone for the same sources. In order to model 
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such a case with mICA, two ICA mixtures were used. Suppose 1A  and 2A  are 

mixing matrices used in mICA. Given any observation, its membership of 1A
 
is 

greater than membership of 2A
 
before time t, and the membership of 1A

 

becomes lower than 2A  after time t. In other words, the change of the mixing 

matrix can be indicated by the change of membership value.   

 

 

3  Temporal Mixture of ICA Modeling 

In this section, description on the learning process of tmICA is presented. 

Given a m dimensional observations, 1, 2, ,, , ,
T

n n n m nX x x x    , which are 

generated by a K-component mixtures density model. Probability of tX  being 

generated from mixture kC  is given by Equation 4. For the kth mixture, data is 

described by the standard ICA model:  

                              ,t k k tX A S                         (7) 

In tmICA, ( | )k tp C X  is used to represent the membership of the observation X
t
 

to the kth ICA mixture at time t. The details of the source model used to calculate 

( | )k tp C X  is given in [7]. Memberships are assumed to change smoothly across 

time.  

Therefore, after obtained ( | )k tp C X , we smooth the value by:  

 smoo t h 1
( | ) ( ) ( | )

L

k t k t ii
p C X i p C X 

  (8) 

where, ( ) 0i   is a constant that represents the importance for affecting, 

( | )k t ip C X   and ( | )k tp C X  with the constraint 
1

( ) 1
L

i
i


 . 

However, smoothing the membership probability is not enough for obtaining a 

stable result. In tmICA, Smoothed probabilities are further modified to decrease 

the effect of ambiguity ( | )k tp C X  in the membership assignment.  
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  After the memberships are smoothed by Equation 8, memberships are 

modified as follow:  

if  smoo t h smoo t h( | ) ( | )k t i tp C X p C X , i k        then, 

 modif ied smoo t h( | ) ( | )k t k tp C X p C X .  

if  smoo t h smoo t h( | ) ( | )k t i tp C X p C X , i k        then,  

 modif ied smoo t h

1
( | ) ( | )k t k tp C X p C X


        

where, 1   is modification factor.  

Then, normalization is performed according to Equation 9 in order to keep the 

constraint  
1

( | ) 1
K

i ti
p C X


 . 

 modif ied
n or m

modif ied1

( | )
( | )

( | )

k t
k t K

i ti

p C X
p C X

p C X





               (9) 

After assigned the membership values, these modified memberships are used 

together with FastICA [15][16] to calculate the mixing matrix in each mixture. 

The algorithm of tmICA is outlined in Algorithm 1. In the next section, tmICA are 

tested with sources which are highly overlapped. 

  

Algorithm 1: Learning algorithm for tmICA. 

Input: A M-dimensional temporal data tX , and the number of ICA mixtures K.  

Output: A set N-dimensional of estimated sources, N N  mixing matrices of 

each ICA mixture, and membership probabilities for every observation in each 

ICA mixture.  

Step 1:  

Choose an initial (e.g. random) demixing matrix ( )B k for all mixtures. 

Step 2:  

Compute the independent components ( kS ) and the membership probability 

( ( | )k tp C X ) for each pair of the kth mixture and observation at time t.  
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2.1.  for all mixtures ,k t k tS B X   

2.2.  for all pairs of mixture k and time t.  

Step 3:  

Modify the membership probability for each pair of the kth mixture and 

observation at time t.  

3.1.   
1

( | ) ( ) ( | )
L

k t k t ii
p C X i p C X 

  

3.2.   if  ( | ) ( | )k t i tp C X p C X ,  i k        then,  

         ( | ) ( | )k t k tp C X p C X .      

      if  ( | ) ( | )k t i tp C X p C X ,  i k        then,                                

         
1

( | ) ( | )k t k tp C X p C X


  

3.3    
1

( | )
( | )

( | )
k t

k t K

i ti

p C X
p C X

p C X





 

Step 4:  

Perform FastICA algorithm for each mixture k.  

Center the data to make its mean zero.  

Compute the weighted correlation matrix (C
k
) for each mixture.  

4.1   , , , , ,{ tanh( )}k i k i t k i tE s s    1, 2, ,i M   .    

4.2   2
, , , ,1/( {1 tanh( ) })k i k i k i tE s       1,2, ,i M   .    

Update the separating matrix by:  

4.3.   , , , , , ,( )[ ( ) {tanh( ) } ]T
k k k i k i k i t k i t kB B diag diag E s s B     

Decorrelate and normalize the separating matrix by:  

4.4    1/ 2( )T
k k k k kB B C B B   

Step 5:  

If not converged, go back to Step 2.  
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4  Experimental Results 

In this section, tmICA was applied on a set of temporal data from ICA 

mixture with two components. The same 2D sources are used in both mixtures. 

One dimension of the sources is triangular wave while another is sine wave. The 

sources were shown in Figure 3. 

 

 

Figure 3:  The sources used to generate the observations 

 

 

1000 observations were generated in the sense that the first 500 observations were 

generated from the first mixture while the remaining 500 observations were 

generated from another mixture. The observations from the mixture were shown in 

Figure 4.  

 

 

 

Figure 4:  The observations generated from the ICA mixture 
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From the scatter plot of the observations (Figure 5), it shows that the observations 

from the mixture are highly overlapped. So, to identify the truth memberships and 

the sources from the observations are difficult. 

 

 

Figure 5:  The scatter plot of the observations 

 

 

The sources of the mixtures which recovered from tmICA were shown in Figure 6 

and Figure 7. Membership results show that the first ICA mixture dominates to the 

first 500 observations and the second ICA mixture dominates to the remaining 500 

observations. The sources recovered from tmICA are very close to the sources 

used to generate the observations. The results of tmICA are compared with mICA 

method [13]. Results of mICA are shown in Figure 8 and Figure 9. It is found that 

although both methods are capable to decide the membership probability correctly. 

tmICA produces a more accurate recovered sources than mICA method. So, it is 
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concluded that tmICA has comparatively better sources recovery power in data 

which observations generated from highly overlapped mixtures.  

 

 

Figure 6: The independent components and the membership for the first mixture     

        with tmICA 

 

 

 

 Figure 7: The independent components and the membership for the second               

         mixture with tmICA 

 

5  Conclusion 

An independent component analysis method for temporal data, tmICA, is 

presented in this paper. In tmICA, observations are modeled as a mixture of 

systems. Each system is further described by an ICA model. Memberships of 

observations are used to decide the degree of influence for a mixture towards the 
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observations. When compared with mICA model, memberships in tmICA are 

modified in the estimation process. This modification provides a better assignment 

in the memberships. According to the experimental results, tmICA shows a 

excellent power in discovering the context switch of observations automatically in 

highly overlapping data. The estimated sources are closer to the true sources when 

compare with those estimated sources from ICA mixture model [8].  

 

 

Figure 8: The independent components and the membership for the first mixture   

        without tmICA 

 

 

Figure 9: The independent components and the membership for the second   

        mixture without tmICA 
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