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Abstract

In this paper we extend fixed point theorems of Ćirić ([Lj. Ćirić,

On a family of contractive maps and fixed points, Publ. Inst. Math.,

17(31), (1974), 45-51; Some Recent Results in Metrical Fixed Point

Theory, Beograd 2003.]) from the metric space to cone metric spaces.

We do not impose the normality property on the cone, but suppose only

that the cone P in the real ordered Banach space E has a nonempty

interior. Thus our results generalize and extend fixed point theorems of

contractive mappings in several aspect ( see: Remark 3.3 and Corollaries

3.4-3.8). Three examples are given to illustrate the usability of our

results.
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1 Introduction

Ordered normed spaces, cones and Topical functions have applications in

applied mathematics, for instance, Newton approximation method [13]-[16],

[26], [27]-[29] and optimization theory [7] and [20]. In these cases an order

is introduced by using vector space cones [3], [19]. Baluev [4], [15], Huang

and Zhang [8], used this approach and they have replaced the real numbers

by ordering Banach space and define P−metric and P−normed space. The

authors there described convergence in these spaces and introduced complete-

ness. Then they proved some fixed point theorems of contractive mappings on

P−metric spaces. Recently, in [1], [8]- [10], [21]-[23], [25] and [27] some com-

mon fixed point theorems were proved for maps on P− metric spaces. Also, in

these papers, the authors usually use the normality property of cones in their

results. In this paper we do not impose the normality condition for the cones.

Consistent with [7] (see also [8], [12]-[16], [18], [26]-[29]) the following defi-

nitions and results will be needed in the sequel.

2 Preliminary Notes

Let E be a real Banach space. A subset P of E is called a cone whenever

the following conditions hold: (a) P is closed, nonempty and P 6= {θ} ;(b)

a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax+ by ∈ P ; (c) P ∩ (−P ) = {θ} .

Given a cone P ⊂ E, we define a partial ordering � with respect to P by

x � y if and only if y − x ∈ P. We shall write x ≺ y to indicate that x � y

but x 6= y, while x � y will stand for y − x ∈ intP (interior of P ).

There exist two kinds of cones (see [7]): normal with normal constant k ≥ 1

and nonnormal cones.

Let E be a real Banach space, P ⊂ E a cone and � the partial ordering
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defined by P. Then P is called normal if

inf {‖x+ y‖ : x, y ∈ P and ‖x‖ = ‖y‖ = 1} > 0, (1)

or equivalently, there is a number k > 0 such that for all x, y ∈ P,

θ � x � y imply ‖x‖ ≤ k ‖y‖ , (2)

or equivalently, if (∀n) xn � yn � zn and

lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x. (3)

The least positive number satisfying (2) the normal constant of P. It is

clear that k ≥ 1. From details see [7].

Example 2.1. [26] Let E = C1
R
[0, 1] with ‖x‖ = ‖x‖

∞
+ ‖x′‖

∞
on P =

{x ∈ E : x (t) ≥ 0} . This cone is nonnormal. Consider, for example, xn (t) =
tn

n
and yn (t) =

1
n
. Then 0 � xn � yn, and limn→∞ yn = θ, but

‖xn‖ = max
t∈[0,1]

∣

∣

∣

∣

tn

n

∣

∣

∣

∣

+ max
t∈[0,1]

∣

∣tn−1
∣

∣ =
1

n
+ 1 > 1;

hence xn does not converge to zero. It follows by (3) that P is a nonnormal

cone.

Definition 2.2. [8, 27] Let X be a nonempty set. Suppose that the mapping

ρ : X ×X → E satisfies:

(d1) θ � ρ (x, y) for all x, y ∈ X and ρ (x, y) = θ if and only if x = y;

(d2) ρ (x, y) = ρ (y, x) for all x, y ∈ X;

(d3) ρ (x, y) � ρ (x, z) + ρ (z, y) for all x, y, z ∈ X.

Then ρ is called a cone metric [8] or P−metric [27] on X and (X, ρ) is

called a cone metric [8] or P− metric space [27]. A concept of a P− metric

space is more general than that of a metric space, because each metric space

is a P−metric space where E = R and P = [0,+∞).
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Examples 2.3. 10 Let E = R
2, P = {(x, y) ∈ R

2 : x ≥ 0, y ≥ 0} , X = R

and ρ : X ×X → E defined by ρ (x, y) = (|x− y| , α |x− y|) , where α ≥ 0 is

a constant. Then (X, ρ) is a cone metric space [8] with normal cone P where

k = 1.

20 For other examples of a cone metric spaces, i.e., P−metric spaces reader

can see [27], pp. 853 and 854.

Definition 2.4. [8], [27]) Let (X, ρ) be a P−metric space. We say that

{xn} is:

(i) a Cauchy sequence if for every c in E with θ � c, there is an N such

that for all n,m > N, ρ (xn, xm) � c;

(ii) a convergent sequence if for every c in E with θ � c, there is an N

such that for all n > N, ρ (xn, x) � c for some fixed x in X.

(iii) A P−metric space X is said to be complete if every Cauchy sequence

in X is convergent in X.

(iv) Let f : X → X and x0 ∈ X. Function f is a continuous at x0 if for

any sequence xn → x0 we have f (xn) → f (x0) , or equivalently, ρ (xn, x0) � c

implies that ρ (fxn, fx0) � c.

The following remarks will be useful in the sequel.

Remark 2.5. (1) If u � v and v � w, then u � w.

(2) If θ � u � c for each c ∈ intP then u = θ.

Remark 2.6. If c ∈ intP and an → θ, then there exists n0 such that for

all n > n0 we have an � c. From example 1.1. it follows that, in general, the

converse is not true. Indeed, xn 9 θ but xn � c for large n.

From this it follows that the sequence {xn} converges to x ∈ X if ρ (xn, x) → θ

as n → ∞ and {xn} is a Cauchy if ρ (xn, xm) → θ as n,m → ∞. In the situation

without the normality property we have only half of lemmas 1 and 4 from [8].

Also, the fact that ρ (xn, yn) → ρ (x, y) if xn → x and yn → y is not applicable.

Remark 2.7. Let x ∈ X, {xn}n≥1 and {bn}n≥1 two sequences in X and E,

respectively, θ � c and θ � ρ (xn, x) � bn for all n ≥ 1. If bn → θ, then there

exists a natural number N such that ρ (xn, x) � c for all n ≥ N.

Proof. Follows from Remarks 2.6 and 2.5(1).
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Remark 2.8. If E is a real Banach space with a cone P and if a � λa

where a ∈ P and 0 ≤ λ < 1, then a = θ.

In the sequel we assume that E is a real Banach space and P a cone

in E with intP 6= ∅. The last assumption is necessary in order to obtain

reasonable results connected with convergence and continuity. In particular,

with this assumption the limit of a sequence is uniquely determined. The

partial ordering induced by the cone P will be denoted by � .

3 Main Results

In this section we shall prove one fixed point theorem of contractive map-

pings for P−metric space. We generalize results of [5] and [6], by omitting the

assumption of normality in the results. We use only the definition of conver-

gence in terms of the relation ”�”. The only assumption is that the interior

of the cone P is nonempty-so we use neither continuity of the vector metric ρ,

nor Sandwich Theorem. We begin with the following.

Let S be a nonempty set and let {fa}a∈A be a family of self-mappings on

S and A an indexing set. A point u ∈ S is called a common fixed point for a

family {fa}a∈A if and only if fau = u for each fa.

Theorem 3.1. Let (X, ρ) be a complete P−metric space and {f a} a∈A a

family of self-mappings of X. If there exists b ∈ A such that for each a ∈ A there

exists λ = λ (a) ∈ [0, 1) such that for each x, y ∈ X there is u ∈ M (f a, f b;X)

for which

ρ (f ax, f by) � λ · u (x, y) (4)

where

u ∈ M (f a, f b;X)

=

{

ρ (x, y) , ρ (x, f ax) , ρ (y, f by) ,

ρ (x, f ax) + ρ (y, f by)

2
,
ρ (x, f by) + ρ (y, f ax)

2

}

,



94 Ćirić’s type theorems in abstract metric spaces

then all f a have a unique common fixed point, which is the unique fixed point

of each f a, a ∈ A.

Remark 3.2. In [5], instead of ”∈” the author used ”�”, because in metric

spaces, the set M (fa, fb, X) has minimum and maximum. Since in P−metric

spaces the set M (fa, fb, X) need not even have the supremum in ordered Ba-

nach space then, we use ”∈”. It is clear that ”∈” can be used in metric spaces,

while ”�” can not be used in general in P−metric spaces.

Remark 3.3. Also, it is worth mentioning that Theorem 2.1 and Theorem

2.2 from [2], that is., contractive condition (4) and the corresponding condition

(2.4) from [2] are not comparable, in general. Indeed, this is obvious if S 6= IX

or T 6= IX (an identity mapping on X). In the case that S = T = IX then we

obtain that (2.4) from [2] implies (4).

Proof of the Theorem 3.1 Let a ∈ A and x ∈ X be arbitrary. Consider

a sequence, defined inductively by

x0 = x, x2n+1 = f ax2n, x2n+2 = f bx2n+1, n ≥ 0.

We first show that

ρ (xn, xn+1) � λρ (xn−1, xn) for n = 1, 2, 3.... (5)

From (4) we get

ρ (x2n+1, x2n+2) = ρ (f ax2n, f bx2n+1) � λ · u1,

where

u1 ∈
{ρ (x2n, x2n+1) , ρ (x2n+1, x2n+2) ,

ρ(x2n,x2n+1)+ρ(x2n+1,x2n+2)
2

,
ρ(x2n,x2n+2)

2

} (6)

and

ρ (x2n, x2n+1) = ρ (f ax2n, f bx2n−1) � λ · u2,

where

u2 ∈
{ρ (x2n−1, x2n) , ρ (x2n, x2n+1) ,

ρ(x2n−1,x2n)+ρ(x2n,x2n+1)
2

,
ρ(x2n−1,x2n+1)

2

} (7)
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If u1 = ρ (x2n, x2n+1) then clearly (5) holds. If u1 = ρ (x2n+1, x2n+2) then

according to Remark 2.8 u1 = 0 and (5) is immediate. For

u1 =
1

2
(ρ (x2n, x2n+1) + ρ (x2n+1, x2n+2)) ,

we have

ρ (x2n+1, x2n+2) �
λ

2
ρ (x2n, x2n+1) +

1

2
ρ (x2n+1, x2n+2) ; i.e.,

ρ (x2n+1, x2n+2) � λρ (x2n, x2n+1) ; that is (5) holds.

In the case that u1 = 1
2
ρ (x2n, x2n+2) , then from (4) with x = x2n and y =

x2n+2, as λ < 1, we have

ρ (x2n+1, x2n+2) � λ
ρ (x2n, x2n+1) + ρ (x2n+1, x2n+2)

2

� λ
ρ (x2n, x2n+1)

2
+

ρ (x2n+1, x2n+2)

2
.

Hence, ρ (x2n+1, x2n+2) � λρ (x2n, x2n+1) , i.e., (5) holds.

In the second case, if u2 = ρ (x2n−1, x2n) then (5) holds. If we assume that

u2 = ρ (x2n, x2n+1) then according to Remark 2.8 u2 = 0 and (5) is immediate.

For

u2 =
1

2
(ρ (x2n−1, x2n) + ρ (x2n, x2n+1)) ,

it follows

ρ (x2n, x2n+1) �
λ

2
ρ (x2n−1, x2n) +

1

2
ρ (x2n, x2n+1) i.e.,

ρ (x2n, x2n+1) � λρ (x2n−1, x2n) ; that is (5) holds.

In the case u2 =
1
2
ρ (x2n−1, x2n+1) , then from (4) with x = x2n−1 and y = x2n+1,

as λ < 1, we obtain

ρ (x2n, x2n+1) � λ
ρ (x2n, x2n−1) + ρ (x2n−1, x2n+1)

2

� λ
ρ (x2n−1, x2n)

2
+

ρ (x2n, x2n+1)

2
.

Hence, ρ (x2n, x2n+1) � λρ (x2n−1, x2n) ; i.e., (5) holds. The proof that (5) holds

is completed.

From (5) we get

ρ (xn, xn+1) � λρ (xn−1, xn) � ... � λnρ (x0, x1) . (8)
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We show now that {xn} is a Cauchy sequence. For this, by the triangle in-

equality and from (8), for n > m we have:

ρ (xn, xm) � ρ (xn, xn−1) + ρ (xn−1, xn−2) + · · ·+ ρ (xm+1, xm)

�
(

λn−1 + λn−2 + · · ·+ λm
)

ρ (x0, x1)

= λm
(

1 + λ+ λ2 + · · ·+ λn−m−1
)

ρ (x0, x1)

�
λm

1− λ
ρ (x0, x1) → θ, as m → ∞.

Remark 2.6 implies that for θ � c and large m : λm (1− λ)−1
ρ (x0, x1) � c;

thus, according to Remark 2.5(1) ρ (xn, xm) � c. Hence, by Definition 2.4 (i)

{xn} is a Cauchy sequence. Since (X, ρ) is complete P−metric space there is

an v in X such that xn → v. Now, we shall show that f bv = v. By the triangle

inequality and (4) we have

ρ (f bv, v) � ρ (f bv, x2n+1) + ρ (x2n+1, v)

= ρ (f ax2n, f bv) + ρ (x2n+1, v) � λ · un + ρ (x2n+1, v) ,

where

un ∈
{ρ (x2n, v) , ρ (v, f bv) , ρ (x2n, x2n+1) ,
ρ(x2n,f ax2n)+ρ(v,f bv)

2
,
ρ(v,x2n+1)+ρ(x2n,f bv)

2

}

Let θ � c. It is clear that at least one of the following five cases holds for

infinitely many n :

1) If un = ρ (x2n, v) then

ρ (f bv, v) � λ · ρ (x2n, v) + ρ (x2n+1, v) � λ
c

2λ
+

c

2
= c.

2) For un = ρ (v, fbv) it follows

ρ (f bv, v) � λ · ρ (v, f bv) + ρ (x2n+1, v) ;

that is ρ (f bv, v) �
1

1− λ
· c (1− λ) = c.

3) If un = ρ (x2n, x2n+1) then

ρ (f bv, v) � λρ (x2n, x2n+1) + ρ (x2n+1, v)

� λρ (x2n, v) + λρ (v, x2n+1) + ρ (x2n+1, v)

� λ
c

3λ
+ λ

c

3λ
+

c

3
= c.
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4) If un = 1
2
(ρ (x2n, f ax2n) + ρ (v, f bv)) we obtain

ρ (f bv, v) � λ
1

2
(ρ (x2n, f ax2n) + ρ (v, f bv)) + ρ (x2n+1, v)

= λ
1

2
(ρ (x2n, x2n+1) + ρ (v, f bv)) + ρ (x2n+1, v)

�
λ

2
ρ (x2n, v) +

λ

2
ρ (v, x2n+1) +

1

2
ρ (v, f bv) + ρ (x2n+1, v) ; i.e.,

ρ (f bv, v) � λ
c

2λ
+ (λ+ 2)

c

2 (λ+ 2)
= c.

5) Finally, if un = 1
2
(ρ (v, x2n+1) + ρ (x2n, f bv)) we have

ρ (f bv, v) � λ
1

2
(ρ (v, x2n+1) + ρ (x2n, f bv)) + ρ (x2n+1, v)

� λ
1

2
ρ (v, x2n+1) + λ

1

2
ρ (x2n, v) + λ

1

2
ρ (v, f bv) + ρ (x2n+1, v)

�
3

2
ρ (x2n+1, v) +

1

2
ρ (x2n, v) +

1

2
ρ (v, f bv) ;

that is.,

ρ (f bv, v) � 3
c

6
+

c

2
= c.

In all cases, we obtain ρ (f bv, v) � c for each c ∈ intP. Using Remark

2.5(2) it follows that ρ (f bv, v) = θ, or f bv = v, that is v is a fixed point of fb.

We shall show that v is a fixed point of all {f a}α∈J . Let a ∈ A be arbitrary.

Then from (4) with x = y = v = f bv, we have

ρ (f av, v) = ρ (f av, f bv) � λ (a) · u,

where u ∈
{

ρ (f av, v) ,
1
2
ρ (f av, v)

}

. Hence, we have two cases:

ρ (f av, v) � λρ (f av, v) and ρ (f av, v) �
λ

2
ρ (f av, v) ≺ λρ (f av, v) .

According to Remark 2.8. it follows that f av = v. Thus, all f a have a common

fixed point. Suppose that w is also a fixed point of f b. Then it follows, as above,

that w is a common fixed point of all {f a}a∈A . Thus, from (4) we get

ρ (w, v) = ρ (f bw, f av) � λ · u
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where

u ∈

{

ρ (w, v) , ρ (v, f av) , ρ (w, f bw) ,
1
2
(ρ (v, f av) + ρ (w, f bw)) ,

1
2
(ρ (v, f bw) + ρ (w, f av))

}

=

{

ρ (w, v) , ρ (v, v) , ρ (w,w) ,
1

2
(ρ (v, v) + ρ (w,w)) ,

1

2
(ρ (v, w) + ρ (w, v))

}

= {0, ρ (v, w)} .

Hence, ρ (w, v) � λ · ρ (w, v) . By Remark 2.8. it follows that ρ (w, v) = θ;

that is v = w is a unique common fixed point of all {f a} a∈A . The theorem is

proved.

We now list some corollaries of Theorem 3.1.

Corollary 3.4. In Theorem 3.1 by setting E = R, P = [0,+∞[ , ‖x‖ =

|x| , x ∈ E, we get Ćirić’s result [5] for a family of contractive maps.

Corollary 3.5. Taking a = b, λ = λ (a) ∈ [0, 1), fa = fb = f, u (x, y) =

ρ (x, y) we obtain the cone version of Banach contraction principle ([8], Th.1.).

Corollary 3.6. Taking a = b, λ = λ (a) ∈ [0, 1), fa = fb = f,

u (x, y) =
1

2
(ρ (x, fx) + ρ (y, fy)) ,

in the Theorem 3.1 we have the cone version of Kannan contraction ([24] (19)

(ii), [8], Th. 3.).

Corollary 3.7. Taking a = b, λ = λ (a) ∈ [0, 1), fa = fb = f,

u (x, y) =
1

2
(ρ (x, fy) + ρ (y, fx)) ,

in the Theorem 2.1. we have the cone version of Chatterjea contraction

([24] (19) (ii), [8], Th. 4.).

Corollary 3.8. Taking M (fa, fb;X) = {ρ (x, y) , ρ (x, f ax) , ρ (y, f by)} in

the Theorem 3.1 we obtain the cone version of Ćirić’s result from ([6], Theorem

4.19.).
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Now, we add an example with Banach type contraction on a P−metric

space with nonnormal cone (see Corollaries 3.4 and 3.8).

Example 3.9. Let X = [0, 1] , E = C1
R
[0, 1] , P = {ϕ ∈ E : ϕ (t) ≥ 0} .

Define ρ : X × X → E by ρ (x, y) (t) := |x− y| · ϕ (t) where ϕ : [0, 1] → R

such that ϕ (t) = 4t. It is easy to see that ρ is a P−metric on X. Consider the

mappings f, g : X → X in the following manner:

fx =

{

ax+ 1− a, x 6= 0

0, x = 0
and gx = x,

where a ∈ (0, 1) . It is clear that

ρ (fx, fy) � λρ (gx, gy) = λρ (x, y) ,

for all x, y ∈ X, where λ ∈ [0, 1). All the conditions of the Corollaries 3.4 and

3.8 hold, and f and g have a common fixed point.

This example verifies that Theorems 3.1 is a proper extension of the known

results from [5] and [6]. Indeed, we know (see Example 1.1.) that the cone P is

nonnormal. So, in this case [5, Theorem 4.5] and [6, Theorem 4.19] cannot be

applied. This shows that Theorems 3.1 is more general, i.e., the main theorems

from [5] and [6] can be obtained as its special cases taking ‖.‖ = |.| , E = R

and P = [0,+∞).

Remark 3.10. We finish the present article with the following problem, to

which we have no answer yet: Does Theorem 3.1 remain true if

M (fa, fb;X) =

{

d (x, y) ,
1

2
d (x, fax) ,

1

2
d (y, fby) , d (x, fby) , d (y, fax)

}

?
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