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Abstract 

In this paper, motivated by some earlier work [6], we formulated a general way of 

solving a certain type of higher-degree reduced polynomial equations having only 

real solutions. In order to do it, we discussed about hyperbolic numbers (also 

known as unipodal numbers) and their remarkable properties.  We have utilized 

these properties to formulate the procedure, and finally, we gave an example of 

how to solve a heptagonal reduced polynomial equation to demonstrate the 

applicability of the new method. 
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1  Introduction  

Mathematicians [2, 7] over the ages tried to find general rules for solving a 

higher-degree polynomial equation without much success. Niels Henrik Abel [1] 

and Evariste Galois [4] proved that there are no formulae for solving general 

polynomial equations of degree 5 or higher. The present author solved pentagonal 

equations under certain conditions [6]. Although, our goal was to find solutions of 

general higher-degree polynomial equations, we are to be happy with a partial 

success. Here we are able to show how to solve higher-degree reduced polynomial 

equations with the aid of unipodal numbers. We have described the unipodal 

numbers and their properties in Section 2. In Section 3, we defined what we called 

higher-degree reduced polynomial equations and developed the method of solving 

them. We also solved a reduced heptagonal equation as an example. 

 

 

2  The Unipodal Number System 

A unipodal number [5] w  in the standard basis },1{ u  has the form 

,uyxw  where ,12 u however, ,1u and yx, are complex numbers. The 

basis },{  uu defined by  

              uu  1
2

1

  
and   ,1

2

1
uu                       (1) 

and satisfying the relations 1  uu and ,uuu   is known as the 

idempotent basis, because it has the properties   uu 2 and .2
  uu  The 

idempotent basis },{  uu has the mutually annihilating property .0uu  

Using the idempotent basis, we can write  

        ,  uwuwuuww where yxw  and .yxw       (2) 

The coordinates of the standard basis can be recovered by 
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                ,
2

1
  wwx

   
 .

2

1
  wwy                   (3) 

It is noted that the idempotent basis makes calculations simple and the Binomial 

Theorem under this basis becomes extremely simple as we can see below:    

             ,  uwuwuwuwuwuww nnnnnnnn        (4) 

since .0uu  

The relation defined in (4) is valid for any real n. Because of (4) we can extend the 

definitions of all the elementary functions in the complex plane to the elementary 

functions in the unipodal plane. If )(wf is such a function for 

,  uwuww we define 

                   ,)()()(   uwfuwfwf                      (5) 

provided that )( wf and )( wf are defined. The basic unipodal equation  

rwn   can easily be solved using the idempotent basis, with the help of equation 

(4). Writing   uwuww and  ,  ururr we have  

               .  ururruwuww nnn                  (6) 

Hence   rw n and .  rw n  It follows that jnrw 
1

||    and 

knrw 
1

||   for some integers ,1,0  nkj where  is primitive nth root of 

unity [3]. 

This proves the following theorem. 

Theorem 2.1 For every positive integer n, the unipodal equation rwn   has 2n  

solutions 

                  ,
11

  ururw n
k

n
j                           (7) 

for ,1,,2,1,0,  nkj   where  ./2exp ni   

The number of roots to the equation rwn   can be reduced by adding some 

constraints. The following corollary follows from the Theorem 2.1, by having the 
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constraint ,0 ww that is equivalent to ./   ww   

Corollary 2.1 The unipodal equation ,rwn  subject to the constraint            

,0))(( 22  yxyxyxww  has the n solutions given by 

                    ,
1

1





  u
r

urw
n

j

n
j



                        (8)             

for ,1,,2,1,0  nj   where ),/2exp( ni   and nr
1

  denotes any nth root 

of the complex number .r  

 

 

3  Reduced Polynomial Equations  

Let n be an odd positive integer. Then by reduced n-degree polynomial 

equation we mean an equation of the form 

           ,001
3

3
4

4
2

2  



 axaxaxaxax n

n
n

n
n             (9)             

where 01342 ,,,,, aaaaa nn   are rational numbers. 

Theorem 3.1 The reduced n-degree polynomial equation   

          001
3

3
4

4
2

2  



 axaxaxaxanx n

n
n

n
n             (10)             

has the solutions, for ,1,,2,1,0  nj                                              

                  ,
2

1














nj

nj

ts
tsx


                    (11) 

where )/2exp( ni  is a primitive nth root of unity,     

              ,2,4 0
1

2 asa n
n


   and .2 nst    

Proof.  The unipodal equation ,rwn  where ,tusr  is equivalent in the 

standard basis to  
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    ,)( tusyux n     

.
!4

)3)(2)(1(

!2

)1(

!4

)3)(2)(1(

!2

)1(

14422

14422

utsuxynxy
nnnn

xy
nn

y

yxnyx
nnnn

yx
nn

x

nnnn

nnnn





 











 















 (12)            

Equating the complex scalar parts, we have     

 .
!4

)3)(2)(1(

!2

)1( 14422 syxnyx
nnnn

yx
nn

x nnnn 



 





       (13)            

Now substituting  22 yx in (13) we can write 

 
   

  .0

!4

)3)(2)(1(

!2

)1(

2

1

2

22422















sxxn

xx
nnnn

xx
nn

x

n

nnn



 
      (14)            

Then the coefficient of nx  in (14) is given by 

,2
2

2

!6

)5)(4)(3)(2)(1(

!4

)3)(2)(1(

!2

)1(
1

1












n
n

n
nnnnnnnnnnnn 

 

since for an odd ,n the sum of the coefficients of the odd powers of x is equal to 

that of the even powers of x and the sum of the binomial coefficients is equal to 

.2 n  

The coefficient of 2nx  in (14), after simplification, could be written as  

( 1) / 2

1

1 ( 1)( 2)( 3) ( 1) ( 5) ( 1) ( 7)
2 3

2! 4! 6! 8!
( 1)( 2) ( 2 1)

(2 )!

( 1)( 2) ( 2 1)
,

(2 )!

n

k

n n n n n n n n

n
n n n k

k
k

n n n k
n k

k








              
 

       
   

  

 





(15)             

and by mathematical induction, we can show that  
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             .2
)!2(

)12()2)(1( 3
2/)1(

1









 n
n

k k

knnn
k


               (16)             

Hence the coefficient of 2nx is equal to .2 3 nn   

Then dividing each term of the equation (14) (after expansion and simplification) 

by the coefficient of nx and comparing the coefficients 2nx  in (10) and (14), we 

have  

                    .4
2

2
21

3

2 



  nn

n

n aa                    (17)             

Similarly, equating the constant terms of (10) and (14), we can show that             

.2
2 0

1
10 as

s
a n

n


                                        (18)               

In this way, every coefficient in (10) could be written in terms of . The 

constraint ww further implies that  

             .222 nnnnn sttsrrwwww         (19)   

From the equation (8) we have 

                                          

            

   

u
r

r
r

r

u
r

uruyx

u
r

urw

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j





















































1

1

1

1

1

1

1

1

2

1

2

1

1
2

1
1

2

1
















              (20)             

We have used the equation (1) in the second line of (20). Equating the complex 

scalar parts, we have  

            

.
2

1

2

1
1

1





























 nj

nj

n
j

n
j

ts
ts

r
rx






          (21)             

We have substituted  ,tsr   in the above equation to get the desired 
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solutions and this completes the proof of the Theorem 3.1.                   

 

Here we give an example of solving a reduced equation for .7n Cases for 

3n  and 5n  have been worked out respectively in [6] and [8]. 

Example 3.1  Find the solutions of the reduced heptagonal equation     

              .0
64

8

8

7

2

7

2

1
7 357 






 xxxx  

Solution. Here 
64

8
,

2

1
05  aa so .8,2  s  

Then 





 iiits

4

3
exp2)1(888 2/7 

 and .
28

3
exp27 






 its


 

Thus 



































k

k

i

ix




28

3
exp2

2

28

3
exp2

2

1

                                         



















































i
k

i

i
k

i

7

2
exp

28

3
exp2

2

7

2
exp

28

3
exp2

2

1




                 

 














  7/2

4

3
cos2 k  for .6,,2,1,0 k                       (22)             

Equation (22) indicates that solutions are real. This means that this method is able 

to solve higher-degree reduced equations that have only real solutions, it cannot 

handle any reduced equations that have some complex solutions too. 

I. For ,0k  

            334839806.1
28

3
cos2 









x  

II. For ,1k  
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      467085129.0
28

11
cos27/2

4

3
cos2 





















  x

 

 

III. For ,2k                                                                             

75240.0
28

19
cos27/4

4

3
cos2 





















  x  

                         

IV. For ,3k  

                                     

40532184.1
28

27
cos27/6

4

3
cos2 





















  x

 

                         

V. For ,4k  

               00.1
4

5
cos27/8

4

3
cos2 





















  x  

VI. For ,5k  

               1583416806.0
28

43
cos27/10

4

3
cos2 





















  x

 

VII. For ,6k  

             197448846.1
28

51
cos27/12

4

3
cos2 





















  x

 

 

4  Conclusion 

Following the above method, we can solve any reduced polynomial equations 

of degree n, where n is an odd positive integer. 
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