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Abstract 

This paper compares the out-of-sample forecasting performance of the GARCH, EGARCH, 

and GJR-GARCH models across the Normal distribution, Student-t distribution, and 

Generalized Error Distribution (GED) in the regional stock market of the West African 

Economic and Monetary Union called the BRVM. The study uses weekly returns ranging 

from 4 January 1999 to 10 March 2005 for in-sample estimation of conditional variance 

models, and the period from 11 March 2005 to 29 July 2005 for out-of-sample forecasting. 

Using the RMSE and MAE as measures of forecasting accuracy, I find that the EGARCH 

model outperforms both the GARCH and the GJR-GARCH models under the Student-t 

distribution and the GED. 

 

JEL classification numbers: C22, C53 
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1  Introduction  

Forecasting the volatility of financial time series has been extensively examined over the 

past three decades. Theory predicts that accurate estimation and forecast of the volatilities 

of asset prices would have important implications for investments, security valuation, risk 

management, and monetary policy making. Volatility is a major input to investments 

decisions and portfolio selection since a good forecast of the volatility of asset prices over 

the investment holding period is the starting point for assessing investment risk. Volatility 

plays a central role in option pricing as the knowledge of the volatility of the underlying 

asset is mandatory to price such a derivative. Since the first Basle Accord in 1996, volatility 

forecasting in terms of value-at-risk has been compulsory for most financial institutions. 

Finally, policy makers rely on market estimates of volatility as a barometer for the 
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vulnerability of financial markets and the economy in handling monetary policy. 

Despites their importance, empirical studies on forecasting and measuring the performance 

of volatility have largely been carried out on developed stock markets (Hansen, 1994; 

Gokcan, 2000; Awartini and Corradi, 2005; Bae et al., 2007; Bali, 2007; Chuang et al., 

2007; Curto et al., 2009; Liu and Hung, 2010 amongst others), and on emerging stock 

markets (Sandoval, 2006; Komain, 2007; Hien, 2008; Kovacic, 2008; Lee, 2009; Shamiri 

and Isa, 2009; Su, 2010 for example). Studies on African stock markets have been however 

limited (Appiah and Menyah, 2003; Ogun et al., 2005; Eskandar, 2005; Alagidede and 

Panagiotidis, 2009), and inexistent for the regional stock market of West Africa. The 

present study fills this gap and contributes to the existing empirical literature by examining 

the forecasting of volatility and their performance in the BRVM using various conditional 

volatitlity models and different loss functions. My results show that the EGARCH model, 

in-sample and out-of-sample, outperforms both the GARCH and the GJR-GARCH models 

under the Student-t distribution and the GED.  

The rest of the paper is organized as follows. After the introduction section, an overview of 

the BRVM is provided by section 2. Section 3 presents the research methodology. Section 

4 exposes the empirical results and their analysis and section 5 concludes the paper. 

 

 

2  The Regional Stock Market of West Africa 

The regional stock exchange of West Africa, known as the Bourse Régionale des Valeurs 

Mobilières (hereafter, BRVM), was established on 18 December 1996, and began its 

operations on 16 September 1998. It is the stock exchange of the West African Economic 

and Monetary Union (WAEMU). The BRVM is responsible for organizing the securities 

market and distributing related information. To that end, it guarantees the listing of 

securities on the exchange, the quotation of securities, the publication of market prices and 

information, the promotion and development of the securities exchange.  

The BRVM is headquartered in Abidjan, Côte d’Ivoire, and represented in every member 

state by a national branch office charged with: 1) overseeing public relations for the 

exchange and the central clearing house; 2) disseminating market information; 3) assisting 

brokerage firms and other market stakeholders; 4) organizing local promotion of the 

regional exchange. At its inception, the BRVM has two sections for stocks and a single 

section for bonds with eligibility conditions differing across sections. A company seeking 

to be listed on the BRVM must satisfy the following conditions: 1) be incorporated; 2) sign 

a written agreement to publishing the annual statements in the official newsletter, and to 

participate in the organization of the exchange; 3) sign a written agreement to obey the rules 

and regulations of the BRVM; 4) to apply for listing on the BRVM, the candidate company 

must mandate a brokerage firm to assist and advise it. 

The BRVM is a centralized spot exchange driven by orders, that is, the price of a security 

is fixed by matching bid and ask orders. The quotation is done by fixing, that is, a single 

price is obtained by matching bid and ask orders. Currently, there are five sessions a week. 

Two BRVM market indices represent the activities of stock market shares: the BRVM 

Composite comprises all securities listed on the exchange, and the BRVM 10 is composed 

of the ten most active companies on the exchange. As of 17 March 2006, 39 companies are 

listed on the BRVM. 

Formulation and selection criteria for the BRVM indexes are based on the leading global 

market indexes, especially, the FCG index of the International Finance Corporation, a 
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World Bank affiliate. The formulation of the indexes takes into account market 

capitalization, transaction per session, and transaction frequency. Only common shares are 

used to calculate the indexes. The indexes are automatically generated by the BRVM 

trading system and circulated after every session. The BRVM 10 is reviewed four times a 

year, and the BRVM Composite after every new listing. 

Table 1 below shows some performance indicators of the BRVM from 31 December 2002 

to 29 July 2005. This table reflects the high performance of the BRVM 10 and shows how 

volatile the regional stock market is. 

 

Table 1: Selected Figures Of The BRVM 

 
 

 

3  Research Methodology 

This section describes the data, exposes the volatility models, and presents the forecasting 

accuracy measures.  

 

3.1 Sample Data and their Properties 

The data set used in this study is weekly closing prices on the BRVM 10 index obtained 

from the Official Newsletter of the Regional Stock Market (BRVM). The choice of the 

BRVM 10 over the BRVM Composite is motivated by two reasons: first, it is composed of 

the ten most actively traded stocks in the BRVM and second, it accounts for about 70% of 

the total market capitalization of the BRVM as shown in Table 1 above. The study period 

ranges from 4 January 1999 to 29 July 2005. The period from 4 January 1999 to 10 March 

2005 is used for estimation purposes and, the period from 11 March 2005 to 29 July 2005 

is used for out-of-sample evaluation or forecasting. I compute the continuously 

compounded weekly stock market returns, tR , as follows:  

 

1100*ln( / )t t tR P P                                                    (1) 

 

Capitalization 31/12/ 2002 31/12/ 2003 31/12/ 2004 29/07/ 2005 

BRVM 10 465 634 264 590 617 337 595 495 607 239 551 350 766 467 440 025 

BRVM Composite 832 398 094 700 858 140 223 580 1 005 047 884 085  1 094 198 936 835 

Number of firms     

BRVM 10 10 10 10 10 

BRVM Composite 39 39 39 39 

Some measures     

Volume traded of stocks 4823 2994 2031 1033 

Value traded (CFAfr) 171 254 520 72 584 325 35 861 220 47 493 520 

# of transations 30 85 28 25 

# of securities traded 9 15 8 8 
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Where tP  is the value of the BRVM 10 price index for the period t , and t  represents 

time in weeks. 1tP  is BRVM 10 index price for period 1t  ; ln(.) is the logarithm 

operator. All returns are expressed in local currencies and are not adjusted for dividends. 

Table 2 below reports summary statistics of weekly stock market returns.  

 

Table 2: Summary statistics 

 
 

The mean and the standard deviation are 0.072 and 1.636 respectively. The skewness 

statistic of 0.930 shows that the distribution is positively skewed relative to the normal 

distribution (0 for the normal distribution). This is an indication of a non symmetric series. 

The kurtosis is very much larger than 3, the kurtosis for a normal distribution. This suggests 

that for the BRVM, large market surprises of either sign are more likely to be observed, at 

least unconditionally. The Ljung-Box test statistics (.)Q  and 
2 (.)Q  provide tests for the 

absence of autocorrelation and homoscedasticity, respectively. The significance values of 

Q  statistics indicate significant serial correlation in the mean return series. This suggests 

that the inclusion of a lag dependent variable in the mean equation is appropriate. Strong 

autocorrelation is also detected in the squared mean returns as shown by the values of the 
2 (.)Q . It results in volatility clustering in the distribution of stock market returns. In 

addition, the Jarque-Bera normality test rejects the hypothesis of normality.   

 

3.2 Volatility Models 

Since the seminal of work of Engle (1982) on conditional volatility, conditional 

heteroskedastic models have become the main statistical instruments to estimate and 

forecast asset returns volatility. I present in this section, the three different models used to 

evaluate the predictive power of volatility models in the BRVM. The models presented here 

are all variant of the Autoregressive Conditional Heteroskedasticity (ARCH) of Engle 

(1982). 

 

3.2.1 The GARCH Model 

The ARCH model developed by Engle (1982) estimates the variance of returns as a simple 

quadratic function of the lagged values of innovations but exhibits weaknesses as it requires 

many parameters and a high order of lagged values to capture the volatility process. 

Bollerslev (1986) and Taylor (1986) remedy to these weaknesses by proposing the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model that has an 

infinite ARCH specification and allows the reduction of the number of parameters to be 

estimated by imposing nonlinear restrictions. In the GARCH model, the conditional 

variance of a variable is dependent upon previous lags of the squared residual from the 

Series T Mean SD Skewness Kurtosis J.B. ARCH(5) 

BRVM10 741 0.027 0.810 -0.758 16.409 

  

5621* 19.611* 

(0.000) (0.001) 

Notes: T is the number of observations; SD is the standard deviation; * means significant at 5%. JB is the Jarque-Bera statistic; 

ARCH(5) is the ARCH test for homoskedasticity with 5 lags; p-values are in parentheses.  
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mean equation and present news about the volatility from the previous period. The GARCH 

models just as the ARCH model, captures the two characteristics of financial time series: 

Volatility clustering that occurs when large changes tend to be followed by large changes 

and small changes tend to be followed by small changes (Mandelbrot, 1963); leptokurtosis 

which describes the fact that the distribution of their returns is fat-tailed, that is the kurtosis 

of the distribution exceeds the kurtosis of a standard Gaussian distribution. 

 

In order to expose the GARCH model, I exploit the ARCH technology. I consider: 

 

1t t tR R                                                          (2) 

 

Where tR  is the continuously compounded return defines in equation 1;   is the 

constant term;   is a coefficient; t  is the disturbance or unpredictable part with mean 

0 and variance 
2

t ; the conditional variance is defined as: 

 
2

1var( )t t tR                                                        (3) 

            

Where tR  is defined as above; 1t   is the set of all available information at time t-1; 

var(.) is the variance operator. The volatility measure defined by the conditional variance 

is in an expectation formulation. The Autoregressive Conditional Heteroskedasticity 

(ARCH) process of Engle (1982) is defined as: 

 

2 2

0

1

q

t i t i

i

    



                                                       (4) 

q refers to the order of the lagged squared returns included in the model;
 0 ; 0i   . 

The Generalized ARCH model, GARCH (p,q) of Bollerslev (1986) and Taylor (1986) is 

expressed as follows: 

2 2 2

0

1 1

q p

t i t i j t j

i j

      

 

                                               (5) 

In this equation, 
2

t i   refers to past innovations and 
2

t j   is about past variances. In 

order to have a positive value, a sufficient condition for the conditional variance bears on 

its parameters as follows: 0 ; 0i   , and 0j  . The GARCH (p, q) is weakly 

stationary if and only if 
1 1

0
q p

i ji j
 

 
   . The model keeps not only the volatility 

clustering and the leptokurtosis characteristics of the ARCH model but it is also a linear 

function of lagged conditional variances. The GARCH model is therefore an extension of 

the ARCH model. 

 

3.2.2 EGARCH Model 

The GARCH model takes into account the time series characteristics of volatility clustering 

and leptokurtosis but fails to consider the leverage effects first documented by Black (1976). 
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To remedy that, Nelson (1991) proposes the Exponential GARCH (EGARCH). This model, 

a refinement of the GARCH model imposes a non negativity constraint on market variance, 

and allows for the conditional variance to respond to asymmetrically to return innovations 

of different signs (leverage effect). I specify the EGARCH model as follows: 

 

2 2

0

1 1 1

ln ln
q p p

t i t i t i
t j t j i i

j i it i t i t i

E
  

     
  

  


    

  
       

  
                   (6) 

        

Where 0 , j , i , and i are parameters. 
2ln t is the one-period ahead volatility 

forecast. This implies that the leverage effect is exponential rather than quadratic and 

forecast of conditional variance are guaranteed to be non-negative; 0  is the mean level; 

j represents the persistence parameter; 
2ln t j   is the past period variance. Unlike the 

GARCH model, the EGARCH model allows for leverage. If i  is negative, leverage 

effect exists. That is an unexpected drop in price (bad news) increases predictable volatility 

more than an unexpected increase in price (good news) of similar magnitude (Black, 1976; 

Christie, 1982). If i  is positive, then the conditional volatility tends to rise (fall) when 

the absolute value of the standardized residuals is larger (smaller).  

 

3.2.3 The GJR Model 

A main limitation of the GARCH model is its failure to capture asymmetries in financial 

time series. It considers mainly that negative and positive shocks have the same effects on 

volatility. To remedy that and take into account the volatility clustering and the 

leptokurtosis characteristics of returns, Glosten, Jagananthan and Runkle (1993) extend the 

GARCH model with an additional term to account for asymmetries. This model known as 

the GJR-GARCH model is expressed as follows: 

2 2 2 2

0

1 1

q p

t i t i i t i t i j t j

i j

d          

 

                                     (7) 

Where t id   
is a dummy variable with: 

10 0,
t i

t i
t i

if bad news
d

if good news







  



 

Good news is shown in the model by i  whereas bad news is shown by i i  . In 

addition, when 0i  , leverage effect exists. Non negativity condition is satisfied by 

0 0  , 0i  , 0j   and 0i i   .  

 

3.3 Out-of-Sample Forecasts Performance 

In order to evaluate the forecasting performance of the above conditional variance models, 

I compute two measures: the Root Mean Squared Error (RMSE) and the Mean Absolute 

Error (MAE). Assuming that the forecast sample is j=T+1, T+2, …….T+h, and denote the 

actual and forecasted value in period t  as ty  and ˆty  respectively, the reported forecast 
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error statistics are computed as follows: 

 

 
T+h

2

t=T+1

ˆRMSE = t ty y h
 

T+h

t=T+1

ˆMAE = t ty y h
 

 

 

4  Empirical Results and Analysis 

In order to assess the forecasting performance of equations (5), (6), and (7), I estimate each 

of them jointly with equation (2) upon specifying the assumptions about the distribution of 

error terms. With the aim to compare the models, I consider three density functions: the 

Normal distribution, the Student-t distribution, and Generalized Error Distribution (GED).  

The two later are expected to reduce the excess kurtosis and skewness displayed by the 

residuals of the conditional heteroskedasticity models. All models are estimated by 

maximum likelihood method. The nonlinearity in the equations imposes an iterative method 

to find the parameters. I adopt the Berndt, Hall, Hall, and Hausman (BHHH) method. The 

use of the BHHH algorithm requires the log-likelihood for a single observation. I estimate 

all models considering p=q=1; the models become: 

 

GARCH (1, 1):     
2 2 2

0 1 1 1 1t t t                                        (8) 

EGARCH (1, 1): 
12 2 1

0 1 1 1

1 1

2
ln ln

t t
t t

t t

 
     

  

 


 

 
      

 

              (9) 

GJR- GARCH (1, 1):  
2 2 2 2

0 1 1 1 1 1 1t t t t td                                (10) 

 

All parameters are defined as in section 3.2. Table 3 below shows Estimates of GARCH 

(1,1) ; EGARCH (1,1), and GJR-GARCH (1,1) under  Normal Distribution, Student-t 

Distribution, and GED. 
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Table 3: Estimates of GARCH (1,1) ; EGARCH (1,1), and GJR-GARCH (1,1) under 

Normal Distribution, Student-t Distribution, and GED.

 
The persistence parameters 1  from Table 3 are only significant for the EGARCH. They 

are 0.700, 0.743, and 0.724 for the Normal and Student-t distributions, and GED 

respectively. This suggests that the degree of persistence is high and close to one. In other 

words, once volatility increases, it is likely to remain high over several periods. The positive 

and statistically significant coefficient 1 in all models confirms the presence of clustering, 

that is, conditional volatility tends to rise (fall) when the absolute value of the standardized 

residuals is larger (smaller).  The   coefficients are all negative and significant in the 

GJR-GARCH model thereby implying that leverage effect exists, that is, an unexpected 

drop in price (bad news) increases predictable volatility more than an unexpected increase 

in price (good news) of similar magnitude. On the other hand, the   coefficients are 

positive and statistically significant for the GARCH model thereby indicating the presence 

of asymmetries, that is, volatility is higher during market booms than when market declines. 

From this discussion, it appears that considering the models, the EGARCH seems to better 

estimates the series as shown by its high log-likelihood and low Akaike information 

criterion. When I consider the densities, the Student-t distribution outperforms the Gaussian 

and the GED for its log-likelihood is higher than that of other distributions.  

I conduct a diagnostic check to ascertain whether the models are fairly specified. Table 4 

below shows the diagnostic tests for the standardized residuals, squared standardized 

residuals, and the skewness and kurtosis of the standardized residuals.   

 Normal distribution Student-t distribution GED 

 GAR EGA GJR GAR EGA GJR GAR EGA GJR 

𝜇 0.014 

(0.789) 

0.045 

(0.441) 

0.060 

(0.326) 

-0.004 

(0.940) 

0.007 

(0.901) 

0.019 

(0.727) 

-0.046 

(0.308) 

-0.036 

(0.449) 

0.016 

(0.871) 

𝜌 0.331* 

(0.000) 

0.284* 

(0.000) 

0.321* 

(0.000) 

0.262* 

(0.000) 

0.278* 

(0.000) 

0.286* 

(0.000) 

0.274* 

(0.000) 

0.291* 

(0.000) 

0.401* 

(0.000) 

𝛼0 0.643* 

(0.000) 

-0.288* 

(0.006) 

0.497* 

(0.001) 

0.804* 

(0.030) 

-0.313* 

(0.002) 

0.550* 

(0.015) 

0.662 

(0.003) 

-0.321* 

(0.000) 

1.442 

(0.181) 

𝛼1 0.501* 

(0.002) 

0.585* 

(0.000) 

0.664* 

(0.010) 

0.667* 

(0.039) 

0.676* 

(0.000) 

0.780* 

(0.027) 

0.515* 

(0.003) 

0.599* 

(0.000) 

0.111* 

(0.056) 

𝛽1 0.243* 

(0.041) 

0.700* 

(0.000) 

0.421* 

(0.000) 

0.234* 

(0.077) 

0.743 

(0.000) 

0.425* 

(0.000) 

0.227 

(0.132) 

0.724* 

(0.000) 

0.488 

(0.212) 

𝛾  0.244* 

(0.012) 

-0.5911* 

(0.026) 

 0.267* 

(0.011) 

-0.667* 

(0.047) 

 0.227* 

(0.023) 

-0.200* 

(0.061) 

AIC 3.327 3.285 3.301 3.197 3.175916 3.187121 3.186 3.168 3.667 

SC 3.386 3.356 3.372 3.268 3.258537 3.269742 3.257 3.250 3.749 

Log lik. -525 -518 -520 -503 -499 -501 -502 -498 -577 

Notes: This table reports estimates of the three conditional variance models under the Normal and Student t  distributions, and the 

GED. GAR, EGA, and GJR are the GARCH (1,1), EGARCH (1,1), and GJR-GARCH (1,1) respectively. AIC is the Akaike info 

criterion; SC is the Schwarz criterion, and Log lik. is the Log likelihood function. The p-values are in parentheses. * denotes 

significance at the 5 percent level. 
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Table 4: Diagnostic checks 

 
The kurtosis is around 5 for all models across all densities except for the GJR-GARCH (1,1) 

under the GED, which is quite an improvement from the raw series (7.63). Furthermore, 

the skewness is close to zero for all models across all densities but GJR-GARCH (1,1) 

under the GED. The Q-statistics for the absence of autocorrelation in the standardized 

residuals have p-values ranging from 0.435 to 0.972 across all densities against 0.000 for 

the raw series. This is a seal of absence of autocorrelation. The p-values of the Q2-statistics 

for the absence of heteroskedasticity range from 0.380 to 1.000 across all densities relative 

to 0.000 in the original series. It suggests that there is absence of heteroskedasticity. The 

results above suggest that the models are fairly specified and can therefore be used for 

forecasting purposes. I conduct in the next paragraphs, the static out-of-sample forecast. 

The results are shown in Table 5 below.  

 

Table 5: Out-of-Sample Forecasting Performance 

 
Two measures of forecasting accuracy, the roots mean square error (RMSE) and the mean 

absolute error (MAE) are used. Apart from the Normal distribution, the EGARCH model 

systematically outperforms all the GARCH and GJR-GARCH under the Student-t 

 GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1) 

 Normal Student-t GED Normal Student-t GED Normal Student-t GED 

Mean  

 

    0.016 0.027 0.064656 -0.0190 0.0145 0.052 -0.018 0.011 0.046 

S. D 

 

    1.001 
 

0.892 1.000190 1.000 0.938 1.001 1.001 0.922 1.144 

Skewness 

  

   0.164 
 

0.174 0.140245 0.044 0.047 0.029 0.002 -0.014 6.515 

Kurtosis 

  

   5.293 
 

5.358 5.319396 5.299 5.606 5.462 5.288 5.366 84.100 

Q(6)    5.897 

(0.435) 

 
  

8.5676 

(0.199) 

8.1440 

0.228 

7.065 

(0.315) 

6.594 

(0.360) 

6.4396 

(0.376 

4.894 

(0.557) 

6.290 

(6.290) 

4.182 

0.652) 

Q(20) 26.029 

 (0.165) 

 

28.110 

(0.107) 

27.672 

0.117 

24.215 

(0.233) 

19.250 

(0.377) 

24.112 

(0.238 

22.617 

(0.308) 

24.000 

(0.242) 

9.760 

0.972) 

Q
2
(6)   6.396 

(0.380) 

 

7.3321 

(0.291) 

7.4138 

0.284 

3.9839 

(0.679) 

3.9354 

(0.685) 

4.132 

(0.659) 

3.944 

(0.684) 

4.1990 

(0.650) 

0.542 

0.997) 

Q
2
(20) 12.331 

(0.904) 

 

12.684 

   (0.854) 

13.260 

0.866 

12.209 

(0.909) 

11.855 

(0.921) 

11.868 

(0.921 

11.532 

(0.931) 

11.918 

(0.919) 

0.772 

1.000) 

J.B.  71.308 

(0.000) 
 

75.54705 

 (0.000) 

72.54952 

0.000000 

70.375 

(0.000) 

90.448 

(0.000) 

80.674 

(0.000) 

69.576 

(0.000) 

74.409 

(0.000) 

89680 

0.000) 

Notes: This table contains summary statistics from the three conditional variance models above. The Ljung-Box test statistics for 

the standardized residuals, and the standardized residuals squared at lags 6 and 20 are also provided. The p-values are in 

parentheses. 

 Normal Distribution Student-t Distribution GED 

 GARCH EGARCH GJR-

GARCH 

GARCH EGARCH GJR-

GARCH 

GARCH EGARCH GJR-

GARCH 

 

RMSE 

 

 

2.234 

 

2.291 

 

2.329 

 

2.335 

 

2.309* 

 

2.294 

 

2.330 

 

2.302* 

 

2.777 

 

MAE 

 

 

1.455 

 

1.477 
 

1.510 

 

1.504 

 

1.490* 

 

1.482 

 

1.510 

 

1.493* 

 

1.732 

Note: RMSE is the Root Mean Squared Error and MAE is Mean Absolute Error; * denotes here the good performance of the 

EGARCH model under the Student-t distribution and the GED. 
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distribution and the GED by yielding smaller RMSE and MAE. Furthermore, the 

improvement in the log-likelihood function shown in Table 3 corroborates this finding. The 

EGARCH model does a better job in describing the data under study and can therefore be 

used for forecasting purposes. 

 

 

5  Conclusion 

This study has addressed the issues of the forecasting performance of conditional volatility 

models in the regional stock market of the West African Economic and Monetary Union 

called the BRVM.  I compare the forecasting performance of GARCH, EGARCH, and 

GJR-GARCH models across the Normal distribution, Student-t distribution, and 

Generalized Error Distribution (GED). My in-sample estimations reveals that the EGARCH 

model does a better job in describing the data than others; my out-of-sample forecasts using 

the RMSE and MAE as measures of forecasting accuracy, show that the EGARCH model 

outperforms both the GARCH and the GJR-GARCH models under the Student-t 

distribution and the GED. This finding could have implications for market analysts. They 

would find it useful to use EGARCH models and non-Normal densities to estimate 

securities’ volatilities with the aim to design volatility timing strategies. 
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