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Abstract 
 

The appealing but complex Hausman and Taylor (1981) random effects 

(instrumental variable) estimator requires prior knowledge that certain explanatory 

variables in a panel are uncorrelated with the latent group effects. The purpose of 

this examination is to outline a tractable variable pretest that facilitates the initial 

sorting of regressors as likely exogenous or endogenous. The variable pretest 

proposed herein builds on the pretest estimator suggested by Baltagi et al (2003) by 

providing the necessary foundation for regressor identification. Extensions are 

suggested for the two-way error components construct.   
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1. Introduction  

Consider the well known one-way time-series and cross-section model, 

 

      itiitit ZXY  ++=    (i = 1, . . . , N; t = 1, . . . , T; n = NT),        (1) 

where Yit is the dependent variable, Xit are observable variables that vary across 

groups i and over time t, Zi are observable time-invariant variables, β and γ are k 

and f vectors of estimated coefficients and εit denotes the overall error term.2  

The error term is comprised of two components, 

 

   itiit  += ,                          (2) 

 

where μi denotes the unobservable group specific effects and νit is the remainder 

stochastic disturbance. The component μi is time-invariant and will account for 

group specific effects not included in the right-hand-side (RHS). The remainder 

disturbance νit varies with groups and time and is assumed orthogonal to X, Z and μ 

with a mean of zero and a constant variance 2

 . 

 

Generally, two specifications of equation (1) are considered and differ based on 

their treatment of μi. First, 'fixed effects' (FE) treats μi as fixed but unknown 

constants differing across groups. This specification is easily estimated by including 

group dummy variables in the RHS (Least Squares Dummy Variable (LSDV) 

estimator). However, if N and/or T are large, LSDV suffers from the loss of precious 

degrees of freedom. Alternatively, estimates can be obtained by transforming the 

data into deviations from respective group means ('within' estimator). The two fixed 

effects estimation methods described reveal two crucial defects: (i) time-invariant 

variables are eliminated so γ cannot be estimated, and (ii) the estimator is not fully 

efficient because, in certain cases, it ignores variation across groups. 

 

Second, 'random effects' (RE) assumes that the μi are random variables, distributed 

independently across groups with variance 
2

 . Estimates of this specification are 

based on transformations of the data into deviations from weighted respective group 

means where the weights are based on, generally, the estimated variances of the 

components in equation (2) and T (Feasible General Least Squares (FGLS) 

estimator). Specifically, the weight on the group means takes the form, 
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2 Many presentations of this familiar model may include a scalar constant term, α. 
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Note, if 1ˆ = , random effects is the 'within' fixed effects estimator. Unbiased 

robust estimates of the variance components are best obtained from pooled ordinary 

least squares (OLS) and LSDV estimators. The potential correlation of μi with the 

variables in Xit  and Zi is a defect of the random effects construct. If these 

correlations are present, random effects estimation yields biased and inconsistent 

estimates of β. Conversely, by transforming the data into deviations from the simple 

group means the fixed effects estimator is not impacted by this lack of orthogonality.     

 

Hausman (1978) outlines a specification test of the null hypothesis of orthogonality 

between μi and Xit , Zi where ( ) 0,:0 =iiti ZXEH  . By failing to reject the null, 

both fixed effects and random effects are unbiased and consistent, but fixed effects 

is less efficient. When the null is rejected, fixed effects is unbiased and consistent 

but random effects is not. Accordingly, if the null is not rejected the two estimates 

should not differ systematically. A likely test of the null should consider the 

difference between the two estimators, REFEg  ˆˆˆ −= , within the sampling error.  

Hausman (1978) formally derives the chi-squared test statistic based on the Wald 

criterion, 

 

   ggVargK
ˆ)ˆ(ˆ

12 −
= ,                                     (4) 

 

where K degrees of freedom equals the number of estimated slope coefficients.  

The center positive definite matrix should be based on robust covariance estimates. 

 

The random effects specification requires exogeneity of all regressors and the 

components in equation (2). Conversely, the fixed effects model allows for 

endogeneity of all the regressors and μi , but ignores observable variables Zi. In order 

to avoid this all or nothing choice of exogeneity and accommodate the estimation 

of γ, Hausman and Taylor (1981) (HT) propose a third specification for estimating 

equation (1) where the RHS is split into two main categories of variables, those 

assumed uncorrelated (exogenous) with μi and νit, and those correlated 

(endogenous) with μi, but not νit. Table 1 shows the four possible sets of observable 

variables for equation (1). 

 
Table 1: Hausman-Taylor variable sets 

 Exogenous Endogenous 

Time varying X1 is n x k1 X2 is n x k2 

Time invariant Z1 is n x f1 Z2 is n x f2 
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The exogenous category identified serves two functions, (i) using group mean 

deviations, unbiased estimates of the respective elements of β are produced, and (ii) 

the exogenous set and group means provide valid instruments for the unbiased and 

efficient estimation of β and γ. An advantage of panel data is the formulation of 

instruments from within the model construct. The order condition for identification 

requires that k1 (the number of variables in X1) is greater than or equal to f2 (the 

number of variables in Z2). When k1 > f2, the model is over-identified and HT is 

more efficient than 'within' fixed effects. 

 

The appealing but complex HT estimator requires prior knowledge that certain RHS 

variables in equation (1) are uncorrelated with μi . The purpose of this paper is to 

outline a tractable variable pretest that facilitates the initial sorting of regressors as 

categorized in Table 1. The variable pretest proposed herein builds on the pretest 

estimator suggested by Baltagi et al (2003) by providing the necessary foundation 

for regressor identification. The balance of this examination is divided into four 

sections. Section 2 outlines the motivation and steps of the pretest. Section 3 

provides an example estimation and interprets the empirical inference with 

conclusions and extension suggestions drawn in section 4.  

 

2. Pretest  

The Hausman (1978) specification test described above provides a natural starting 

point.  Forms of the Hausman test are routinely used as pretests in applied work 

(see Guggenberger (2010) for an extensive review). 3  As a first step, estimate 

equation (1) with both fixed ('within') and random effects (FGLS) specifications 

and subsequently construct the chi-squared statistic given in equation (4).4 This 

initial statistic becomes the base of comparison. If the Hausman null hypothesis is 

not rejected, FGLS is unbiased, efficient and commonly the correct specification.  

If the null is rejected, identifying the RHS variables that contribute to the size of the 

statistic estimated from equation (4) is the primary focus herein. Second, estimate 

succeeding chi-squared statistics from re-specified models by dropping one 

sequential regressor each iteration. For example, assume the RHS includes 3 

observable variables - drop variable 1 and estimate the model with 2 and 3 - drop 

variable 2 and estimate the model with 1 and 3 - drop variable 3 and estimate the 

model with 1 and 2. A formal sorting tenet for the vector of resulting chi-squared 

statistics may, ostensibly, appear arbitrary and perhaps best illustrated by example. 

 

 

 
3 Cornwell et al (1992) suggests that remainder noise correlations should be tested as well where, 

( ) 0,     :0 =iZitXitEH  . 

4 A computational note, while there is no miraculous software written for all panel data estimation 

and testing, packages like LIMDEP, SAS, STATA, and TSP are generally sufficient.  Use robust 

variance/covariance corrections when needed. 
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3. Example  

Data for this example was obtained from Kunce (2021). The data are a balanced 

panel of all 23 counties (N = 23) within the state of Wyoming (USA) spanning the 

years 2010 - 2020 (T = 11; n = 253). The cited analysis examines the contention that 

observable socioeconomic factors matter in explaining variation in age-adjusted 

mortality within the state of Wyoming. Covariates include, percent of a county's 

population classified as non-white, percent with a bachelor's degree or higher, 

percent whose income is below the national poverty level, median income in 1,000s 

of 2020 dollars, a county's unemployment rate, the number of licensed hospital beds 

in the county (time-invariant) and percent of the population with no health insurance.  

In order to identify Table 1 variable sets, iterative one-way fixed and random effects 

regressions were performed varying 7 sets of variables by dropping the regressor 

indicated in the first column of Table 2 with the resulting Hausman statistic in the 

second column. For example, the fifth row depicts the resulting test statistic when 

the UNEMPLOYMENT variable is dropped from the right-hand-side. Note that the 

Hausman test statistic reduces to 18.88 from 33.56. The UNEMPLOYMENT 

variable appears to be a significant 'correlation contributor' therefore pretests as 

likely endogenous. The BEDS variable cannot be estimated with the FE 

specification and its inclusion in the pretest routine affects the RE coefficient 

estimates and variance/covariance estimates. Accordingly, the BEDS variable 

pretests to be a correlation contributor. 

 

Table 2: μi correlation tests* 

 
2

6  

NONWHITE 32.05 

EDUCATION 20.94 

POVERTY 28.37 

INCOME 23.38 

UNEMPLOYMENT 18.88 

BEDS 25.84 

UNINSURED 29.25 

*All RHS variables 
2

7 = 33.56, base of comparison. 

Recall that the necessary condition for identification and efficient estimation of β 

and γ is that k1 > f2 and f2 may be empty (Hausman and Taylor (1981) pp. 1385-

1387). Thus, a natural sorting from Table 2 follows, 

 

X1: NONWHITE, POVERTY, UNINSURED 

X2: EDUCATION, INCOME, UNEMPLOYMENT 

Z1: SCALAR CONSTANT 

Z2: BEDS 
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Table 3 shows the results of three error component models for the Kunce (2021) 

example. The first column depicts the RE estimates which assume no correlation 

between the RHS and the μi . The sizeable LM statistic confirms the importance of 

controlling for specific county level effects. The second column of Table 3 presents 

the 'within' FE estimates. The F-test, null hypothesis of county homogeneity is 

rejected at the < 1% level. The time-invariant BEDS variable is eliminated by the 

county mean differencing data transformation. Comparing the FE and RE estimates 

using the Hausman test rejects the null hypothesis of orthogonality confirming that 

the RE model is misspecified. This initial Hausman test outcome justifies the use of 

the HT instrumental variable method. Given the variable pretest results from above, 

the last column of Table 3 shows the estimates using the HT routine in LIMDEP 

11®. Interestingly, the coefficient of BEDS is twice the coefficient estimated using 

RE (-0.01 vs -0.005). A Hausman test based on the difference between FE and the 

HT estimator fails to reject the null hypothesis of orthogonality. There are two 

degrees of freedom in this chi-squared test since there are two over-identifying 

conditions (the number of X1 variables minus the number of Z2 variables, see Baltagi 

et al (2003)).  The variable pretest herein is shown to be valid, we cannot reject 

that the set of instruments X1 and Z1 are appropriate. Other combinations of variable 

sorting are certainly possible, but subsequent results do not improve upon those 

found in Table 3. 

 
Table 3: Example estimation results 

 RE FE HT 

NONWHITE (t) 0.05 (1.43) 0.26 (1.53) 0.18 (1.22) 

EDUCATION (t) -0.07 (-4.63) -0.03 (-0.61) -0.03 (-0.76) 

POVERTY (t) 0.03 (0.78) 0.06 (1.45) 0.07 (1.44) 

INCOME (t) -0.01 (-0.68) -0.04 (-1.65) -0.04 (-1.69) 

UNEMPLOYMENT (t) 0.16 (2.00) 0.23 (2.74) 0.21 (2.62) 

UNINSURED (t) -0.02 (-0.76) 0.05 (1.26) 0.04 (1.10) 

BEDS (t) -0.005 (-2.03) - -0.01 (-1.68) 

LM test (p value) 69.35 (0.00) - - 

Hausman test (p value) 33.56 (0.00) - 2.47 (0.29) 

Homogeneity F(22, 223)(p value) - 5.35 (0.00) - 

 

4. Conclusion 

In this paper, we have developed a tractable pretest method (for use with panel data) 

which treats the problem of identifying explanatory variables that are likely 

correlated with latent group effects. The proposed variable pretest builds on the 

work of Baltagi et al (2003) by outlining a foundational sorting mechanism as 

discussed in Hausman and Taylor (1981). Extending the variable pretest to the two-

way error components specification continues to be based on the difference between 
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FE (with both group and time effects) and the two-way FGLS estimator. Kang 

(1985) derives the conditions to be considered regarding the relevant Hausman 

testable hypothesis. Wyhowski (1994) extends the HT specification to include latent 

time effects.5 
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