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Abstract 

The evaluation of outstanding claims uncertainty plays a fundamental role in managing 

insurance companies. This topic has gained an increasing interest over last years because 

of the development of a new capital requirement framework under the Solvency II project. 

In particular, as results of main Quantitative Impact Studies showed, reserve risk is an 

essential part of underwriting risks and it has a prominent weight on the capital 

requirement for non-life insurance companies. To this end, we provide here a stochastic 

methodology in order to evaluate the distribution of claims reserve and to quantify the 

capital requirement for reserve risk of a single line of business. This proposal extends 

some existing approaches (see [12], [13], [17] and [19]) and it could represent a viable 

alternative to well-known methodologies in literature. Finally, a detailed numerical 

analysis shows a comparison between the proposed methodology and the widely used 

bootstrapping based on Over-Dispersed Poisson model. 
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1  Introduction  

New international accounting principles and changes in the regulation frameworks (e.g. 

Solvency II for European Union member countries (see [4], [9] and [11])) produced a 

wide development of stochastic methods to evaluate the uncertainty of claims reserve, 

with the aim to measure the reserve risk. As well known, deterministic methods quantify 

only the expected value of claims reserve whereas stochastic models provide also the 
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standard deviation or the probability distribution, necessary to assess the capital 

requirement.  

In this regard, there is a variety of methodologies that may be used alone or in 

combination to derive the best estimate. The appropriateness of one method versus 

another will depend upon a number of factors including the volume of business, the 

characteristics of settlement process, the amount of historical data available and the 

actuary's interpretation of the data. 

Focusing instead on stochastic models, a first approach to measure loss reserve 

uncertainty was proposed by Mack (see [14], [15], [16]) in order to evaluate the 

prediction error of Chain-Ladder estimate. Prediction Variance is here derived as the sum 

of purely random fluctuations (Process Variance) and the variability produced by the 

parameters estimation (Estimation Variance). Furthermore, other approaches (e.g. 

Bootstrapping ([5]), Generalized Linear Models ([6], [7]) or Bayesian methods [8]) lead 

to the claims reserve distribution.   In this framework, Savelli and Clemente ([20]), 

extending International Actuarial Association ([13]) proposal, assumed a Collective Risk 

Model (CRM) to analyse outstanding claims reserve with the target to assess the capital 

requirement for reserve risk. Incremental payments of each cell are described by a 

compound Poisson process, either pure or mixed. Exact characteristics (expected value, 

variance and skewness) of the reserve distribution are proved under the independence 

between different cells. This strict assumption, that is unlikely to be met in practice, is 

overcome in [21] by considering correlation between incremental payments and providing 

mean and variance of claim reserve also in this case. 

Our goal is to extend this approach by assuming that incremental payments are a 

compound mixed Poisson process where the uncertainty on claim size is measured via a 

multiplicative structure variable. Two structure variables, on claim count and average cost, 

are here considered in order to describe parameter uncertainty on both random variables. 

Furthermore linear dependency between different development and accident years is also 

addressed.   

Main advantage of this proposal is to directly consider the parameter uncertainty on claim 

size estimation neglected by previous models. 

Under this framework, we obtain the exact characteristics of the claim reserve distribution. 

Moreover, Monte Carlo method is used to simulate outstanding claims distributions for 

each accident year, for the total reserve and for the next calendar year (in case of a 

one-year time horizon evaluation useful for reserve risk evaluation). Model’s parameters 

are calibrated by using data-set of individual claims and an average cost method. The 

deterministic Frequency-Severity method is here used to estimate separately the number 

of claims and the average costs for each cell of the bottom part of the run-off triangle. It is 

also proposed an approach, based on the Mack’s formula, to quantify the variance of the 

structure variables.  

Furthermore, we analyse the one-year reserve risk as prescribed in Solvency II. By 

adapting the “re-reserving” method (see [3] and [18]), we estimate both the variability of 

claims development result and the extreme quantiles of its simulated probability 

distribution with the aim to assess the reserve risk capital requirement.  

In Section 2, the methodological framework of the proposed model is defined. Main 

results according to exact moments are also reported. Section 3 describes how parameters 

can be calibrated. CRM is applied in Section 4 to two non-life insurers and it is compared 

also with Bootstrap methodology in Section 5 in order to analyse the effects on capital 

requirement. Conclusions follow.    
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2  Collective Risk Model 

The aim of this model, based on concepts of the Collective Risk Theory, is to achieve the 

claims reserve distribution.  As usual in actuarial field, data are reported in a structure 

with a rectangular shape of dimension 
 NN  where rows ),...,1( Ni   represent the 

claims accident years (AY) and columns (with 
 Nj ,...,1 ) are the development years 

(DY) for the number or the amount of claims. Frequently columns are not equal to rows 

because of a payments tail. In this case all claims are not completely closed at DY N (i.e. 

NN 
, otherwise NN 

). These structures represent the so-called Run-Off 

triangles (see Appendix A.2 for an example) where observations are available only in the 

upper triangle  1;,  NjiXD ji
 with the cell  N,1  also known in case of 

triangle with tail. jiX , denotes incremental payments of claims in the cell  ji, , namely 

claims incurred in the generic accident year i  and paid after 1j years of development 

(i.e. in the financial year 1 ji ).  

In a similar way, we can define the set  1;,  NjinD ji

n
 regarding observed 

number of paid claims 
jin ,
in the upper triangle. 

Future number or amount of payments must be estimated and assigned to the cells in the 

lower triangle. These cells include unknown values from a random variable whose 

characteristics must be identified.  

We assume that the random variable (r.v.)3 incremental claims of each cell jiX ,

~
will be 

equal to the aggregate claim amount:      

,

, , ,

1

i jK

i j i j h

h

X pZ


                                                                   (1) 

and finally the r.v. claims reserve is equal to: 

,

1 2

N N

i j

i j N i

R X



   

                                                                 (2) 

 

where: 

-  describes the r.v. number of claims concerning the accident year  and paid in 

the financial year . This r.v. is described by a mixed Poisson process in order 

to consider the parameter uncertainty through a multiplicative structure variable  

( ). This variable is assumed having mean equal to one and standard 

deviation equal to . 

By using this mixed Poisson distribution, we catch the parameter uncertainty on number 

of claims without affecting the expected value of .  

                                                 

3From now on, tilde will indicate a random variable 
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Furthermore, an only one r.v.  affects the r.v. number of claims in the bottom part of the 

run-off triangle. This choice allows us to consider dependence between expected number 

of claims of different AY and DY given by the settlement process.   

-  is the random variable that describes the amount of the hth claim occurred in the 

accident year  and paid after  years.  

-  describes the parameter uncertainty on claim size. Also in this case, we assume a 

r.v. having mean equal to one and standard deviation equal to . We introduce 

dependence also between claim-sizes of different cells through . 

 

We obtain (see Appendix A.1 for proofs) the exact characteristics of claims reserve under 

the following assumptions:  

- claim count, claim costs and the structure variable  are mutually independent in 

each cell of the lower triangle; 

- claim costs in different cells of the lower run-off triangle are reciprocally independent 

and in the same cell are i.i.d.;  

- structure variable  is independent of the claim costs in each cell  

-  and  are independent.  

 

The expected claims reserve is: 

  , ,

1 2

| ;
N N

n

i j i j

i j N i

E R D D n m



   

  ,                                          (3) 

where jin ,
represents the expected number of paid claims and 

jim ,  the average cost of 

paid claims. As described in the next Section, an average cost method is useful to 

estimate
jin ,
 and ., jim  Formula (3) assures that the mean of the stochastic model is equal 

to the claims reserve derived by the deterministic method. 

 

The variance of the claims reserve is: 

   
,

2

2 2 2

, 2, , ,

1 2 1 2

| ;
i j

N N N N
n

i j Z qp i j i j

i j N i i j N i

R D D E p n a n m 

 

       

 
   

 
    ,            (4) 

where  k

jiZk
ZEa

ji
,~

,

~
,

  is the simple moment of order k of the severity distribution 

(namely 
jiZji am

,

~
,1,  ), while 

2
~~pq  represents the variance of the r.v. derived as the 

product of  and  (i.e.   2
~

2
~

2
~

2
~~ 1 pqppq   ). Variance derived in [21] is a specific 

case of formula (4) where only structure variable on claim count is considered ( =1). 

 

The first term is the variance of claims reserve in case of a pure compound Poisson 

process multiplied by the squared mean of the structure variable . It is noteworthy how 

the second term depends on the effect of the two structure variables and it takes into 

account of the positive correlation among incremental payments.  

Therefore, structure variables affect variance of the claims reserve and parameters 

uncertainty appears as a systematic risk that cannot be diversified by a larger number of 
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claims. This result is clear when the variability coefficient (CV) is considered:    

 

 
 

,

2

, 2,

1 22

2

, ,

1 2

| ;
i j

N N

i j Z

i j N in

qp
N N

i j i j

i j N i

E p n a

CV R D D

n m







   

   

 
 
 
 

 

 

                                      (5) 

Let , ,i j i jn T , we have: 

 lim | ; n

qp
T

CV R D D 


                                                              (6) 

where T is the total number of reserved claims and 
ji, the proportion of reserved claims 

in the cell  ji,  so that  
 




N

i

N

iNj

ji

1 2

, 1 . 

As expected, the relative variability of claims reserve decreases for a larger number of 

claims. The convergence of limit shows a non-pooling risk equal to the standard deviation 

of the r.v. defined as the product of the two structure variables considered in the model.   

The skewness of the claims reserve is given by: 

 

 | ; nR D D 

 
,

3

3
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3
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The numerator is the sum of three terms, each of them affected by structure variables. In 

the first term the skewness of pq ~~  appears (equal to  ).  

When T increases,  R
~

  converges to this value: 

 

 lim | ; n

qp
T

R D D 


                                                   (8) 

 

If the usual assumption of Gamma distribution is satisfied for both structure variables, 

then  2 2

3

1 1
2 2qp qp q p

qp qp

   
 

 
    

 

 leading to a positive skewed distribution of 

claims reserve.   

 

 

3  Parameters Estimation 

To apply the Collective Risk Model, we need to estimate both the expected number of 

paid claims and the expected claim cost for each cell of the lower triangle conditionally to 

the set of information D and Dn. At this regard, we here use the deterministic 

Frequency-Severity4 methodology based on a separate application of the well-known 

Chain-Ladder method on the triangles of number and claims size respectively. This 

method allows us to easily estimate both information and to provide a stochastic version 

of this methodology. 

For the sake of clarity, we briefly report the main steps of this method. According to the 

estimation of future number of paid claims (frequency), the first step is the evaluation of 

development factors (
n

j ) for each DY as:  

, 1

1

,

1

1,........, 1

N j
c

i j
n i
j N j

c

i j

i

n

with j N

n













  



                               (9) 

where 
C

jin ,  is the cumulative number of paid claims in the cell (i,j). 

A tail factor 
n

N  could be included by using the information on the number of reserved 

claims of first AY at the valuation date or by applying extrapolation methods (see [10]).   

Expected cumulative number claims are:  

1

, , 1

1

1,........, ;
ˆ

2,........,

j
c c n

i j i N i k

k N i

i N
n n with

j N i N




  
  


 

  
                      (10) 

          

                                                 

4For details on this deterministic methodology, see, for instance, [10]. 
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Expected incremental number of claims  is then easily derived as difference of 

cumulative numbers. This value represents the average parameter of the r.v.  in the 

CRM. 

The same development technique is also applied to the triangle of cumulative average 

costs, determined as the ratio between the cumulative amount of paid claims jiC ,  and 

the cumulative number of paid claims in the same cell: 

,

,

,

i jC

i j c

i j

C
CM

n
                                                          (11) 

This information is easily obtained by the sets  and  respectively. 

Lower triangle of cumulative average costs 
C

jiCM ,  is estimated by applying 

Chain-Ladder method.  

Average cost of each cell jim ,
ˆ  that represents the mean of r.v. jiZ ,

~
in CRM model, is 

derived as the ratio between expected incremental payments 

   

and jin ,
ˆ . 

Parameter uncertainty is a key issue in claims reserve estimate. As shown in Equation (5), 

standard deviation of structure variables significantly affects the variability coefficient of 

the claims reserve distribution. We propose to evaluate the standard deviation of structure 

variables by using Mack’s formula (see [14]), being the mean of frequency and severity 

distributions estimated by a Chain-Ladder technique. In particular the relative variability 

concerning only the Estimation Error derived via Mack formula allows us to calibrate the 

standard deviation of q~ and p~ . 

However, in the next case study, we preferred to use a priori values of q~ and p~ , in 

order to provide a sensitivity analysis of the effects of these systematic components on 

cumulants of claims reserve distribution.  

Finally, an accurate estimate of 
jZ

c~ is a key issue, since the standard deviation of 

incremental payments depends on it. In general, data from the claim database of the 

company for each development year are necessary.  

 

 

4  A Practical Case Study 

The stochastic model has been applied to claim experience data of two Italian insurance 

companies working in the Motor Third Party Liability (MTPL) LoB and concerning 

accounting years from 1993 to 2004. Real data have been partially modified to save the 
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confidentiality of the data-set. Main information concern number of paid and reserved 

claims, incremental payments and reserved amounts. For the sake of simplicity, in 

Appendix A.2 we have reported only the historical cost of incremental paid amounts for 

the two companies analysed. SIFA insurer is a small-medium company whereas 

AMASES insurer is a company roughly 10 times larger. The complete run-off period 

concerning the two insurers is longer than 12 development years and a tail must be 

considered in the run-off triangles. In the example the tails (i.e. cell (1993,12+) of each 

triangle) are the statutory reserves fixed by the companies for the first accident year. 

Expected number of claims (
jin ,

ˆ ) and average cost ( jim ,
ˆ ) are estimated by the 

Frequency-Severity method as described in Section 3. However, the standard deviation of 

both the structure variables is assumed to be equal to a fixed prior. The random variables 

 and , for both companies, are Gamma distributed with mean equal to 1 and standard 

deviation equal to 3%. The severity of each cell of the triangle is Gamma distributed with 

mean equal to the average cost jim ,
ˆ . In order to estimate cumulants of the severity 

distribution and consequently the characteristics of the claims reserve we consider the 

variability coefficient of claim cost, 
jZ

c~ (obtained by the company claim database), 

different for each development year (see Table 1). It should be pointed out that this 

variability is obviously depending by the LoB, the characteristics of portfolio and the 

settlement speed of the insurer. For the sake of simplicity, we are assuming the same 

values for both insurers. 

     

Table 1: Variability coefficients of claim cost for each DY for both companies 

DY 2 3 4 5 6 7 8 9 10 11 12 12+ 

jZ
c~  5.75 5.70 5.85 5.05 4.65 3.35 4.70 3.50 2.45 3.60 2.45 3.22 

 

Next table shows the simulated characteristics (based on 100,000 simulations) of the 

claim reserve distribution for SIFA and AMASES (Table 2). The results of 100,000 

iterations lead the values of the simulated mean and standard deviation very close to the 

exact values. The simulated values of the skewness are also not far away from the exact 

values equal to 0.142 and to 0.110 for the small and the big insurer respectively. We can 

conclude that this number of simulations provide consistent results. 

 

Table 2: Main characteristics of simulated claims reserve distribution (100,000 

simulations) for SIFA and AMASES 

 Mean* CV Skewness 

SIFA 229,408 6.08% 0.144 

AMASES 2,827,494 4.47% 0.105 

*Mean expressed in Thousands of Euro 

 

The CRM model provides for SIFA and AMASES a best estimate of approximately 230 

and 2,827 millions of Euro. These values match to the claims reserve estimated by the 

Frequency-Severity deterministic method.  

The variability coefficient is lower for AMASES (4.47%) than for SIFA (6.08%) due to a 

bigger number of reserved claims. In this case, the high number of outstanding claims 

leads to a relative variability of claims reserve close to the asymptotic value of the 
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variability coefficient (equal to %24.4~~ pq ). Moreover, the value of the linear 

correlation coefficient ρ (calculated assuming equal correlation between the incremental 

payments) shows a greater dependence for AMASES (ρ =0.10) than for SIFA (ρ =0.02), 

due to the greater impact of the structure variables on bigger portfolios. Skewness is quite 

low for both insurers. Also in this case it is noteworthy the diversification effect with a 

lower value of )
~

(R for AMASES almost equal to the asymptotic value 
pq~~ .  

Parameter uncertainty has a relevant importance on claims reserve distribution. To this 

end, we report a sensitivity analysis to evaluate the effect of structure variables on the 

variability coefficient and the skewness of the claims reserve for both companies.  In 

particular, varying both q~  and  p~  from 1% to 10%, we observe in Figure 1 a convex 

behaviour of the CV. Function is close-to-linearity when the standard deviations are 

greater than 10%. The effect of both structure variables (  and ) is similar on the CV. 

 

 
Figure 1: Variability coefficient of the overall claims reserve for both insurers, depending 

on different standard deviations of the structure variables  and  

 

A similar behaviour is observed also for skewness (see Figure 2). Parameter uncertainty 

on claim size tends to affect the skewness of severity distribution more than the r.v. . 
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Figure 2: Skewness of the overall claims reserve for both the insurers, depending on 

different standard deviations of the structure variables  and . 

 

Considering both companies, it is noticeable the greater effect of structure variables on 

AMASES (see Figure 3). The impact is slightly higher on skewness because of the r.v.  

(as shown also in Figure 2). When very high values of q~  and p~  are considered, CV 

of claims reserve tend to increase of a value equal to pq~~ . A similar behaviour is also 

observed for the skewness, where the increase is equal to pq~~ .  
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Figure 3: Variation of CV and skewness of the overall claims reserve for both insurers, 

depending on different standard deviations of the structure variables  and  (where 

pq ~~   ) 

 

The estimate of structure variables based on the Mack’s Estimation Error leads to a value 

of q~  and p~  equal to roughly 1.96% for SIFA whereas for AMASES the values are 

equal to 1.62% and 1.53% respectively. It is to be emphasized that estimation based on 

Mack’s approach supplies a higher relative variability for the small insurer. Using these 

values we obtain the characteristics of claims reserve reported in Table 3. 

 

Table 3: CV and skewness of simulated of simulated claims reserve distribution (100,000 

simulations)  

 CV Skewness 

SIFA 5.13% 0.119 

AMASES 2.66% 0.063 
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5  One-Year Approach 

In this Section, we analyse the reserve risk on a one-year time horizon as prescribed by 

Solvency II. To this end, we adapt the “re-reserving” approach (see [3] and [18]) to our 

context in order to obtain the “One-Year” reserve distribution of insurer obligations. In 

particular, we estimate the Solvency Capital Requirement (SCR) for the reserve risk as 

difference between the quantile at the 99.5% confidence level of the distribution of the 

insurer obligations at the end of the next accounting year, opportunely discounted at time 

zero, and the Best Estimate at time zero. Both CRM and the well-known Bootstrap Over 

Dispersed Poisson (ODP) method (see [6]) are used. It should be highlighted that the two 

stochastic models lead to a different mean due to the different underlying deterministic 

method.  

Table 4 compares the variability coefficient and the skewness of the “One-Year” 

reserve distribution given by the CRM and Bootstrap model. In the One-Year approach, 

both stochastic models provide higher values of relative variability and skewness for 

SIFA because of a greater pooling risk. In general, CRM leads to a greater CV for both 

companies than Bootstrap. On the other hand, skewness obtained by the sampling with 

replacement approach is lower than CRM for SIFA and higher for AMASES.  

 

Table 4: CV and skewness (One Year approach) obtained by CRM and Bootstrap ODP 

for both insurers (100,000 simulations) 

CRM(FS) Bootstrap (CHL) CRM(FS) Bootstrap (CHL)

SIFA 5.33% 3.65% 0.217 0.176

AMASES 3.21% 2.86% 0.133 0.143

CV SKEWNESS

 
 

Table 5 shows the SCR ratio, evaluated as SCR divided by Best Estimate, obtained by 

both models. As expected, SIFA has a higher SCR ratio caused by greater CV and 

skewness. It is to be emphasized that CRM approach is more sensitive to the insurer size 

providing a higher difference between the SCR ratios.  It is interesting to note that in this 

case study Bootstrap methodology allows to save for both insurers some capital 

requirement compared to the proposed CRM model. Nevertheless, it should be pointed 

out that the results of CRM method are widely influenced by the structure variables 

estimate. 

 

Table 5: SCR ratio obtained by CRM and Bootstrap ODP for both insurers (100,000 

simulations) 

SIFA

AMASES

14.89% 10.13%

8.70% 7.75%

SCR ratio

CRM(FS) Bootstrap (CHL)

 
 

Finally, it is to be pointed out that the variability coefficient of average cost also plays a 

key role. The sensitivity analysis, here reported, shows the effects of this variability on 

the “One-Year” reserve distribution and on the SCR ratio (see Table 6). We assume that 

jZ
c~ increases of 50% and 100% for AMASES and SIFA respectively. Higher variability 
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coefficient of the severity leads, obviously, to a high variability and skewness of the 

One-Year distribution. However, a greater effect is observed for the small-medium insurer 

caused by a significant pooling risk. Consequently, the capital requirement of SIFA 

insurer is subjected to a higher increase.  

 

Table 6: CV, skewness and SCR ratio of both insurers, according to an increase of 100% 

and 50% of the variability coefficient of the severity (100.000 simulations) for SIFA and 

AMASES respectively. 

SIFA 

 CV Skewness SCR ratio 

jZ
c~  5.33% 0.217 14.88% 

2
jZ

c~  9.09% 0.409 27.14% 

AMASES 

 CV Skewness SCR ratio 

jZ
c~  3.21% 0.133 8.70% 

1.5
jZ

c~  3.65% 0.159 10.00% 

 

 

6  Conclusions 

We proposed a stochastic model for claim reserving based on Collective Risk Theory 

approach. According to us, the CRM represents a useful and quite polished stochastic 

method to evaluate outstanding claims.  

We have extended the existing CRM models introducing, by multiplicative way, a 

structure variable on the claim size. This extension allows us to also consider the 

parameter uncertainty on claim size, neglected by existing models. 

Furthermore, parameters of the model are estimated using claims database and the 

deterministic model “Frequency-Severity” (based on the Chain-Ladder method) that 

allows to obtain the number of claims to be paid and the future average costs. We regard 

estimation of the structure variables as a key issue. The sensitivity analyses underline the 

strict connection between parameter uncertainty, variability coefficient and skewness of 

the overall claims reserve.  

Moreover, the proposed method is also adapted to quantify the capital requirement as 

prescribed in Solvency II framework, turning out to be a potential Partial Internal Model 

for the reserve risk. The case study shows that CRM model supplies results more sensitive 

to the portfolio size than Bootstrap method. Finally, the sensitivity analysis, here reported, 

exhibits that the variability coefficient of average costs plays a crucial role on the SCR 

level.     
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Appendix 

 

Appendix A.1 

Variance of claims reserve – Proof of Formula (4) 

 

We here compute the conditional variance of incremental payments jiX ,

~
 and the 

conditional variance of claims reserve R
~

given the sets  1;,  NjiXD ji
 and 

 1;,  NjinD ji

n
. For the sake of brevity we will omit the conditioning on D  

and 
nD . 

 

We start focusing on the variance of a single cell ( jiX ,

~
): 

         
2 2

2 2 2

, , , , ,|i j i j i j i j i jX E X E X E E X p E X          
     

   
,

2 2 2 2 2 2

, , , 2,z , ,i ji j i j i j i j i jE p E q n m n a n m   
 

 

     
, ,

2 2 2 2 2 2 2 2 2 2

, , , 2,z , , , 2,z1
i j i jp q p i j i j i j qp i j i j i jn m E p n a n m E p n a        

 
 

where 

     2 2 2| |qp E qp p E qp p          2 2 21p q p    . 

 

Now it is possible to calculate the variance of R
~

as shown below: 

     2 2

, , ,

, , ,
( )

cov ;i j i j h k

i j B i j B h k B
h i k j

R X X X 
  

  

     

The second term measures the covariances between couple of cells of the lower run-off 

triangle, here indicated with the notation  1;
~

,  NjiXB ji , and it equals to: 

      , , , ,

, ,
( )

cov ; | cov | ;E |i j h k i j h k

i j B h k B
h i k j

E X X p E X p X p
 

  

    
    

  2 2 2

, , , ,

, ,
( )

1i j i j h k h k p q p

i j B h k B
h i k j

n m n m   
 

  

  
   . 

 

Therefore,  

 2 R   
 

 
 

,

2 2

2

2 2 2 2

, 2, , ,

, ,

1 1
i jp i j Z p q p i j i j

i j B i j B

E p qp

n a n m



   
 

 
       

 
 

 
,

2

2 2

, 2, , ,

, ,
i ji j Z qp i j i j

i j B i j B

E p n a n m
 

 
  

 
  . 

 

 

 

 



An Extension of Collective Risk Model for Stochastic Claim Reserving              61 

Skewness of claims reserve – Proof of Formula (7)  
In a similar way, we derive the skewness of claims reserve, defined as: 

 

 
3 ,

,

3

,

,

i j

i j B

i j

i j B

X

R

X











 
 
 


 
 
 





 

where the third central moment can be rewritten as:  

3 ,

,

i j

i j B

X


 
 

 


33

2

, , , ,

, , , ,

3i j i j i j i j

i j B i j B i j B i j B

E X E X X E X
   

          
            
            
     

The key issue is to determine the first term. The cube of a polynomial is equal to: 
3

,

,

i j

i j B

E X


  
   
   


     

2

3 2

, , , , ,

, , , , ,
( ) ( )

2i j i j h k i j h k

i j B i j B h k B i j B h k B
h i k j h i k j

E X E X X E X X
    

     

       
                    

                  

      

 

By using conditional mean with respect to  and  respectively, we obtain: 

3

,

,

i j

i j B

E X


  
   
   
      

,

3

3 3 3

, , , 3,

, ,
i ji j i j i j z

i j B i j B

E p E q n m E p n a
 

 
 

 
   

   
,

3 2

, , , 2,

, ,

3
i ji j i j i j z

i j B i j B

E p E q n m n a
 

  
   

  
   

where for a single cell the following relation holds: 

         
, ,

3 3 3 3 3 3 2 2

, , , , , , ,2, 3,
| 3

i j i j
i j i j i j i j i j i j i jZ Z

E X E X p E p E q n m E q n m a n a     
   

 

  

The second and third term of the skewness’ numerator are equal respectively to: 

2

, ,

, ,

3 i j i j

i j B i j B

E X X
 

   
   

   
   

,

3

2 2

, , , , , 2,

, , ,

3
i jqp i j i j i j i j i j z

i j B i j B i j B

n m E p n m n a
  

      
     

      
    

and 
3 3

, , ,

, ,

i j i j i j

i j B i j B

E X n m
 

    
    

     
   . 

Summing up the three addends of the numerator, we have a term equal to the third central 

moment of the product of structure variables: 

     3

3qp qp qp     
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             
33 2 3 3 23 3 1E qp E qp qp E qp E q E p qp          

 

and finally it is easy to obtain Formula (7).  

 

Appendix A.2 

SIFA 

AY/DY 1 2 3 4 5 6 7 8 9 10 11 12 12+

1993 38,364 37,956 15,350 6,100 3,178 2,701 1,503 1,361 1,008 899 287 727 1,068

1994 41,475 44,466 15,938 6,840 3,300 2,730 1,009 1,152 767 467 456

1995 46,520 47,579 15,095 6,909 3,392 1,390 1,338 1,186 922 559

1996 47,925 51,866 17,599 6,305 2,875 2,124 2,233 1,208 873

1997 51,420 52,085 17,290 6,021 2,719 3,037 1,320 1,124

1998 57,586 54,150 19,610 7,530 4,110 2,780 2,267

1999 55,930 54,941 20,947 10,499 5,864 3,313

2000 51,005 53,191 21,819 8,365 4,714

2001 51,693 51,572 18,668 8,833

2002 54,954 51,611 18,604

2003 59,763 53,743

2004 60,361  
Figure A2.1: Triangle SIFA (Incremental paid amounts, thousands of Euro) 

 

 

AMASES 

AY/DY 1 2 3 4 5 6 7 8 9 10 11 12 12+

1993 193,474 172,618 87,200 45,798 29,768 19,795 19,782 17,315 13,372 12,552 8,831 8,053 19,889

1994 199,854 168,966 80,543 40,656 29,053 21,121 19,964 14,249 10,720 13,684 6,008

1995 225,578 186,764 93,349 47,609 30,971 26,291 17,621 18,410 14,662 7,591

1996 256,398 236,678 105,616 51,172 37,338 24,085 20,754 12,082 14,137

1997 282,956 263,196 120,383 63,689 37,220 29,239 23,120 15,509

1998 292,428 284,401 141,400 56,390 40,195 27,955 29,987

1999 312,350 285,506 131,687 75,252 46,549 38,731

2000 327,673 307,992 161,516 77,965 52,696

2001 339,899 326,280 185,911 101,273

2002 371,275 385,847 193,006

2003 388,025 390,737

2004 398,686  
Figure A2.2: Triangle AMASES (Incremental paid amounts, thousands of Euro 


