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A new proof of Euler’s theorem

on Catalan’s equation

Olufemi O. Oyadare1

Abstract

This paper contains a new proof of Euler’s theorem, that the only
non-trivial integral solution, (α, β), of α2 = β3 +1 is (±3, 2). This proof
employs only the properties of the ring, Z, of integers without recourse
to elliptic curves and is independent of the methods of algebraic number
fields. The advantage of our proof, over Euler’s isolated and other known
proofs of this result, is that it charts a common path to a novel approach
to the solution of Catalan’s conjecture and indeed of any Diophantine
equation.
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1 Introduction

Catalan’s equation is given as αm = βn + 1,m, n ∈ N, whose solutions
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are sought in integers. Catalan’s conjecture (1844) says that, apart from the

trivial integral solutions (α, β) = (0,−1), (±1, 0), the only non-trivial integral

solutions of the equation are (α, β) = (±3, 2) and that they occur precisely

when m = 2 and n = 3. We refer to [2] for the history, developments and proof

of Mihǎilescu’s theorem (2002) which solved this conjecture after about 158

years.

The case of m = 2 and n = 3 had earlier been completely solved by Euler

in 1738 ([2], p. 118) by an elementary use of the method of infinite descent.

Euler’s method was elementary because his proof did not involve the use of

objects outside Z, as against the common practice in modern proofs of the

same result on α2 = β3 + 1 ([2], p. 19). In addition to this, the known proof

of Catalan’s conjecture, now called Mihǎilescu’s theorem [2] is not elementary,

thereby isolating Euler’s case from other cases of Catalan’s equation. The fact

that all the modern proofs of Euler’s theorem did not generalize to solving

Catalan’s conjecture was also responsible for the delay in the eventual solution

of the conjecture, thereby motivating us to seek a general platform where the

Catalan’s equation, αm = βn + 1, could be understood once and for all.

In this paper we give another elementary proof of Euler’s theorem and

show how our method of proof may lead to both an elementary proof of Cata-

lan’s conjecture and a new parametrization of the integral solutions of Mordell

equations, α2 = β3 + k, k ∈ Z, different from those in [4].

2 Main results

Let fn : Z→ Z, be given as fn(y) = (y +10)n, n ∈ N, y ∈ Z. We define an

exact integer of power n as an integer which may be written as the nth−power

of some element of Z. In this sense −4 is an exact integer of power 1 only (since

−4 = (−4)1), while 4 is an exact integer of powers 1 (since 4 = 41) and 2 (since

4 = (2)2). Our point of departure in the consideration of powers of integers is

to view the set of all exact integers of power n in terms of the polynomials,

fn, as assured by the following Lemma.

Lemma 2.1 ([3], p. 3). Let E be the collection of all exact integers, explicitly
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given as

E = {ξn : ξ ∈ Z>0 and n ∈ 2N} ∪ {ξn : ξ ∈ Z and n ∈ N \ 2N}.

Then the set E is in a one-to-one correspondence with the set {fn(y) : y ∈
Z, n ∈ N}.
Proof. Define ρ : {fn(y) : y ∈ Z, n ∈ N} → E as ρ(fn(y)) := ξn, with

ξ = 10 + y, y ∈ Z. ρ is a one-to-one correspondence.

The constant 10 in fn may clearly be replaced with any other constant in Z,

while the definition of E is designed to take adequate care of the unnecessary

repetition of values brought about by the equality of (−m)2n and m2n, m ∈
Z, n ∈ N. See [3.] for a constructive approach to defining fn. We now use the

truth of the above Lemma to transform the equation α2 = β3+1 as follows. Set

α2 = f2(y) and β3 = f3(y + a), y, a ∈ Z, a 6= 0, to have f2(y) = f3(y + a) + 1,

which translates to

a3 + (30 + 3y)a2 + (300 + 60y + 3y2)a + (901 + 280y + 29y2 + y3) = 0.

This is a cubic monic polynomial equation in a whose coefficients are poly-

nomials in Z[y] and whose solutions are sought in Z. We call it Catalan’s poly-

nomial equation of index (2, 3) (since it corresponds to the Catalan’s equation

α2 = β3 + 1) and denote it by cy(a) = 0.

It has at least a real root, say a = −γ, γ ∈ R \ {0} which, since it is

expected above that a ∈ Z \ {0}, implies that γ ∈ Z \ {0}. The existence

of γ in Z \ {0} assures us that the equation α2 = β3 + 1 has an integral

solution pair (α, β), which could be called trivial (when αβ = 0) or non-trivial

(when αβ 6= 0). Employing Euclid’s division algorithm of the domain Z[X]

(or of Q[X], in order to have uniquely determined quotient and remainder

polynomials, qy,γ(a) and rγ(y) respectively; [1.], p. 28), we arrive at

cy(a) = a3 + (30 + 3y)a2 + (300 + 60y + 3y2)a + (901 + 280y + 29y2 + y3)

= (a + γ) · qy,γ(a) + rγ(y)

:= (a + γ) · (a2 + ([30− γ] + 3y)a + (300− 30γ + γ2 + 3[20− γ]y + 3y2))

+ ((901− 300γ + 30γ2 − γ3) + (280− 60γ + 3γ2)y + (29− 3γ)y2 + y3) = 0.



102 A new proof of Euler’s theorem on Catalan’s equation

We expect that the remainder polynomial rγ(y), which is essentially cy(−γ),

satisfies

rγ(y) = (901− 300γ + 30γ2− γ3) + (280− 60γ + 3γ2)y + (29− 3γ)y2 + y3 = 0,

since (a + γ) is a factor of cy(a). Now rγ(y) = 0 is viewed as a cubic monic

polynomial equation in y whose coefficients are polynomials in Z[γ].

The important point to note on the roots of rγ(y) = 0 is this:

The above reformulation of Catalan’s equation, α2 = β3+1, requires

that we seek only integral roots, y, to rγ(y) = 0, for γ = −a ∈
Z \ {0}.

What then are the necessary and sufficient conditions for rγ(y) = 0 to have

only integral solutions? This is addressed in the following central result of

the paper. We recall here, from [1], p. 139, the fact that the discriminant,

D := D(p3(y)), of a monic cubic polynomial, p3(y) ∈ Z[y], always satisfies the

congruence D ≡ 0 or 1 (mod 4).

Theorem 2.1. rγ(y) = 0 has only integral solutions if, and only if, γ = 1.

Proof. Let γ = 1, then r1(y) = 630 + 223y + 26y2 + y3 = 0, which gives

y = −7,−9,−10 ∈ Z.

Conversely, let rγ(y) = 0 has only integral solutions, then the discriminant,

D(rγ(y)), computed to be

D(rγ(y)) = −(23− 36γ − 54γ2 + 4γ3 + 27γ4)

must necessarily be a perfect square of some integer.

Solving D(rγ(y)) ≡ 1 (mod 4) gives γ = 2n, n ∈ Z. However, D(r2n(y)) <

0, for all n ∈ Z, hence D(r2n(y)) is not a perfect square of an integer for

any n ∈ Z. In the same way we solve D(rγ(y)) ≡ 0 (mod 4) to get γ =

2n + 1, n ∈ Z. We observe in this case that, since D(r2n+1(y)) < 0, for all

n ∈ Z \ {0}, we would still not have the expected perfect squared discriminant

from D(r2n+1(y)) as long as n ∈ Z \ {0}. Indeed D(rγ(y)) is a perfect square
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of some integer only at γ = 2(0) + 1 = 1.

Remarks 2.1. Note that D(r1(y)) = 36. The deductions from Theorem 2.1

are that the integral solutions, (α, β), of Catalan’s equation, α2 = β3 +1, have

to necessarily be consecutive integers, since

| α∓ β |= | ∓a |=| ±γ |=| ±1 |= 1

(where we add (respectively, subtract) when α ≤ 0 (respectively, α > 0)), and

that the integral values of y for which r1(y) = 0 are completely sufficient to

solve the (Catalan’s) equation in integers.

We now use this information to give a complete solution to α2 = β3 + 1

in Z × Z, thereby giving another elementary proof of Euler’s result on this

equation.

Corollary 2.1. The integral solution set of Catalan’s equation α2 = β3 + 1 in

Z× Z is precisely {(α, β) = (0,−1), (±1, 0), (±3, 2)}.
Proof. We refer to the above reformulation of α2 = β3 +1, which by Theorem

2.1, needs only be considered for γ = 1. Hence solving r1(y) = 630 + 223y +

26y2 + y3 = 0 gives y = −7,−9,−10. Therefore, when

y = −7:

α2 = f2(y) = f2(−7) = 9,

β3 = f3(y + a) = f3(−7− 1) = 8. Hence (α, β) = (±3, 2);

y = −9:

α2 = f2(y) = f2(−9) = 1,

β3 = f3(y + a) = f3(−9− 1) = 0. Hence (α, β) = (±1, 0);

y = −10:

α2 = f2(y) = f2(−10) = 0,

β3 = f3(y + a) = f3(−10− 1) = −1. Hence (α, β) = (0,−1).
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It may be seen that our approach to the study of α2 = β3 + 1 is based

only on the exploration of in-built structure of the equation as brought out in

Theorem 2.1. In retrospect, we observe that only the properties of Z and Z[X]

were employed in our proofs. In our opinion, the exploitation of properties of

Z and Z[X1, · · · , Xn] (or of Q and Q[X1, · · · , Xn]), in which Xi ∈ Z (or Q),

should be the only background on which the solution of a Diophantine equation

is sought. This is what makes the equations Diophantine.

3 Directions to Catalan’s conjecture and Mordell

equations

(1) Catalan’s polynomial equation, cy(a) = 0, its remainder polynomial,

rγ(y), and quotient polynomial, qy,γ(a), may equally prove indispensable

in a systematic production and study of (non-integral) algebraic solutions

of α2 = β3 + 1 in various quadratic fields (which, according to Theorem

2.1, must correspond to γ = −a ∈ Z\{0, 1}), as well as in the arithmetic

and ideal theories of these fields. A potent quest along this line is to

find how many non-trivial solutions of α2 = β3 + 1 are in each of these

number fields. The proof of this may be fashioned on our Theorem 2.1

and may not easily be deductable from other proofs of Euler’s theorem.

(2) Partial solutions of Catalan’s conjecture leading to the 2002 Mihǎilescu’s

theorem may also be subsumed under some properties of rγ(y), qy,γ(a) or

their generalizations, say rn,γ(y), qn−1,y,γ(a), in αm = βn + 1, m, n ∈ N.

Indeed if we combine Mihǎilescu’s theorem with Theorem 2.1 above, we

may conclude that:

the generalization, rn,γ(y) = 0, of rγ(y) = 0 in αm = βn+1 has

only integral solutions if, and only if, m = 2, n = 3 and γ = 1,

thus giving Mihǎilescu’s theorem an elementary outlook. An indepen-

dent proof of this statement, hence an elementary proof of Catalan’s

conjecture, and the systematic study of the contributions of the roots

of rn,γ(y) = 0 to other algebraic solutions of the Catalan’s equation and
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the theory of their number fields may however have to be deduced from

a proper handling of the explicit expression for rn,γ(y).

(3) The equation α2 = β3+1 may also be seen as a representative of members

of the family of Mordell equations, α2 = β3 + k, k ∈ Z, where the

requirement for the existence of integral solutions may be sought in the

form

γ = f(k),

reminiscence of Theorem 2.1, for some function f : Z→ Z. The required

discriminant, D(rγ,k(y)), of the corresponding reminder polynomial equa-

tion

rγ,k(y) = (900+k−300γ+30γ2−γ3)+(280−60γ+3γ2)y+(29−3γ)y2+y3 = 0,

of the Mordell polynomial equation, has been computed to be

D(rγ,k(y)) = −27k2 + (4 + 36γ + 54γ2)k − 4γ3 − 27γ4

and may be treated like we did D(rγ,1(y)) =: D(rγ(y)) in the proof of

Theorem 2.1. It is however clear from Theorem 2.1 that, for the above

mentioned function f : Z → Z, we have f(1) = 1 and, from Theorem

14.2.3 of [1], that f is going to be a function of functions. The structure

and properties of f may ultimately be exploited in further understanding

the integral solutions of α2 = β3 + k, k ∈ Z, which has been completely

solved using a different approach in [4].

The ideas outlined in (1)− (3) above or in [4] may be employed to seek and

study the solution set and field theory of the equation αm = βn + k, m, n ∈
N, k ∈ Z.

The above method of reducing Diophantine equations to equations involv-

ing members of the Noetherian domain Z[X1, · · · , Xk] (or of Q[X1, · · · , Xk],

with Xi ∈ Z (or Q)), which we termed Diophantine polynomials, is a natu-

ral technique to the complete solution of any Diophantine equation (cf. [3])

and is a candidate for the much needed Galois theory of Diophantine equations.
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