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Abstract 
 

Professional scientists and engineers are often tasked to predict the environmental 

impact of human activities by combining the understanding of complex physical 

systems with advanced analytical and numerical tools. At the same time, uncertainty 

has always been a critical aspect of most engineering projects. In this paper, we 

present a simple probabilistic framework that incorporates model parameter 

uncertainty and translates the results to predictive uncertainty, as required for risk-

based decision making. The framework is applied to three relatively simple, yet well 

understood groundwater contaminant transport problems adapted from real-world 

case examples. We use well-known analytical solutions documented in most 

contaminant hydrogeology textbooks, coded using freely available tools. The 

presented examples provide a useful illustration of the general methodology that 

should be applied, irrespective of problem type, when data uncertainty needs to be 

accounted for in design and decision-making. We have found the framework to be 

well understood by water resource managers and well received by decision-makers. 
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1. Introduction  

Professional engineers are often tasked to predict the impact of human activities on 

the environment by combining the understanding of complex physical systems with 

advanced analytical and numerical tools. At the same time, uncertainty has always 

been a critical aspect of most engineering projects. As decision makers, professional 

engineers need to make the best technical decisions in the presence of scientific and 

economic uncertainties and addressing uncertainty is an indispensable part of 

modelling and prediction [1]. 

In the area of groundwater hydrology, issues of parameter heterogeneity, scaling 

and uncertainty have been a very active research area since the 1970’s [2] giving 

rise to the topic of Stochastic Subsurface Hydrology. In modelling applications, 

effective properties are often employed to address spatial heterogeneity, but their 

estimation is scale dependent, while the limited amount of field measurements result 

in significant uncertainties [3]. By incorporating a probabilistic (or stochastic) 

approach, the model parameters become random stochastic functions, and the 

governing flow and transport equations become stochastic partial differential 

equations. Consequently, the solution is no longer deterministic, and is 

characterized by the ensemble instead. The result can then be presented in the form 

of a cumulative distribution function, where the answer takes the form of 

probabilities that the assessed outcomes would fall within ranges, that have some 

significance for the considered problem [4].  

There are several probabilistic approaches available, but Monte Carlo based 

methods are perhaps the most commonly used, for complex nonlinear problems. 

These involve generating multiple equally likely realizations of all parameters, with 

each deterministic realization used to solve the underlying problem. Multiple 

realizations are used to reconstruct the solution multivariate distribution, providing 

estimates of the solution lower order statistics (such as mean and variance), relating 

parameter uncertainty to predictive uncertainty [5].  

Despite the recognition that deterministic solutions only provide a modeler’s best 

guess and do not represent reality at all [6], there has been limited adoption of 

stochastic methods by practitioners, for practical applications of groundwater flow 

and contaminant transport analysis and assessments of environmental effects [7]. 

Practitioners often rely on very basic sensitivity analysis that typically provides only 

crude estimations of possible solution ranges, with no probabilistic support or cross 

dependencies. These limitations often form crucial barriers for the decision maker, 

when risk-based decisions are being sought.  

In this work we adopt a probabilistic framework, to quantify the risk to the 

groundwater resource used for drinking water supply, from a hypothetical 

contamination event in an unconfined alluvial gravel aquifer. Given the lack of site-

specific information, we opted to estimate the probabilities of contamination 

reaching these supply wells under various scenarios, using a Monte Carlo approach. 

Two case studies are presented, based on real applications in which we examine 

three advective-dispersive subsurface contaminant transport modelling scenarios. 
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Well-known analytical solutions documented in most contaminant hydrogeology 

textbooks are used in the problems and coded within a Microsoft Excel- spreadsheet. 

The stochastic analysis is undertaken using a publicly available Monte Carlo 

analysis add-in for Microsoft Excel, eliminating the need for specialized software.   

 

2. Case studies 

For this study we consider two resource consenting problems in New Zealand. Both 

are simplified so that the transport problem becomes tractable with analytical 

methods. This means that some physical and geochemical interactions and 

processes are ignored in favor of simplicity, but these simplifications have been 

deemed acceptable by the consenting authorities. The same approach can be easily 

extended to problems where analytical solutions may not be available, but specialty 

software or coding may be required. 

 

2.1 Impact of a permeable reactive barrier on water chemistry  

The first problem is a simplification of a case study that involves the installation 

and monitoring of an experimental denitrifying permeable reactive barrier (PRB) at 

the Silverstream Reserve near Christchurch, New Zealand [8]. This is part of an 

ESR research project to develop and demonstrate technologies to enhance the 

removal of nitrate from shallow groundwater systems before they impact receiving 

surface waters such as streams and lakes. The approach being trialed at the 

Silverstream Reserve uses a woodchip denitrifying PRB or ‘denitrification wall’ [9] 

to enhance natural attenuation of nitrate pollution in a shallow gravel aquifer. The 

denitrification wall comprises a binary mixture of coarse woodchip and gravel, 

entrenched below the water table, and aligned across the path of groundwater flow. 

The organic carbon in the woodchip provides a solid-phase food source for 

facultative heterotrophic bacteria that live in the aquifer and can reduce nitrate to 

benign gaseous nitrogen via the process of denitrification (e.g. [10]). The role of the 

coarse gravel component is to provide structural support to the PRB and maintain 

its high permeability.  

Denitrification is a microbial respiration process that proceeds in groundwater only 

when all available dissolved oxygen has been exhausted. Although the aim of a 

denitrifying PRB is to remove nitrate from groundwater filtering through it, to 

achieve this it must also strip dissolved oxygen from the water. The gravel aquifer 

at Silverstream Reserve is habitat to a complex groundwater ecology that includes 

stygofauna that live within the pores of the gravel sediments. Because stygofauna 

require oxic conditions [11], it is perceived that construction and operation of a 

denitrification wall will adversely impact on them, particularly in the initial stages 

of operation when the woodchip is fresh and at its most reactive with a high content 

of labile organic carbon (e.g. [12]). Lesser, but similar concerns were expressed 

pertaining to potential impacts on a freshwater stream 600m down-gradient of the 

field site, known to be fed by groundwater discharge. Accordingly, the question of 

the likely extent of the impacts on the native aquifer ecology was asked. For this 
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study we concentrate on the propagation of the oxygen and nitrate-depleted 

groundwater plume expected from the woodchip PRB. 

 

2.2 Groundwater resource vulnerability assessment  

The second problem pertains to a proposal to expand quarrying operations within 

the Christchurch Groundwater Protection Zone – a planning zone intended to limit 

the risk of contamination of the City’s drinking water resource from land-use 

activities. Existing regulations in Christchurch limit quarrying depths to within one 

meter above the highest recorded water table [13]. In a bid to secure more aggregate, 

quarry operators have sought to challenge this rule, proposing an alternative 

scenario whereby they will excavate to within one meter of the water table, but 

‘chase the water-table’ and back-fill with ‘clean-fill’, which on occasion, will rest 

below the water table. Provided only clean virgin fill is used in back-fill operations, 

the only perceivable impact on the quality of the groundwater resource would be 

possible changes to aesthetic properties of the water (e.g. pH, hardness, iron and 

manganese). Such impacts, if realized, are considered to be of insignificant 

consequence. A more significant impact would be from the illicit act of burying 

hazardous materials in the quarry, which is considered here. We assess how 

vulnerable the groundwater resource that is exploited for drinking water supply is 

to such a hypothetical pollution incident. For the purpose of an initial assessment, 

the forced convection from the abstraction wells is ignored, which is a conservative 

assumption given concentrations at a pumped well are diluted by the effect of radial 

flow. Glyphosate [N-(Phosphonomethyl)glycine] and benzene are assumed as the 

hazardous contaminants of concern in the problem that we present as two individual 

scenarios. Glyphosate is the most widely used herbicide in the world, including New 

Zealand. Whilst there is no evidence glyphosate is hazardous to human health if 

consumed in drinking water, it is classified by the International Agency for 

Research on Cancer (a subdivision of the World Health Organization) as a probable 

human carcinogen [14]. There is growing interest from health and water quality 

advocates to properly assess its fate and transport in the environment, which is why 

it was included, as an extreme case, in the groundwater vulnerability assessment. 

Benzene is a volatile, yet soluble hydrocarbon solvent with carcinogenic properties. 

The Maximum Acceptable Value (MAV) for benzene in New Zealand drinking 

water is 0.01mg/L [15].   
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3. Methods  

For this study we assume steady state, one-dimensional uniform velocity, in a three-

dimensional homogeneous aquifer, with longitudinal and transverse dispersion. 

Vertical dispersion is only assumed in one dimension, from the water table to the 

deeper parts of the aquifer. 

 

3.1 Problem 1: Woodchip PRB plume mixing 

For the predictive simulation of a plume of de-oxygenated and nitrate-free water 

originating from the PRB installation, a continuous source of finite dimensions is 

assumed. A closed form analytical solution to the advection-dispersion problem 

described above is given by Domenico and Robbins [16], where the relative 

concentration (C/C0) of the contaminant of interest in 3-dimensional space and time 

is given by:     

𝐶(𝑥, 𝑦, 𝑧, 𝑡)

𝐶0
=
1

8
 𝑒𝑟𝑓𝑐 [

𝑥 − 𝑣𝑡

2√(𝛼𝑥𝑣𝑡)
]  𝑒𝑟𝑓

[
 
 
 
𝑌𝑃𝑅𝐵

4√(𝛼𝑦𝑥)]
 
 
 

 𝑒𝑟𝑓 [
𝑍𝑃𝑅𝐵

2√(𝛼𝑧𝑥)
]                   (1) 

In equation (1),  

• x, y, z, and t are space and time coordinates [units L and T],  

• C(x,y,z,t) is the contaminant concentration in space and time [M/L3] 

• C0 is the source concentration [M/L3] 

• YPRB and ZPRB are the known source dimensions (60 m and 4.5 m 

respectively) [L], 

• αx, αy, and αz are the dispersivities in x, y, and z direction respectively [L], 

• v is the one-dimensional uniform contaminant velocity in the x-direction 

[L/T], 

• and erf and erfc are the error, and complementary error, functions, 

respectively [-].  
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Figure 1: Idealization of plume development with                       

(a): a steady state planar source and (b) point instantaneous source. 

Srinivasan et al. [17] have shown that for all nonzero longitudinal dispersivity 

values the above solution is prone to finite error that reduces for transport problems 

having low longitudinal dispersivity values, high advection velocities, and large 

simulation times. We overlook these limitations in our problems, which involve 

high velocities and long transit times. The conceptual source characteristics and the 

idealized contaminant migration geometry are shown in Figure 1a. 

 

3.2 Problem 2a: Glyphosate spill 

Glyphosate strongly binds to soil particles, which limits its mobility in surface 

applications. However, in this problem, we assume a truckload of glyphosate is 

dumped into the quarry, as might be imaginable if its use as an herbicide is outlawed 

in the future and stockpiles of product are illegally disposed of. Being extremely 

soluble, glyphosate would be expected to instantaneously dissolve in groundwater 

and the whole spilled mass transport mechanism should commence relatively fast. 

For an instantaneous point source, Baetsle [18] derived an analytical solution of the 

plume propagation with biodegradation, according to: 

 

𝐶(𝑥, 𝑦, 𝑧, 𝑡) =
𝐶0𝑉0

8(𝜋𝑡)3 2⁄ √𝛼𝑥𝛼𝑦𝛼𝑧
  𝑒𝑥𝑝 [−

(𝑥 − 𝑣𝑡)2

4𝛼𝑥𝑡
−

𝑦2

4𝛼𝑦𝑡
−

𝑧2

4𝛼𝑧𝑡
− 𝜆𝑡]      (2) 

 

where  

• the product C0V0 is the spilled mass [M], 

• and λ is a first-order degradation rate [T-1].  

 

Equation (2) was used to simulate the reactive mass transport of glyphosate in the 

unconfined aquifer. Figure 1b shows the idealized plume development from the 

instantaneous point source. 
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3.3 Problem 2b: Benzene spill 

Benzene is a volatile, light non-aqueous phase liquid that floats on water. A release 

from a source below the water table, such as leaking buried drums would form a 

pool of pure benzene of relatively low mobility that will steadily dissolve and 

generate a contaminant plume that would propagate down gradient whilst 

undergoing some degree of biodegradation. For this assessment, we make 

conservative assumptions that the source mass is infinite and ignore any effects of 

volatilization. Under these assumptions, the benzene source concentration in 

groundwater C0 at the LNAPL-groundwater interface was calculated according to 

(e.g. [19]; [20]): 

 

𝐶0 =
𝑘∗ 𝐶𝑆 𝐴

𝑣 𝑌 𝑍
                                                          (3) 

 

where  

• k* is the time invariant benzene mass transfer coefficient [L/T],  

• Cs is the benzene solubility in water [M/L3],  

• and A is the random pool interface area, inferred from the random spill 

volume and random spill dimensions Y and Z [L2].  

 

We treated the problem as a finite plane source (identical to the geometry of the 

PRB problem, Figure 1a) where we conceived the source concentration could 

spread over the depth the leaking drums are below the water table. Accordingly, the 

following solution provided by [21], which is the solution of Domenico and Robbins 

[16] modified to include decay/degradation, was used to model the reactive 

transport of the dissolved benzene: 

 

 

𝐶(𝑥, 𝑦, 𝑧, 𝑡)

𝐶0
=
1

8
 exp [

𝑥

𝑎𝑥
(1 − √1 +

4𝜆𝑎𝑥
𝑣
)]  𝑒𝑟𝑓𝑐 [

𝑥 − 𝑣𝑡√(1 + 4𝜆𝑎𝑥 𝑣⁄ )

2√(𝑎𝑥𝑣𝑡)
]  

 

{
 

 

𝑒𝑟𝑓

[
 
 
 
𝑦 + 𝑌 2⁄

2√(𝑎𝑦𝑥)]
 
 
 

− 𝑒𝑟𝑓

[
 
 
 
𝑦 − 𝑌 2⁄

2√(𝑎𝑦𝑥)]
 
 
 

}
 

 

{𝑒𝑟𝑓 [
𝑧 + 𝑍

2√(𝑎𝑧𝑥)
] − 𝑒𝑟𝑓 [

𝑧 − 𝑍

2√(𝑎𝑧𝑥)
]}      (4) 

 

In equation (4),  

• Y and Z are the random spill dimensions calculated from the random spilled 

benzene volume (as per equation (3)) [L], 

• and λ is the first-order decay rate constant [T-1].  
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Retardation effects are ignored in the problem for the reason being the aquifer 

contains exceedingly low levels of organic matter to which benzene might otherwise 

absorb to. It is useful to note that if retardation were to be considered then v in 

equation (3) needs to be substituted with vR=v/Rf, where Rf is the dimensionless 

benzene retardation factor in the aquifer. 

 

3.4 Model parameters and modelling 

Subsurface transport model parameters are always uncertain to various degrees. 

Aside from knowledge that the two field sites considered in this exercise relate to a 

common, extensive unconfined gravel aquifer composed of alluvial outwash 

deposits of Holocene age, no site-specific investigations were undertaken to collect 

hard data. Consequently, in an effort to quantify our uncertainty regarding 

parameter values and the resulting uncertainty of the model predictions, we treat all 

parameters of the analytical models as random variables. This transforms the 

deterministic analytical expressions (1) through (4) to stochastic functions that can 

be characterized by their ensemble statistics. The question: “what is the 

concentration from a particular source at the location x1, y1, z1 and t1”? is therefore 

rephrased to: “recognizing our limited knowledge of the physical system, what are 

the potential concentration ranges from a particular source at the location x1, y1, z1 

and t1”? To answer the latter question, the random model parameters are sampled 

from their assumed distributions, with the distribution shape, lower moments and 

ranges drawn from previous studies and relevant literature [22]. The relevant 

statistics used here are summarized in Table 1. 

The stochastic results have been analytically calculated using expressions (1) 

through (4) using a Monte Carlo scheme. A flow diagram of the scheme is shown 

in Figure 2. The Monte Carlo approach starts by considering a deterministic set of 

appropriate model parameter values, sampled from their respective distributions as 

summarized in Table 1. This would form one random realization and the result of 

interest is calculated. In this example this involves the concentration calculation of 

the three contaminants, at predefined points in the aquifer. We obtained 

concentrations for all three plumes at distances 50, 100, 200 and 500m from the 

source, along the plume centerline (x-direction) and at five depths, 8, 10, 20, 30 and 

50m from the water table (z-direction). This means that for each realization 20 

concentrations were calculated for each of the three contaminants. The stochastic 

anoxic, nitrate-treated groundwater and benzene contaminant plumes were 

calculated for t=3650 days, ensuring that all plume realizations reached equilibrium 

and thus simulating steady state conditions from the constant source. The 

glyphosate concentrations were calculated for ti = xi/v, where xi is the horizontal 

distance between the observation point and the source. Time ti corresponds to the 

plume center of mass arrival time to the observation point, and therefore to the 

greatest concentration at this location. Since v is a random variable it follows from 

ti’s definition that ti is also a random variable. The calculated concentrations were 

recorded, and the next realization was undertaken. For this study, a total of 50,000 
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realizations were generated. When all realizations were completed,  

concentration moments at each monitored location were calculated. The Monte 

Carlo simulation was undertaken using YASAIw 2.0w [32, 33], a freely available 

open-source Monte Carlo add-in for Microsoft Excel [4]. The model files are 

available from the corresponding author upon request.   

 
Table 1: Summary statistics of uncertain model parameters. 

 
Variable Min Mean/most likely Max 

Standard 

deviation, σ 
Distribution Comment 

A
ll

 p
ro

b
le

m
s 

Aquifer properties 

Contaminant velocity,  

v [m/day] 

10 100 350 n/a Triangular [23], [24] 

Longitudinal 

dispersivity αx [m]  

1 10 30 3 Log-normal [24] 

Lateral dispersivity 

anisotropy ratio,  

αy
/αx [-] 

0.05 0.1 0.2 0.02 Truncated 

Normal 

[24] 

Vertical dispersivity 

anisotropy ratio,  

αz
/αy [-] 

0.1 0.5 1 0.1 Truncated 

Normal 

[24] 

P
ro

b
le

m
 2

a
 Glyphosate physiochemical properties 

Source concentration, 

C0 [g/m3] 

7000 10500 157000 n/a beta-PERT [25], [26] 

First-order degradation 

rate, λ [1/day] 

0.007 0.01 0.045 n/a beta-PERT [27] 

P
ro

b
le

m
 2

b
 

Benzene physiochemical properties 

First-order degradation 

rate, λ [1/day] 

0 0.0002 0.002 n/a beta-PERT [28], [29], 

[30] 

Mass transfer 

coefficient, k* [m/day] 

0.0146 0.0166vx+0.000384 0.0166vx+

0.000384 
n/a beta-PERT [20]  

Solubility, Cs [g/m3] 1735 1775 1815 10 Truncated 

Normal 

[31] 

Spilled Volume, V [L] 1000 1500 2000 150 Truncated 

Normal 

Subjective. 

Assumed 

1,500 L 

mean 

(equivalent 

to 71/2, 200 

L drums)  

Source thickness, Z [m] 0.01 1.07 1.63 n/a beta-PERT Subjective. 

Extracted 

from historic 

water table 

fluctuations 
*n/a: not applicable 
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Figure 2: Flowchart of the Monte Carlo scheme.  

 

4. Results 

The first step, understanding the concept of incorporating uncertainty in the analysis 

is achieved by visualization of the parameter uncertainty. As summarized in Table 

1, longitudinal dispersivity αx and contaminant velocity v were sampled from a log-

normal and a triangular distribution, respectively, while glyphosate biodegradation 

rate and benzene solubility were sampled from a truncated normal and a beta-PERT 

distribution (a smooth variant of the triangular distribution), respectively. 

Truncation has been implemented when a normal distribution was assumed, to 

ensure that all sampled parameter values were positive. The histograms of the 

50,000 sampled values for the four aforementioned parameters are shown in Figure 

3. 
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Figure 3: Parameter uncertainty. Histogram of the simulated longitudinal 

dispersivity (a) one dimensional contaminant velocity (b) glyphosate 

biodegradation rate (c) and benzene solubility (d). Longitudinal dispersivity 

was assumed to follow a log-normal distribution with mean value 10m and 

standard deviation 3m. Contaminant velocity was assumed to follow a 

triangular distribution, ranging between 10 and 350m/d with a most likely 

value of 100m/d. Glyphosate biodegradation rate was assumed to follow a 

beta-PERT distribution ranging from 0.007 to 0.045d-1 with a most likely 

value of 0.01d-1. Benzene solubility was sampled from a truncated normal 

distribution with mean 1775g/m3, standard deviation 10g/m3, truncated at 

less than 1735g/m3 and greater than 1815g/m3.  
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Results accounting for predictive uncertainty can be presented in a number of ways, 

including (a) table of summary statistics, (b) histogram of results and (c) cumulative 

distribution function (CDF). The simplest (and maybe the less informative) way to 

summarize results would be a summary table. Table 2 for example summarizes the 

average calculated benzene concentrations at distance x=100m from the 

hypothetical source at 5 depths. If a concentration of 0.01g/m3 is considered the 

upper safe limit, the conclusion from results in Table 2 is that, on average, the limit 

will be exceeded for depths up to 20m, and that at 30m depth there is a slightly 

greater than 50% chance that the limit will be exceeded. It can also be concluded 

with almost certainty that the limit will not be breached at depths greater than 50m, 

as the prediction standard deviation is almost zero. Given the lack of knowledge 

regarding the prediction distribution, only limited conclusions can be drawn 

regarding the probability of exceeding the upper concentration limit for the 

summary statistics. The third column of Table 2 shows the estimated 95th percentile 

of the simulated concentration range in a particular location. This can be interpreted 

as an upper/high estimate of the possible concentrations, due to our limited 

knowledge of the parameter values. The deterministic estimates for the same 

problem are also presented in Table 2. These are derived by using the most likely 

values for all parameters in (3) and (4) and would likely be the outcome of a more 

“standardized” practical approach. Not surprisingly, discrepancies up to 20% with 

the ensemble average are observed, due to the lack of linearity and the skewed 

ranges of parameter values. 

 
Table 2: Benzene concentration summary statistics evaluated at x=100m. 

Depth (m) 

Benzene concentration (g/m3) 

Average 
Standard 

deviation 
95th percentile Deterministic 

8 0.632 0.232 1.058 0.682 

10 0.505 0.169 0.814 0.570 

20 0.101 0.056 0.200 0.128 

30 0.012 0.014 0.042 0.011 

50 10-4 4*10-4 4*10-4 3*10-6 

 

Figure 4 shows the histogram of relative degree of mixing of the treated water from 

the woodchip PRB with ambient groundwater at x=100m and z=20m, and the 

spilled benzene concentrations, predicted at x=500m and z=50m. The dashed 

vertical lines correspond to the upper acceptable limit for the contaminant of interest. 

For benzene this is the drinking water MAV of 0.01mg/L or g/m3 [15]. In the case 

of the PRB assessment, we adopted a threshold concentration value of 0.05 

(dimensionless), suggesting that the de-oxygenated and nitrate-treated water 
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leaving the PRB has mixed and been diluted at least by 95% with the (oxic) regional 

groundwater. For the glyphosate we adopted a threshold value of 0.7g/m3, which is 

the Maximum Contaminant Level Goal set by the USEPA under the federal Safe 

Drinking Water Act [34]. Consequently, resulting concentrations plotting to the 

right of these limits suggest exceedances (unfavorable outcomes). The exceedance 

frequency can be evaluated from the relative proportion of the number of analytical 

solutions exceeding this limit to the total number of Monte Carlo simulations. From 

the benzene concentration histogram in Figure 4 for example, it can be inferred that 

approximately 20,000 out of the total 50,000 analytical solutions resulted in 

exceedance of the 0.01g/m3 limit, suggesting that this should be expected with a 

frequency of about 40%. Similarly, the 5% limit for the PRB-treated groundwater 

plume is exceeded in about 25,000 instances, suggesting an exceedance frequency 

of 50%. 

 

Figure 4: Predictive uncertainty. Histogram of simulated relative mixing of 

the treated water from the woodchip PRB and benzene concentrations at two 

locations. Dashed vertical line represents the upper acceptable limit of the 

pollutant. 

 

Contrary to a histogram, a cumulative distribution function (CDF) plot is not biased 

by bin selection. It shows instead, in a continuous plot, the probability that a specific 

value would not be exceeded. This is demonstrated in Figure 5, which plots the 

CDFs for the modelled PRB plume, glyphosate and benzene concentrations, at 

distances 100m and 500m from the hypothetical sources, at all five depths 

considered in the study. Again, the vertical dashed lines demark the upper 

acceptable concentration limits, referred to above. 
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Figure 5: Predictive uncertainty. Cumulative distribution function (CDF) of 

the simulated relative mixing of the treated water from the woodchip PRB, 

glyphosate and benzene concentrations, calculated at 100m and 500m 

distances from the source and five depths. Dashed vertical line represents the 

upper acceptable limit of the pollutant. 

 

From the intersection point of the limit line and the CDF for the PRB-plume at 20m 

depth, it can be inferred that 100m down-gradient of the PRB there is approximately 

45% probability that effects of the PRB will be noticeable, or 55% chance the plume 

is sufficiently mixed/diluted with ambient groundwater. For the same depth at 
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x=500m, the effects of the PRB are predicted to be more noticeable with just 5% 

chance of sufficient mixing of the treated plume water. The apparent positive 

increase in concentration with increasing travel distance in this case stems from the 

effects of vertical dispersion in creating a three-dimensional plume. Similar 

conclusions can be drawn from the glyphosate CDFs. At distance 100m from the 

source, the exceedance probabilities are 12% and 20% at depths of 8 and 10m 

respectively, while at 500m distance it should be expected that groundwater quality 

would be unaffected by an illicit glyphosate release incident. Calculated exceedance 

probabilities can also form the basis for risk assessment analysis for exceeding 

concentration thresholds. This is achieved by calculating the product of the 

exceedance probability and the cost of the exceedance such as cleanup or lost 

productivity [35]. 

 

5. Summary and conclusions 

Models of hydrological systems are tools often used by professional engineers, to 

integrate our current knowledge about a system, in order to address a range of issues 

of concern to stakeholders. Uncertainty, due to our limited knowledge of natural 

processes, model structures or model parameters, means that there will always be 

alternative outcomes that a decision maker needs to be aware of. In this work we 

developed a relatively simple probabilistic framework that accounts for model 

parameter uncertainty. The framework was applied to three relatively simple, yet 

well understood groundwater contaminant transport problems adapted from real-

world case examples. We have shown how practitioners can efficiently account for 

parameter uncertainty and translate results to predictive uncertainty for which a 

range of possible outcomes can be evaluated in a probabilistic manner and form the 

basis for a risk-based assessment. Also, we have demonstrated how the statistical 

moments of the outcomes can be visualized and interpreted to provide useful 

outcomes in terms of limit exceedances.  

While the groundwater modelling examples used in this paper were simple in the 

sense that they did not address issues like heterogeneity, they provide a useful 

illustration of the general methodology that should be applied, irrespective of 

problem type, when data uncertainty needs to be accounted for in design and 

decision-making. The presented framework is not limited to simple problems with 

analytical solutions, but more advanced tools and coding may be required otherwise. 

The framework can be further expanded to account for model structure uncertainty 

or conceptualization uncertainty, by incorporating additional numerical 

implementations. We have found the framework to be well understood by water 

resource managers and well received by decision-makers. 
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