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Abstract

This study introduces a cointegration test based on an asymmetric
exponential smooth transition autoregressive (AESTAR) error correc-
tion model (ECM). The proposed model based on the unit root test by
Sollis (2009) employs a wild bootstrap to test for cointegration. The
test has time-varying and asymmetric adjustments and is robust to het-
eroskedastic variances such as stochastic volatility. A Monte Carlo simu-
lation provides evidence that the proposed test has appropriate sizes and
sufficient power under stochastic volatility. The model is applied to the
relationship between the oil price and economic activity, demonstrat-
ing that the proposed test supports the presence of the error correction
term. This contrasts with conventional tests, which do not support this
term. The empirical results indicate the usefulness of the proposed test.
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1 Introduction

The crude oil price is an important factor in economic activity. Researchers

often use error correction models (ECM) to analyze the relationship between

the crude oil price and economic activity. An ECM usually assumes linear

adjustment. This means that the error correction mechanism is stable in the

long run. However, the crude oil price and economic activity have asymmet-

ric properties, as noted by Hamilton (1983), Mork (1989), Çatik and Önder

(2013), and Ramos and Veiga (2013), among others. These results indicate

that researchers should introduce asymmetry when using an ECM.

As a model with asymmetric adjustment, Enders and Siklos (2001) propose

threshold cointegration tests that have an abrupt regime shift of adjustment.

Their tests are based on asymptotic tests and their critical values depend on

the number of variables, the deterministic terms, and the transition variables.

Additionally, asymptotic cointegration tests tend to overreject the null hy-

pothesis of no cointegration under heteroskedastic variances. Maki (2013) re-

ports that cointegration tests allowing nonlinearity have severe size distortions

in the presence of stochastic volatility, generalized autoregressive conditional

heteroskedasticity (GARCH), and variance breaks. Such heteroskedastic vari-

ances often appear when we investigate energy variables. For example, Vo

(2009) and Vo (2011) analyze the stochastic volatility of oil prices. Accord-

ingly, we have to consider heteroskedastic variances when we analyze oil prices

and economic activity using an ECM with asymmetry.

This study proposes testing for the null of no cointegration against the

alternative of cointegration using an ECM test, allowing for asymmetry and

heteroskedasticity. We also apply it to the relationship between the crude oil

price and economic activity. Here, we employ an asymmetric smooth transition

autoregressive (AESTAR) model introduced by Sollis (2009). As pointed out

by Teräsvirta and Anderson (1992) and Skalin and Teräsvirta (2002), smooth

transition models are useful because many economic agents behave differently.

As a result, the economy has time-varying and asymmetric smooth regime
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shifts. Kapetanios et al. (2006), Kiliç (2011), and Maki (2015) introduce

time-varying ESTAR-ECM. The ESTAR model has a persistent process near

equilibrium, but has a strong convergence when an equilibrium error is suf-

ficiently far from equilibrium. ESTAR models have only time-varying prop-

erties, which are useful when investigating the relationships among economic

variables in the presence of various costs. However, using an AESTAR model

enables us to build a model with both time-varying and asymmetry. Kiliç

(2011) also developed an asymmetric error correction model using a logistic

smooth transition function, with a test based on asymptotic sup-type tests.

This study introduces a test using a wild bootstrap. The wild bootstrap de-

veloped by Liu (1988) can replicate resampling that does not depend on the

pattern of heteroskedastic variances. In addition, the test does not need criti-

cal values that correspond to the number of variables, the deterministic terms,

and the transition variables. Therefore, the proposed test can accurately in-

vestigate asymmetric error correction under stochastic volatilities.

Monte Carlo simulations demonstrate that the proposed test has appro-

priate size and sufficient power when compared with conventional tests under

stochastic volatilities. This implies that the proposed test leads to reliable

results. Then, by applying the model to the relationship between the crude

oil price and economic activity, we provide evidence that the proposed test

supports the presence of the error correction term, whereas conventional tests

do not support this term. The empirical results indicate that the asymmetric

error correction mechanism affects the short-run dynamics of economic activ-

ity.

The rest of this paper is organized as follows. Section 2 introduces the test

for the AESTAR-ECM using a wild bootstrap. Section 3 presents the size and

power properties of the proposed tests. Section 4 provides empirical applica-

tions to the relationship between the crude oil price and economic activity.

Finally, Section 5 concludes the paper.

2 Wild bootstrap test for the AESTAR-ECM

This study introduces a test for the AESTAR-ECM using a wild bootstrap.

The AESTAR-ECM allows for an asymmetric smooth transition adjustment



52 Time-varying asymmetric error correction mechanism...

toward the long-run equilibrium. We consider the n × 1 vector of observable

I(1) variables zt = (yt,x
′
t)
′, where yt is a scalar value and xt = (x1t, · · · , xmt)

′

is an m× 1 vector. Following Kapetanios et al. (2006) and Kiliç (2011), who

proposed ESTAR-ECMs based on asymptotic theories, we analyze at most one

conditional cointegration relationship between yt and x′
t. The proposed test

considers the following AESTAR-ECM and the marginal vector autoregressive

(VAR) model for ∆xt:

∆yt = Gt(γ1, ut−d){St(γ2, ut−d)ρ1 + (1− St(γ2, ut−d))ρ2}ut−1

+ω′∆xt + Σp
i=1ψ

′
i∆zt−i + et, (1)

∆xt = Σp
i=1Γxi∆zt−i + ηt, (2)

where et and ηt are zero-mean errors, and ω, ψi, and Γxi are an m× 1 vector,

n× 1 vector, and m× n matrix, respectively. Then, ut = yt − β′xt is an error

correction term, with β′ as the m×1 cointegrating vector. We assume that an

n×1 vector zt is generated by zt = (yt,x
′
t)
′ = zt−1 + εt, where εt are i.i.d. with

mean zero, a positive definite variance-covariance matrix Σ, and E|εt|s < ∞
for some s > 4. Here, ρ1 and ρ2 are adjustment parameters of ECM. While a

symmetric ECM has ρ1 = ρ2, ρ1 6= ρ2 allows for an asymmetric ECM.

The transition functions Gt(γ1, ut−d) and St(γ2, ut−d) are given by

Gt(γ1, ut−d) = 1− exp(−γ1u
2
t−d), γ1 ≥ 0, (3)

St(γ2, ut−d) = [1 + exp(−γ2ut−d)]
−1, γ2 ≥ 0, (4)

where ut−d is a transition variable and d is a delay parameter. The AESTAR

model with (3) and (4) was developed by Sollis (2009), who proposed a null

hypothesis of a unit root against the AESTAR model. The AESTAR model

has the properties of both an exponential function and a logistic function,

and Gt(γ1, ut−d) and St(γ2, ut−d) take values between zero and one. Here,

Gt(γ1, ut−d) is near 1 when γ1u
2
t−d is large, and near 0 when γ1u

2
t−d is small, and

allows for a smooth transition adjustment for the error correction mechanism.

The long-run dynamics affect the short-run dynamics of ∆yt when Gt(γ1, ut−d)

is closer to one, but do not do so when Gt(γ1, ut−d) is closer to zero. The

symmetric ESTAR-ECM developed by Kapetanios et al. (2006) and Kiliç

(2011) has ρ1 = ρ2 in (1). While Kapetanios et al. (2006) used only ut−1 as

the transition variable, Kiliç (2011) took into account ut−d as the transition

variable. In the model, St(γ2, ut−d) allows for the asymmetric adjustment
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of the ECM. The value of St(γ2, ut−d) is close to one when ut−d > 0 and

γ2ut−d is large, and is close to zero when ut−d < 0 and γ2ut−d is small. The

existence of St(γ2, ut−d) constitutes a logistic smooth transition between ρ1

and ρ2. The logistic smooth transition function nests a two-regime threshold

autoregressive (TAR) model, because St(γ2, ut−d) with γ2 = ∞ is an indicator

function that takes only the value 0 or 1. From the properties of Gt(γ1, ut−d)

and St(γ2, ut−d), the error correction mechanism works when ρ1 < 0, ρ2 < 0,

and Gt(γ1, ut−d) > 0, but does not work when ρ1 = ρ2 = 0 or Gt(γ1, ut−d) = 0.

The test for the null hypothesis of no cointegration against the alternative

hypothesis of the AESTAR-ECM focuses on the parameter γ1. The null and

alternative hypotheses are as follows:

H0 : γ1 = 0, H1 : γ1 > 0. (5)

Here, ρ1, ρ2, and γ2 are nuisance parameters under the null hypothesis and are

identified under the alternative hypothesis. The solution of the identification

problem is obtained using a first-order Taylor series approximation around

γ1 = 0 for (1). The approximation gives the equation

∆yt = ρ1γ1u
2
t−dut−1St(γ2, ut−d) + ρ2γ1u

2
t−dut−1(1− St(γ2, ut−d))ρ2}

+ω′∆xt + Σp
i=1ψ

′
i∆zt−i + ẽt, (6)

where ẽt is an error term, including the remainder from the Taylor approxima-

tion. Note that γ2 in (6) is still unidentified under the null hypothesis. Follow-

ing Sollis (2009), we replace St(γ2, ut−d) with S∗
t (γ2, ut−d) = St(γ2, ut−d)− 0.5

and, further, take a Talyor approximation around γ2 = 0 for (6). The result

gives the equation

∆yt = φ1u
2
t−dut−1 + φ2u

3
t−dut−1 + ω′∆xt + Σp

i=1ψ
′
i∆zt−i + υt, (7)

where υt is an error term. The null hypothesis for γ1 is written as H0 :

φ1 = φ2 = 0. We denote θ and ht as θ = (φ1, φ2, ω
′, ψ′

1, · · · , ψ′
p)

′ and ht =

(u2
t−dut−1, u

3
t−dut−1,∆x′

t,∆z′t−1, · · · ,∆z′t−p)
′. The Wald statistic for the hy-

pothesis is given by

WAS =
1

σ̂2
φ̂′
[
R

( T∑
t=1

hth
′
t

)−1

R′
]−1

φ̂, (8)
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where φ̂ = (φ̂1, φ̂2)
′ is the ordinary least squares (OLS) estimate of φ1 and

φ2, σ̂
2 is the least squared estimate of the residual variance for (7), and R is a

2×(2+m+np) matrix, such that Rθ̂ = φ̂. When we test for cointegration, the

cointegrating vector is usually unknown. For this reason, we use the residual

ût = yt − β̂′xt instead of ut.

If researchers employ (8), they need asymptotic critical values to test using

the AESTAR-ECM. However, asymptotic critical values depend on the num-

ber of regressions and the type of deteministic terms. More importantly, tests

using asymptotic values are influenced by heteroskedastic variances, even if we

use the heteroskedasticity-consistent covariance matrix estimators (HCCME)

proposed by White (1980). Maki (2013) reports that asymptotic cointegration

tests, particularly those allowing nonlinearity, have severe size distortions in

the presence of heteroskedastic variances, regardless of the use of HCCME.

Therefore, we do not use the asymptotic test, but instead apply test (8) using

the wild bootstrap. The test does not depend on the number of regressions,

the type of deterministic terms, and heteroskedastic variances. The resample

using the wild bootstrap can preserve the properties of unknown heteroskedas-

tic variance in bootstrap samples. The algorithm of the test is as follows.

Step 1: We estimate (7) and obtain the residuals υ̂t. Using estimated param-

eters and the residuals, we generate a new process under the null hypothesis

of no cointegration

∆y∗t = ω̂′∆xt + Σp
i=1ψ̂

′
i∆zt−i + υ∗t , (9)

where υ∗t = εtυ̂t and εt is such that E(εt) = 0 and E(ε2t ) = 1. We use a

Rademacher distribution, such that εt = 1 and εt = −1, both with a probability

of 0.5. The initial observations y∗0 and y∗1 are set to zero and the sample value

y1, respectively.

Step 2: We regress y∗t on xt and obtain the residual. The error correction

term based on the bootstrap sample is given by

û∗t = y∗t − β̂′bxt, (10)

where β̂′b is the estimate of the cointegration vector in the bootstrap sample.

We use the residuals as the error correction term for the bootstrap. When

the long-run equilibrium has a constant (or both a constant and a trend), the

demeaned (or demeaned and detrended) residuals are employed.
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Step 3: We use the generated bootstrap sample and have the following re-

gression:

∆y∗t = φ1bu
∗2
t−du

∗
t−1 + φ2bu

∗3
t−du

∗
t−1 + ω′

b∆xt + Σp
i=1ψ

′
bi∆zt−i + ζt, (11)

where ζt is an error term.

Step 4: We compute the test statistic (8) in (11), and denote it with the

bootstrap sample as W b
AS.

Step 5: We repeat the bootstrap iteration from Step 1 to Step 4 a number of

times. Finally, we obtain the bootstrap p-value as follows:

Pb(WAS) =
1

B

B∑
j=1

1(W b
AS > WAS), (12)

where B is the number of bootstrap iterations and 1(·) is an indicator function,

such that 1(·) is 1 if (·) is true, and 0 otherwise. It is preferable to set the

number bootstrap to more than 1,000.

3 Monte Carlo simulations

In this section, we present the size and power properties of the proposed

test. We compare the performance of the test with the tests of Engle and

Granger (1987) and Kiliç (2011). The test of Engle and Granger (1987) is

a standard linear ECM and the test of Kiliç (2011) is an LSTAR-ECM. We

denote the tests of Engle and Granger (1987), Kiliç (2011), and the wild boot-

strap test of (8) as EG, KL, and ASWB, respectively. For comparison, we also

evaluate the performances of EG and KL using the HCCME, which are de-

noted as EG(W) and KL(W), respectively. All the tests employ the demeaned

model and assume there is no lag, for simplicity. The nominal size of the tests

is set at 0.05, and sample sizes are considered for T = 200 and 400. For all

the experiments, the number of replications for the Monte Carlo simulations

is 10,000 and the number of bootstrap replications for the wild bootstrap test

is 1,000.
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We investigate the rejection frequency generated from:

∆yt = λ∆xt + u1t, (13)

∆xt = u2t, (14)

ut = yt − βxt, (15)

where λ = 1 and β = 1. The errors u1t and u2t are given by(
u1t

u2t

)
∼ i.i.d.N

(
σ2

1 0

0 σ2
2

)
, (16)

where σ2
2 = 1. Then, σ2

1 is set to 1 for the case of homoskedastic variance with a

normal error. We consider three types of stochastic volatilities for σ2
1: stochas-

tic volatility, markov switching stochastic volatility, and threshold stochastic

volatility. The crude oil price and economic variables have those stochastic

volatilities (e.g., Smith, 2002; So and Choi, 2008; Vo, 2009, 2011; and Chen,

et al., 2013). Therefore, it is important to evaluate rejection frequencies under

stochastic volatilities.

The u1t for stochastic volatility (SV) is generated from

u1t = κt exp(ht/2), (17)

ht = δht−1 + ξt, (18)

where κt ∼ i.i.d.N(0, 1), and we set ξt to ξt ∼ i.i.d.N(0, 0.25). Then, SV1 and

SV2 have the parameters δ = 0.95 and 0.7, respectively.

For markov switching volatility (MSV), ht is given by

ht = δ0ht−1St + δ1ht−1(1− St) + ξt, (19)

where St is a random variable that takes a value of 0 or 1, and δ0 and δ1 are

set to 0.95 and 0.7, respectively. The value of St depends on the transition

probabilities, such as P (St+1 = 0|St = 0) = p00 and P (St+1 = 1|St = 1) = p11.

When the transition probabilities P (St+1 = 0|St = 1) = p10 = 1 − p00 and

P (St+1 = 1|St = 0) = p01 = 1 − p11 are high, ht have frequent switches

between δ0 and δ1. Conversely, low p10 and p01 lead to persistent switches

between δ0 and δ1. For the transition probabilities, MSV1 and MSV2 have

parameters p00 = p11 = 0.98 for persistent switches, and p00 = p11 = 0.7 for

frequent switches.
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For threshold stochastic volatility (TSV), ht is replaced by

TSV1 : ht = δ0ht−11{ut−1 > 0}+ δ1ht−11{ut−1 ≤ 0}+ ξt (20)

TSV2 : ht = (µ0 + δ0ht−1)1{ut−1 > 0}+ (µ1 + δ1ht−1)1{ut−1 ≤ 0}+ ξt,

(21)

where 1{·} is the indicator function and its value depends on whether {·}
is true. While TSV1 has shifts only between δ0 and δ1, TSV2 also has shifts

between constant parameters µ0 and µ1 in addition to δ0 and δ1. We set (δ0, δ1)

and (µ0, µ1) to (δ0, δ1) = (0.95, 0.7) and (µ0, µ1) = (−0.5,−1).

Table 1: Empirical sizes

EG EG(W) KL KL(W) ASWB

Normal

T = 200 0.053 0.058 0.052 0.075 0.049

T = 400 0.055 0.052 0.051 0.066 0.050

SV1

T = 200 0.111 0.025 0.142 0.049 0.048

T = 400 0.102 0.022 0.144 0.037 0.050

SV2

T = 200 0.057 0.049 0.062 0.065 0.053

T = 400 0.054 0.046 0.057 0.057 0.052

MSSV1

T = 200 0.084 0.037 0.105 0.051 0.037

T = 400 0.080 0.028 0.105 0.045 0.050

MSSV2

T = 200 0.067 0.040 0.081 0.059 0.049

T = 400 0.063 0.039 0.067 0.049 0.049

TSV1

T = 200 0.065 0.043 0.077 0.059 0.056

T = 400 0.058 0.038 0.066 0.052 0.054

TSV2

T = 200 0.068 0.041 0.075 0.058 0.049

T = 400 0.060 0.038 0.066 0.051 0.053

The rejection frequencies of the tests to compare empirical sizes are presented

in Table 1. The tests other than KL(W) perform well for homoskedastic vari-

ance. The rejection frequencies of EG, EG(W), KL, and ASWB are close to the



58 Time-varying asymmetric error correction mechanism...

nominal size, 0.05. In addition, KL(W) slightly overrejects the null hypoth-

esis. In the presence of stochastic volatilities, EG and KL tend to have size

distortions. When the error has SV1, the rejection frequencies of EG and KL

are more than 0.1. The overrejection decreases for SV2. This implies that the

persistence of stochastic volatility affects the empirical sizes of the asymptotic

tests. Although EG(W) and KL(W) perform better than EG and KL do, they

also have slight size distortions for SV1 or SV2. Unlike the asymptotic tests,

ASWB is not influenced by stochastic volatility. The rejection frequencies of

ASWB for both SV1 and SV2 are close to 0.05.

EG and KL also have size distortions when the volatility is generated by

MSSV and TSV. Compared with the results between MSSV1 and MSSV2, the

distortions of EG and KL for MSSV1 are larger than those for MSSV2. The

persistent switches lead to overrejections for asymptotic tests and spurious

cointegration. While EG(W) has small underrejections for MSSV and TSV,

KL(W) has acceptable empirical sizes, particularly for T = 400. The empirical

size of ASWB does not depend on the type of volatility and ASWB performs

better, regardless of the sample size. The size comparison reveals that ASWB

leads to a reliable result.

Tables 2 and 3 illustrate the power comparison. While Table 2 presents

the results under cointegration with a normal error, Table 3 reports the results

under cointegration with SV1. For the data generated process (DGP) with an

error correction term, (13) is replaced by

∆yt = λ∆xt+Gt(γ1, ut−1){St(γ2, ut−1)ρ1+(1−St(γ2, ut−1))ρ2}ut−1+u1t, (22)

where Gt(·) and St(·) are given by

Gt(γ1, ut−1) = 1− exp(−γ1u
2
t−1) (23)

St(γ2, ut−1) = [1 + exp(−γ2ut−1)]
−1. (24)

We set adjustment parameters ρ1 and ρ2 to (ρ1, ρ2) = {(−0.15,−0.05) and

(−0.5,−0.05)}. Here, (ρ1, ρ2) = (−0.5,−0.05) has stronger asymmetry than

(ρ1, ρ2) = (−0.15,−0.05). The smoothness parameters for Gt and St have four

types: (γ1, γ2) ={(0.01, 1), (0.01, 10), (0.1, 1), and (0.1, 10)}. Then, γ1 and γ2

determine the speed of the smooth transition of Gt and St, respectively. Larger

γ1 and γ2 make the model approximately linear.
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Table 2: Powers under an normal error
EG EG(W) KL KL(W) ASWB

(ρ1, ρ2) = (−0.15,−0.05)

(γ1, γ2) = (0.01, 1)

T = 200 0.127 0.135 0.104 0.140 0.126

T = 400 0.256 0.242 0.215 0.249 0.307

(γ1, γ2) = (0.01, 10)

T = 200 0.120 0.128 0.103 0.137 0.125

T = 400 0.249 0.234 0.206 0.228 0.312

(γ1, γ2) = (0.1, 1)

T = 200 0.337 0.339 0.292 0.348 0.359

T = 400 0.903 0.872 0.862 0.863 0.843

(γ1, γ2) = (0.1, 10)

T = 200 0.327 0.331 0.283 0.338 0.346

T = 400 0.905 0.873 0.850 0.858 0.836

(ρ1, ρ2) = (−0.5,−0.05)

(γ1, γ2) = (0.01, 1)

T = 200 0.160 0.162 0.150 0.181 0.190

T = 400 0.405 0.365 0.347 0.358 0.535

(γ1, γ2) = (0.01, 10)

T = 200 0.155 0.159 0.144 0.173 0.189

T = 400 0.398 0.361 0.344 0.357 0.524

(γ1, γ2) = (0.1, 1)

T = 200 0.591 0.550 0.574 0.575 0.694

T = 400 0.987 0.973 0.985 0.977 0.983

(γ1, γ2) = (0.1, 10)

T = 200 0.546 0.507 0.513 0.520 0.652

T = 400 0.983 0.966 0.980 0.971 0.979

In Table 2, the powers of EG(W) and KL(W) are higher than those of

EG and KL because EG(W) and KL(W) overreject the null hypothesis, par-

ticularly for T = 200, as illustrated by Table 2. It can be observed that

ASWB outperforms the other tests when the speed of the smooth transi-

tion is slow for (ρ1, ρ2) = (−0.15,−0.05). This tendency becomes clear for

(ρ1, ρ2) = (−0.5,−0.05). For example, when the error correction term has the

parameters (ρ1, ρ2) = (−0.5,−0.05) and (γ1, γ2) = (0.01, 10) and the sample
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size is T = 400, the powers of EG, EG(W), KL, KL(W), and ASAB are 0.398,

0.361, 0.341, 0.357, and 0.524, respectively. However, we cannot observe differ-

ent power among the tests for (ρ1, ρ2) = (−0.15,−0.05) and (γ1, γ2) = (0.1, 1)

and (0.01, 10). These results indicate that ASWB is superior to the other tests

when the error correction term is asymmetrical and has a slow smooth transi-

tion.

Table 3: Powers under stochastic volatility

EG EG(W) KL KL(W) ASWB

(ρ1, ρ2) = (−0.15,−0.05)

(γ1, γ2) = (0.01, 1)

T = 200 0.300 0.074 0.327 0.113 0.153

T = 400 0.654 0.151 0.658 0.189 0.378

(γ1, γ2) = (0.01, 10)

T = 200 0.302 0.075 0.332 0.118 0.152

T = 400 0.651 0.144 0.660 0.189 0.370

(γ1, γ2) = (0.1, 1)

T = 200 0.526 0.161 0.530 0.216 0.259

T = 400 0.893 0.363 0.907 0.469 0.503

(γ1, γ2) = (0.1, 10)

T = 200 0.523 0.165 0.525 0.222 0.261

T = 400 0.893 0.344 0.903 0.455 0.514

(ρ1, ρ2) = (−0.5,−0.05)

(γ1, γ2) = (0.01, 1)

T = 200 0.417 0.110 0.457 0.159 0.290

T = 400 0.798 0.239 0.799 0.314 0.604

(γ1, γ2) = (0.01, 10)

T = 200 0.420 0.109 0.454 0.164 0.291

T = 400 0.803 0.234 0.805 0.312 0.590

(γ1, γ2) = (0.1, 1)

T = 200 0.688 0.280 0.729 0.386 0.504

T = 400 0.933 0.508 0.954 0.690 0.732

(γ1, γ2) = (0.1, 10)

T = 200 0.676 0.265 0.710 0.362 0.490

T = 400 0.933 0.505 0.953 0.675 0.727

When the error has SV1, as presented in Table 3, EG and KL have higher
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powers. This is clearly because EG and KL overreject the null hypothesis under

SV1 and has size distortions. In contrast, EG(W) and KL(W) are inferior to

the other tests. The inferior performances are caused by underrejecting the

null hypothesis reported in Table 1. We observe that the power of ASWB is

lower than those of EG and KL, but higher than those of EG(W) and KL(W).

More importantly, ASWB does not have overrejections and underrejections,

even in the presence of heteroskedastic variances. Therefore, ASWB leads to

reliable results.

4 Application to the relationship between the

oil price and economic activity

The crude oil price plays an important role in economic activity. Many

studies, including Hamilton (1983), Mork (1989), Çatik and Önder (2013),

and Ramos and Veiga (2013) have shown that the impact of the crude oil

price on economic activity is asymmetric. We explore this by applying ASWB

to the relationship between the oil price and economic activity. We use the

crude oil price as the variable xt in (1) and four economic indexes as the

variable yt in (1). The four economic indexes are the beverage index, indus-

trial production index, agricultural index, and metal price index. The asym-

metric response of oil prices to these variables is discussed by, for example,

Meyer and Cramon-Taubadel (2004), Hammoudeh and Fattouh (2010), and

Ibrahima and Chancharoenchaib (2014). The monthly data obtained from the

International Monetary Fund consist of 408 observations from January 1980 to

December 2013. The series codes for the crude oil price, beverage index, indus-

trial production index, agricultural index, and metal price index in the IMF

data are POILAPSP Index, PBEVE Index, PINDU Index, PRAWM Index,

and PMETA Index, respectively. All the tests include aPo constant and a

trend as deterministic terms. The lag lengths are selected by the Akaike in-

formation criterion (AIC). Although we do not present the results of the unit

root tests of the variables, the standard tests including Dickey-Fuller type tests

provide evidence of I(1).

Table 4 presents the empirical results of the cointegration tests. The p-
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values were obtained by our simulation. We determined the delay parameter d

of KL, KL(W), and ASWB as d to minimize the p-values from d = 1 to d = 12.

The p-values of EG and EG(W) are larger than 0.1, and none reject the null

hypothesis. We can see different results for KL and KL(W). The p-values of

KL are less than 0.05 or 0.1, except for the agricultural index. Then, KL rejects

the null hypothesis of no cointegration for the other three indexes. However,

the p-values of KL(W) are larger than those of KL. Thus, KL(W) rejects the

null hypothesis for the industrial production index and the metal price index

only at the 10% significance level. As illustrated in Section 3, KL has size

distortions in the presence of heteroskedastic variances, which are reduced by

KL(W). Accordingly, it appears that the difference between KL and KL(W) is

caused by heteroskedastic variances. The p-values of ASWB are less than 0.05

Table 4: Empirical results

EG EG(W) KL KL (W) ASWB

Beverage index -3.208 -2.778 13.71 9.429 31.98

(0.148) (0.309) (0.081) (0.274) (0.000)

ut−d d = 1 d = 12 d = 9

Industrial production index -2.582 -1.978 17.36 14.02 25.54

(0.397) (0.696) (0.021) (0.062) (0.018)

ut−d d = 12 d = 12 d = 9

Agricultural index -2.965 -2.691 10.58 9.172 18.94

(0.225) (0.344) (0.187) (0.275) (0.029)

ut−d d = 7 d = 7 d = 7

Metal price index -2.042 -1.420 16.99 13.43 26.36

(0.660) (0.875) (0.020) (0.073) (0.042)

ut−d d = 1 d = 12 d = 12
The p−values are in the parentheses.

and ASWB strongly rejects the null hypothesis. ASWB has better empirical

sizes, even in the presence of heteroskedastic variances. Accordingly, the em-

pirical results of ASWB are reliable and provide evidence that the relationship

between the crude oil price and economic activity has a asymmetric error cor-

rection mechanism.

In order to further investigate the asymmetric error correction mechanism,
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we estimate the following model:

∆yt = Gt(γ1, ut−d){St(γ2, ut−d)ρ1 + (1− St(γ2, ut−d))ρ2}ut−1+

ω′∆xt + Σp
i=1ψ

′
i∆zt−i + et. (25)

Table 5 reports the estimation results. The smoothness parameters γ1 and γ2

are determined such that the sum of squared residuals of (25) are minimized.

It can be seen that the error correction terms are asymmetric. For example,

the error correction term between the crude oil price and the industrial pro-

duction index has adjustment parameters (ρ1, ρ2) = (−0.184,−0.276). This

indicates that, while the adjustment speed approaches -0.247 and the adjust-

ment mechanism becomes faster if ut−9 is negative and small, it approaches

-0.184 if ut−9 is positive and large. In contrast, the error correction mechanism

almost never performs

Table 5: AESTAR estimates
tv ρ1 ρ2 γ1 γ2

Beverage index ut−9 -0.186 -0.062 0.0004 3.816

(0.050) (0.039)

Industrial production index ut−9 -0.184 -0.276 0.0006 6.264

(0.055) (0.086)

Agricultural index ut−7 -0.148 -0.222 0.0007 7.001

(0.052) (0.091)

Metal price index ut−12 -0.088 -0.054 0.028 4.777

(0.028) (0.021)
Heteroskedastic-robust standard errors are in the parentheses.

when ut−9 is near to zero, because Gt(γ1, ut−9) has a value near to zero. These

results indicate that the error correction mechanism depends on the size of a

selected transition variable, as well as its sign. As demonstrated by the Monte

Carlo simulations, ASWB performs better when an error correction term has

strong asymmetry and a slow smooth transition. The findings from Table 5

confirm that the relationship between the crude oil price and economic activity

has an asymmetric error correction mechanism.
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5 Summary

This study introduced a cointegration test based on an asymmetric ex-

ponential smooth transition autoregressive (AESTAR) error correction model

(ECM). The proposed test employs a wild bootstrap to test for cointegra-

tion in order to avoid size distortions in the presence of heteroskedastic vari-

ances. From the properties, the developed test has time-varying and asymmet-

ric adjustments, and is robust to heteroskedastic variances such as stochastic

volatility. In fact, the results from the Monte Carlo simulation show that

the proposed test has appropriate empirical size and sufficient power, with or

without stochastic volatility. When we investigated the impact of crude oil

prices on economic activity, the proposed test strongly supported the presence

of the error correction term. The empirical results provided evidence that the

relationship between the crude oil price and economic activity has an asym-

metric smooth transition error correction mechanism. Thus, the proposed test

is useful when analyzing a long-run relationship with an asymmetric smooth

transition adjustment under stochastic volatilities, as observed in economic

variables such as commodity prices and asset prices.
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