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Abstract

In this Paper we formulate a mathematical model of dengue virus
transmission in the human body to monitor the effects of migratory pop-
ulation and some control strategies at aquatic and adult stages of vector
(mosquito). The model has a locally asymptotically stable disease-free
equilibrium (DFE) whenever a certain epidemiological threshold, known
as the basic reproduction number (R0), is less than unity. It is also
shown, using a Lyapunov function and Lasalle Invariance Principle that
the DFE of the dengue model is globally-asymptotically stable (GAS)
whenever the reproduction number (R0) is less than unity. The model
has a locally-asymptotically stable endemic equilibrium point (EEP)
whenever R0 ≥ 1. With the help of Lyapunov function and Lasalle
Principle (Goh-Volterra type), by considering special case, the EEP of
the model is shown to be GAS whenever R0 ≥ 1. The model sim-
ulations reveals that the migratory infected individuals increases the
burden of the dengue disease and also precautionary measures at the
aquatic and adult stages decrease the number of new cases of dengue
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virus. Numerical simulation indicates that if we take the precautionary
measures effectively then it would be more effective then even giving
the treatment to the infected individuals.

Keywords: Aedes aegyptic; Dengue Fever; Mathematical modeling; Equilib-

ria; Local and Global Stability; Reproduction number; Migratory population;

Control strategy

1 Introduction

Dengue is endemic in more than 110 countries [26, 7, 37, 39]. It infects 50 to

390 million people worldwide a year, leading to half a million hospitalizations

[35, 38, 37, 36], and approximately 25,000 deaths [34, 39], For the decade of the

2000s, 12 countries in Southeast Asia were estimated to have about 3,000,000

infections and 6,000 deaths annually [34]. In the United States the rate of

dengue infection among those who return from an endemic are with a fever is

3-8% [39, 37].

Dengue fever, is an infectious tropical disease caused by the dengue virus.

Dengue is transmitted by several species of mosquito within the genus Aedes,

principally Aedes aegypti. The virus has four different types [7, 16, 9, 23],

but only short-term immunity to the others. Subsequent infection with a

different type increases the risk of sever complications. The incidence of dengue

fever has increased dramatically since the 1960s, Dengue has become a global

problem since second World War.

The incubation period (time between exposure and onset of symptoms)

ranges from 3-14 days, but most often it is 4-7 days [37, 21, 39]. Therefore,

travellers returning from endemic area are unlikely to have dengue if fever or

other symptoms start more than 14 days after arriving home [2, 39]. Accord-

ing to the World Tourism Organization, in 2004, 125.4 million international

tourists visited countries where they might be at risk for acquiring infection

7%-45% travellers [40]. With approximately two billion people living in tropi-

cal and subtropical regions of the world, and an additional roughly 120 million

people each year [40] travelling to these region, a large share of the world’s
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population is at risk of contracting dengue.

The burden of dengue in Africa remains poorly understood. Travellers and

military personnel visiting or stationed in Africa have been identified as having

laboratory-confirmed dengue infections, indicating that the virus is circulating

[39, 37]. One billion people(15% of the world’s populations) reside in India.

India’s population is twice that of south-east Asia, the region that currently

reports the most dengue related deaths [39]. According to the WHO, South-

East Asia Region, the majore public health problem in Bangladesh is dengue.

In Indonesia dengue is hyperendemicity with all four serotypes circulating in

urban areas [39, 2].

Several mathematical models have been developed in the literature to gain-

insights into the transmission dynamics of dengue in a community [23, 20,

21, 22, 7, 6, 5, 25, 4, 24, 14, 41, 15]. In this paper we extended some of the

earlier models by considering the effects of migrated individuals and some other

control effects of the vectors. To control the dengue virus effectively and to find

the effects of migratory population , we should understand the dynamics of

the disease transmission and take into account all of the relevant details, such

as the dynamics of the human population and vector. For a realistic model, we

consider some special classes like migratory class, treatment class and vector

aquatic class. We also present and analyze some control rate parameters, that

will help to find the effective control strategies of the diseases. We present

and analyze a non-linear ODE model that incorporates ten mutually-exclusive

classes. Numerical simulations results are presented to support the analytical

conclusion followed by conclusion of the present work.

2 Model Formulation

The dengue virus follows two main modes of transmission: human to

mosquito and mosquito to human [8, 9, 35]. The model assumes a homoge-

nous mixing of the human and vector (mosquito) populations, so that each

mosquito bite has equal chance of transmitting the virus to susceptible human

in the population (or acquiring infection from an infected human). The total

number of individuals at time t, denoted by NH(t), is sub-divided into six

mutually-exclusive sub-populations of susceptible humans SH(t), exposed hu-
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mans EH(t), infectious humans IH(t), migrated population MH(t), treatment

class TH(t) and recovered humans RH(t), so that NH = NH(t) = SH(t) +

EH(t) + IH(t) + MH(t) + TH(t) + RH(t).

Similarly, the total vector population at time t, denoted by NV (t), is subdivided

into aquatic class AV (t), susceptible mosquitoes SV (t), exposed mosquitoes

EV (t), infectious mosquitoes IV (t), so that NV = NV (t) = AV (t) + SV (t) +

EV (t)+ IV (t). The susceptible human population is generated via recruitment

of humans (by birth ) into the community (at a constant rate, πH). This

population is decreased following infection, which can be acquired via effective

contact with an exposed or infectious vector at a rate λH the force of infection

of humans given by

λH =
CHV (ηV EV + IV )

NH

; 0 < ηV < 1 (1)

where the modification parameter 0 < ηV < 1 accounts for the assumed reduc-

tion in transmissibility of exposed mosquitoes relative to infectious mosquitoes

[7].

The functional forms of the incidence functions associated with the trans-

mission dynamics of dengue disease will be derived. The derivation is based

on the basic fact that for mosquito-borne diseases (such as dengue), the total

number of bites made by mosquitoes must equal the total number of bites

received by humans [1]. Since mosquitoes bite both susceptible and infected

humans, it is assumed that the average number of mosquito bites received by

humans depends on the total sizes of the populations of mosquitoes and hu-

mans in the community. It is assumed that each susceptible mosquito bites an

infected human at an average biting rate, bS, and the human hosts are always

sufficient in abundance, so that it is reasonable to assume that the biting rate,

bS, is constant. Let,

CHV = ρHV bS, (2)

be the rate at which mosquitoes acquire infection from infected humans (ex-

posed or infectious), where ρHV is the transmission probability from an infected

human to a susceptible mosquito and bS is the biting rate per susceptible

mosquito, so that CHV is a constant. Similarly, let

CV H = ρV HbI (3)
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be the rate at which humans acquire infection from infected mosquitoes (ex-

posed or infectious), where ρHV is the transmission probability from an infected

mosquito to a susceptible human and bI is the average biting rate per infected

mosquito. Thus, for the number of bites to be conserved, the following equa-

tion must hold,

CHV NV = CHV NH (4)

so that,

NV =
CV H(NH , NV )NH

CHV

(5)

therefore,

λH =
CHV (ηV EV + IV )

NH

, 0 < ηV < 1 (6)

Similarly, it can be shown that the force of infection of mosquitoes (denoted

by λV ) is given by,

λV =
CHV (ηHEH + IH)

NH

; 0 < ηH < 1 (7)

where the modification parameter 0 < ηH < 1 accounts for the relative infec-

tiousness of exposed humans in relation to infectious humans.

Let πH is the recruitment of humans into the population (assumed suscep-

tible), λH is the infection rate of susceptible humans (which results following

effective contact with exposed or infectious mosquitoes) and µH is the natural

death rate of humans. Exposed humans develop clinical symptoms of dengue

disease, and move to the infectious class, at a rate σH . We also consider that

π1 is the migratory humans come into the population from which µ1 is the rate

at which this added to the exposed class and µ2 is the rate at which this added

to the infectious class. Infectious humans recover and move into the RH class

at a rate γ1 and suffer disease-induced death at a rate δH . It is assumed that

recovered individuals acquire lifelong immunity against re-infection.

The vector population is generated by birth at a rate πV and γm is the

mean aquatic transition rate. The aquatic state will move into the susceptible

class at a rate γm and λV is the infection rate of the susceptible vector at

which they move in to the exposed class. Exposed vectors develop symptoms

of disease and move to the infectious class at a rate σV and θc is the extrinsic

incubation rate of the vector population. Since vector (Aedes aegypt) popula-

tions can be controlled in two stages (aquatic stage and adult stage); here Ca is
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considered as the controlling parameter in aquatic stage and Cm is considered

as controlling parameter in adult stage. Infections vectors die due to disease

at a rate δV .

The model for the transmission dynamics of dengue in a population is given

by the following system of non-linear differential equation:

dSH

dt
= πH − λHSH − µHSH ,

dEH

dt
= λHSH + µ1MH − (µH + σH)EH ,

dIH

dt
= σHEH + µ2MH − (τH + µH + δH)IH ,

dMH

dt
= π1 − (µ1 + µ2 + µH)MH ,

dTH

dt
= τHIH − (µH + γ1)TH ,

dRH

dt
= γ1TH − µHRH , (8)

dAV

dt
= πV − (γm + µV + Ca)AV ,

dSV

dt
= γmAV − (λV + µV + Cm)SV ,

dEV

dt
= λV SV − (σV + θc + µV + Cm)EV ,

dIV

dt
= (σV + θc)EV − (µV + δV + Cm)IV .

In summary, the model (8) is an extension of some earlier standard models for

vector-borne diseases transmission, such as those in [3, 31, 7, 17, 14, 6, 5, 23,

20, 21, 22, 41, 25, 13, 4, 15], by

(i) introducing the migrated class MH(t) to monitor the impact of the mi-

gratory human population in dengue transmission dynamics (where the

exposed migratory population is added to the exposed class EH(t) at a

rate µ1, and the infected migratory population is added to the infective

class IH(t) at a rate µ2;

(ii) incorporating the treatment class TH(t) in dengue transmission dynam-

ics;

(iii) considering the vector-aquatic class AV (t) to find the effects of the control

strategies at the aquatic stage;
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(iv) additionally incorporating the controlling rate parameters Ca and Cm

which will monitor the effects of precautionary measures at the aquatic

stage (Ca) and adult stage (Cm), respectively.

The variables of the models (8) are described in Table 1 and the parameters

value of the model are given in the Table 2. Schematically the model (8) can

be shown as follows:

Figure 1: The diagram of the model(8)

2.1 Properties of the Model

Here the basic dynamical feature of the model (8) will be explored. We

claim the following.
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2.1.1 Positivity and boundedness of solutions

Lemma 1. The closed set Ω = {(SH , EH , IH , MH , TH , RH , AV , SV , EV , IV ) ∈
R10

+ : SH + EH + IH + MH + TH + RH ≤ πH

µH
, AV + SV + EV + IV ≤ πV

µV
} is

positively-invariant and attracting with respect to the basic model (8)

Proof. Adding the first six equations and the last four equations in the

model, respectively, gives:

dNH

dt
= πH − µHNH − δHIH + π1 (9)

and,
dNV

dt
= πV − CaAV − (SV + IV + EV )Cm − µV NV − δV IV (10)

Since dNH

dt
≤ πH − µHNH + π1 and dNV

dt
≤ πV − µV NV , it follows that dNH

dt
> 0

and dNV

dt
> 0 if NH(t) < πH+π1

µH
and NV (t) < πV

µV
, respectively.

Thus, a standard comparison theorem [33] can be used to show that NH(t) ≤
NH(0)

exp−µH(t)+πH+π1

µH
[1−exp−µH(t)] and NV (t) ≤ NV (0) exp−µV (t) +πV

µV
[1−exp−µV (t)].

In particular, NH(t) ≤ πH+π1

πH
and NV (t) ≤ πV

µV
if NH(0) ≤ πH+π1

µH
and NV (0) ≤

πV

µV
, respectively. Thus, Ω is positively invariant. Further, if NH(t) < πH+π1

µH
and

NV (t) < πV

µV
, then either the solution enter Ω in finite time, or NH(t) approaches

πH+π1

µH
and NV (t) approaches πV

µV
, and the infected variable EH , IH , MH , TH , EV , IV

approaches zero. Hence, Ω is attracting (i.e., all solution in R10
+ eventually en-

ter Ω ). Thus, in Ω, the basic model (8) is well-posed epidemiologically and

mathematically [11]. Hence, it is sufficient to study the dynamics of the basic

model in Ω.

2.2 Stability Analysis of the Model

2.2.1 Disease-free equilibrium (DFE)

The basic model (8) has a DFE given by

E0 = (S∗H , E∗H , I∗H , M∗
H , T ∗H , R∗H , A∗V , S∗V , E∗V , I∗V )

=

[
πH

µH

, 0, 0, 0, 0, 0,
πV

(µV + Ca + γm)
,

γmπV

(γm + µV + Ca)(µV + Cm)
, 0, 0)

]
The linear stability of E0 is studied using the next generation operator tech-

nique in[32]. The associated non-negative matrix, F , for the new infection
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terms, and the non-singular M−matrix, for the remaining transfer terms, are

given, respectively, by

F =



0 0 0 0
CHV ηV S∗

H

N∗
H

CHV S∗
H

N∗
H

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
CV HηHS∗

V

N∗
H

CV HS∗
V

N∗
H

0 0 0 0

0 0 0 0 0 0


and

V =



k1 0 −µ1 0 0 0

−σH k2 −µ2 0 0 0

0 0 k3 0 0 0

0 −τH 0 k4 0 0

0 0 0 0 k5 0

0 0 0 0 −(σV + θc) k6


where, k1 = µH +σH , k2 = τH +µH +δH , k3 = µ1 +µ2 +µH , k4 = µH +γ1

k5 = σV + θc + µV + Cm, k6 = µV + δV + Cm.

The associated basic reproduction number, denoted by R0, is then given

by

R0 = ρ(FV −1), where ρ is the spectral radius of FV −1. It follows that

R0 =
[k2k1k5k6C1S

∗
HC2S

∗
V {ηHηV k2k6 + ηHk2σV + ηHk2θc + σHηV k6 + σV σH + σHθc}]

1
2

k2k1k5k6N∗
H

where, C1 = CHV and C2 = CV H .

Lemma 2. The DFE, E0, of the system (8), is locally-asymptotically stable

(LAS) if R0 < 1, and unstable if R0 > 1.

The threshold quantity, R0, measures the average number of secondary

cases generated by a single infected individual (or vector) in a completely sus-

ceptible human (vector) population [11, 27]. The above result implies that a

small influx of infected individuals (or vector) would not generate large out-

breaks if R0 < 1, and the disease will persist (be endemic) in the population

if R0 > 1. However, in order for disease elimination to be independent of the
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initial sizes of the sub-populations of the model when R0 < 1, a global stabil-

ity property must be established for the DFE when R0 < 1. This is explored

below.

2.2.2 Global Stability of the DFE of Model (8)

We claim the following:

Theorem 1. The DFE, E0, of the model (8), is globally-asymptotically stable

(GAS) in Ω if R0 < 1.

Proof.Consider the Lyapunov function

F = f1EH + f2IH + f3MH + f4EV + f5IV ,

where,

f1 =
C2SV (ηHk2 + σH)(ηV k6 + σV + θc)k6

R0(k1k2k5k6NH)
,

f2 =
C2SV (ηV k6 + σV + θc)k1k6

R0(k1k2k5k6NH)
,

f3 =
C2SV (ηHµ1k2 + µ2k1 + σHµ1)(ηV k6 + σV + θc)k6

R0(k1k2k5k6NH)
,

f4 = 0,

f5 =
ηV k6 + σV + θc

k5

,

f6 = 1,

with Lyapunov derivative given by (where a dot represents differentiation with
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respect to t)

Ḟ = f1ĖH + f2
˙IH + f3ṀH + f4

˙TH + f5ĖV + f6
˙IV ,

= f1[λHSH + µ1MH − k1EH ] + f2[σHEH + µ2MH − k2IH ] + f3[π1 − k3MH ]

+ f3[π1 − k3MH ] + f5[λV SV − k5EV ] + f6[σV EV + θcEV − k6IV ],

= f1

[
SHC1(ηV EV + IV )

NH

+ µ1MH − k1EH

]
+ f2

[
σHEH + µ2MH − k2IH

]
+ f3

[
π1 − k3MH

]
+ f5

[
C2SV (ηHEH + IH)

NH

− k5EV

]
+ f6

[
σV EV + θcEV − k6IV

]
,

=
C2SV (ηHk2 + σH)(ηV k6 + σV + θc)k6

R0(k1k2k5k6NH)

[
C1SH(ηV EV + IV ) + MHNH − k1EHNH

]
+ σV EV + θcEV − k6IV +

(ηV k6 + σV + θc)

k5NH

[
k5EV NH + C2SV (ηHEH + IH)

]
+

C2SV (ηV k6 + σV + θc)k1k6

R0(k1k2k5k6NH)

[
σHEH + µ2MH − k2IH

]
+

C2SV (ηHµ1k2 + µ2k1 + σHµ1)(ηV k6 + σV + θc)k6

R0(k1k2k5k6NH)

[
π1 − k3MH

]
= k6(ηV EV + IV )R0 + σV EV + θcEV − k6IV − EV ηHk6 − σV EV − θcEV

+
C2SV (ηV k6 + σV + θc)

R0(k1k2k3k5k6)NHNH

[
k3k6(ηHk2 + σH)(µ1MHNH − k1EHNH)

+R0k1k2k3k6NHEHηH +R0k1k2k3k6NHIH + k1k3k6NHEHσH + k1k3k6NHMHµ2

− k1k3k6k2NHIH + NH(ηHµ1k2 + µ2k1 + σHµ1)k6(π1 − k3MH)

]
By considering only the exposed and infectious migrated populations, we

get the following algebraic manipulation:

Ḟ = k6(ηV EV + IV )(R0 − 1)

+
C2SV (ηV k6 + σV + θc)

R0(k1k2k3k5k6)NHNH

[
R0k1k2k3k6NHEHηH +R0k1k2k3k6NHIH

+ k2k3k6MHNHηHµ1 − k1k2k3k6EHNHηH + k3k6MHNHσHµ1 − k1k3k6EHNH

+ k1k3k6EHNHσH + k1k3k6NHMHµ2 − k1k2k3k6NHIH − k2k3k6MHNHµ1ηH

− k1k3k6MHNHµ2 − k3k6MHNHσHµ1

]
= k6(ηV EV + IV )[R0 − 1] +

C2SV (ηV k6 + σV + θc)

R0k5NH

ηHEH

[
R0 − 1

]
+

C2SV (ηV k6 + σV + θc)

R0k5NH

IH

[
R0 − 1

]
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Thus, Ḟ < 0 if R0 < 1 with Ḟ = 0 if and only if EH = IH = MH =

TH = EV = IV = 0. It follows, from the Lasalle Invariance Principle [18], that

EH → 0, IH → 0, MH → 0, TH → 0, EV → 0 and IV → 0 as t → ∞ (i.e., the

disease dies out). Thus, (EH , IH , MH , TH , EV , IV ) = (0, 0, 0, 0, 0, 0) as t →∞.

Now, for any ε > 0 sufficiently small, there exists a t1 > 0 such that if

t > t1, then

EH < ε, IH < ε, MH < ε, TH < ε, EV < ε, IV < ε (11)

Now it follows from the equations for SH and AV in (8) that for t > t1 (and

noting (11))

dSH

dt
= πH − λHSH − µHSH ≥ πH −

CHV (ηV + 1)ε

NH

− µHSH

dAV

dt
= πV − (γm + µV + Ca)AV

Thus, by a standard comparison theorem [30]

lim inf
t→∞

SH(t) ≥ πH − CHV (ηV + 1)ε

µH

(12)

lim inf
t→∞

AV (t) ≥ πV

µV

(13)

Since ε > 0 is arbitrarily small, letting ε → 0 in (12) gives

lim inf
t→∞

SH(t) ≥ πH

µH

(14)

Similarly, it can be shown that

lim sup
t→∞

SH(t) ≤ πH

µH

(15)

and

lim sup
t→∞

AV (t) ≤ πV

µV

(16)

Hence, it follows from (13), (14), (15) and (16) that

lim
t→∞

SH(t) =
πH

µH

and lim
t→∞

AV (t) =
πV

µV

Thus,

lim
t→∞

(SH(t), EH(t), IH(t), MH(t), TH(t), RH(t), AV (t), SV (t), EV (t), IV (t))

(17)
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= (
πH

µH

, 0, 0, 0, 0, 0,
πV

(µV + Ca + γm)
,

γmπV

(γm + µV + Ca)(µV + Cm)
, 0, 0) = E0

The epidemiological implication of theorem (1) is that the classical epidemi-

ological requirement at R0 < 1 is necessary and sufficient for the elimination

of dengue virus in the community.

2.3 Existence of Endemic Equilibria of the Model (8)

To find the conditions for the existence of the endemic equilibria of the

model (8) (that is, equilibria of the model (8) for which the disease is endemic

in the population), denoted by

E1 = (S∗∗H , E∗∗H , I∗∗H , M∗∗
H , T ∗∗H , R∗∗H , A∗∗V , S∗∗V , E∗∗V , I∗∗V )

the equations in the model (8) are solved in terms of the associated forces of

infection at steady-state, namely

λ∗∗H =
CHV (ηV E∗∗V + I∗∗V )

N∗∗
H

and λ∗∗V =
CHV (ηHE∗∗H + I∗∗H )

N∗∗
H

(18)

Setting the right-hand sides of the equations in (8) to zero gives (in terms

of S∗∗H > 0) the following expressions for the state variables of the model:

S∗∗H =
πH

λ∗∗H + µH

,

M∗∗
H =

π1

k3

,

E∗∗H =
λ∗∗H S∗∗H k3 + µ1π1

k1k3

,

I∗∗H =
σHλ∗∗H S∗∗H k3 + σHµ1π1 + µ2π1k1

k1k2k3

,

T ∗∗H =
σHλ∗∗H τHS∗∗H k3 + τHσHµ1π1 + k1π1µ2τH

k1k2k3k4

, (19)

R∗∗H =
γ1σHλ∗∗H τHS∗∗H k3 + τHγ1σHµ1π1 + µ2π1k1τHγ1

k1k2k3k4µH

,

A∗∗V =
πV

γm + µV + Ca

,

S∗∗V =
γmA∗∗V

λ∗∗V + µV + Cm

,

E∗∗V =
λ∗∗V S∗∗V

k5

,

I∗∗V =
(σV + θc)λ

∗∗
V S∗∗V

k5k6

,
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Thus using (19), from λ∗∗V in (18) we get:

λ∗∗V =
CHV (λ∗∗H S∗∗H k3 + µ1π1)(ηHk2 + σH) + CHV µ2π1k1

k1k2k3N∗∗
H

(20)

Now, substituting the value of λ∗∗V of (20) in λ∗∗H of (18), we get:

λ∗∗H =
G

k5k6

[
(λ∗∗H S∗∗H k3 + µ1π1)B + k1k2k3k4µHS∗∗H + D

]2 (21)

where,

B = k2k4µH + k4µH + µHσHτH + σHτHγ1,

D = π1k1k4µH(k2k3 + µ2) + τHk1k2µ2π1(µH + γ1),

G =

[
CHV λ∗∗H S∗∗H k2k3ηH + CHV µ1π1σH + CHV λ∗∗H S∗∗H k3σH

+ CHV µ1π1ηHk2 + CHV µ2π1k1

]
[
CHV S∗∗V ηV k6 + CHV S∗∗V (σV + θc)

]
.

It follows that the endemic equilibria of the model (8) satisfy the following

polynomial (using (18), (20) and (21), then simplifying, we get:)

(λ∗∗H )3(S∗∗H k3)
2k5k6

[
((k2 + 1)k4µH)2 + (σHτH(µH + γ1))

2

+ 2k4µHτHσH(k2µH + k2) + µH + γ1

]
+ (λ∗∗H )2

[
2k5k6k3S

∗∗
H µ1π1bB

2 + 2(S∗∗H k3)
2Bk1k2k4k5k6µH + 2DBS∗∗H k3k5k6

]
+ λ∗∗H

[
k5k6µ1π1B

2 + k5k6(k1k2k3)
2 + (k4µHS∗∗H )2 + D2

+ 2k1k2k3k4k5k6µ1π1BµHS∗∗H + 2DBµ1π1k5k6

− (CHV )2S∗∗H S∗∗V k3(k2ηH + σH)(ηV k6 + σV + θc)

]
− (CHV )2S∗∗V (k2ηH + σH)(ηV k6 + σV + θc)(µ1π1 + µ2π1k1) = 0

i.e.,

X(λ∗∗H )3 + Y (λ∗∗H )2 + Zλ∗∗H − P = 0 (22)
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where,

X = (S∗∗H k3)
2k5k6

[
((k2 + 1)k4µH)2 + (σHτH(µH + γ1))

2

+ 2k4µHτHσH(k2µH + k2) + µH + γ1

]
,

Y = 2k5k6k3S
∗∗
H µ1π1bB

2 + 2(S∗∗H k3)
2Bk1k2k4k5k6µH + 2DBS∗∗H k3k5k6,

Z = k5k6µ1π1B
2 + k5k6(k1k2k3)

2 + (k4µHS∗∗H )2 + D2 + 2k1k2k3k4k5k6µ1π1BµHS∗∗H

+ 2DBµ1π1k5k6 − (CHV )2S∗∗H S∗∗V k3(k2ηH + σH)(ηV k6 + σV + θc),

P = (CHV )2S∗∗V (k2ηH + σH)(ηV k6 + σV + θc)(µ1π1 + µ2π1k1),

Now according to Routh-Hurwitz criterion if we look at the equation (22),

then there is only one sign change, thus there is only one real root exists for

the equation. Therefore the system (8) has a unique EEP, of the form

E1 = (S∗∗H , E∗∗H , I∗∗H , M∗∗
H , T ∗∗H , R∗∗H , A∗∗V , S∗∗V , E∗∗V , I∗∗V ),

We claim the following:

Lemma 3. The model (8) has one positive (endemic) equilibrium whenever

R0 > 1, and no positive equilibrium otherwise.

Hence, the above mathematical analysis show that the basic dengue model

(8) has a globally-asymptotically stable disease-free equilibrium wheneverR0 <

1, and a unique endemic equilibrium if R0 > 1.

2.3.1 Local Stability of Endemic Equilibria

The local stability of EEP, E1, of the model (8) is consider for the special

case where we use NH = N∗∗
H , disease-induced mortality is zero(δH = δV = 0)

and the definition SH = N∗∗
H −EH−IH−MH−TH−RH and SV = N∗∗

V −EV −IV
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in (8), gives the following reduced basic model:

dEH

dt
=

C1(ηV EV + IV )

N∗∗
H

[
N∗∗

H − EH − IH −MH − TH −RH

]
+ µ1MH − (µH + σH)EH ,

dIH

dt
= σHEH + µ2MH − (τH + µH)IH ,

dMH

dt
= π1 − (µ1 + µ2 + µH)MH ,

dTH

dt
= τHIH − (µH + γ1)TH , (23)

dRH

dt
= γ1TH − µHRH ,

dEV

dt
=

C2(ηHEH + IH)

N∗∗
H

[
N∗∗

V − EV − IV

]
− (σV + θc + µV + Cm)EV ,

dIV

dt
= (σV + θc)EV − (µV + Cm)IV .

Now we can rewrite the model (23) as

dEH

dt
=

C1(ηV EV + IV )

N∗∗
H

[
N∗∗

H − EH − IH −MH − TH −RH

]
+ µ1MH − k1EH ,

dIH

dt
= σHEH + µ2MH − k2IH ,

dMH

dt
= π1 − k3MH ,

dTH

dt
= τHIH − k4TH , (24)

dRH

dt
= γ1TH − µHRH ,

dEV

dt
=

C2(ηHEH + IH)

N∗∗
H

[
N∗∗

V − EV − IV

]
− k5EV ,

dIV

dt
= (σV + θc)EV − k6IV .

where,

k1 = µH + σH , k2 = τH + µH , k3 = µ1 + µ2 + µH ,

k4 = µH + γH , k5 = σV + θc + µV + Cm, k6 = µV + CM .

It is easy to show that the system (23) has a unique EEP, of the form

Ē1 = (E∗∗H , I∗∗H , M∗∗
H , T ∗∗H , R∗∗H , E∗∗v , I∗∗v ), whenever R01 = R0|δH=δV =0 > 1. We

claim the following theorem:

Theorem 2. The unique endemic equilibrium, Ē1, of the reduced basic model

(23) is LAS whenever R01 = R0|δH=δV =0 > 1.
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Proof. The proof of theorem is based on using a Krasnoselskii sub-linearity

trick (see [10, 12, 28] and also [19, 22]). Linearizing the system (23) around

the endemic equilibrium, Ē1, gives

dEH

dt
= a3ηV EV + a3IV + (−a1 − k1)EH − a1(IH + MH + TH + RH) + µ1MH ,

dIH

dt
= σHEH + µ2MH − k2IH ,

dMH

dt
= π1 − k3MH ,

dTH

dt
= τHIH − k4TH , (25)

dRH

dt
= γ1TH − µHRH ,

dEV

dt
= a4ηHEH + a4IH + (−a2 − k5)EV − a2IV ,

dIV

dt
= (σV + θc)EV − k6IV .

where,

a1 =
C1(ηV EV + IV )

N∗∗
H

, a2 =
C2(ηHEH + IH)

N∗∗
H

,

a3 =
C1SH

N∗∗
H

, a4 =
C2SV

N∗∗
H

.

It follows that the Jacobian of the system (25), evaluated at Ē1, is given

by

J(Ē1) =



−a1 − k1 −a1 µ1 − a1 −a1 −a1 a3ηV a3

σH −k2 µ2 0 0 0 0

0 0 −k3 0 0 0 0

0 τH 0 −k4 0 0 0

0 0 0 γ1 −µH 0 0

a4ηH a4 0 0 0 −a2 − k5 −a2

0 0 0 0 0 σV + θc −k6


.

Assume that the system (25) has solution of the form

Z̄(t) = Z̄0e
θt, (26)

with Z̄0 = (Z1, Z2, Z3, Z4, Z5, Z6, Z7), θ, Zi ∈ C(i = 1, 2, ...7). Substituting a



60 Effects of Migratory Population and Control Strategies ...

solution of the form (26) into the system (25) gives

θZ1 = a3ηV Z6 + a3Z7 + (−a1 − k1)Z1 − a1(Z2 + Z3 + Z4 + Z5) + µ1Z4,

θZ2 = σHZ1 + µ2Z3 − k2Z2,

θZ3 = π1 − k3Z3,

θZ4 = τHZ2 − k4Z4, (27)

θZ5 = γ1Z4 − µHZ5,

θZ6 = a4ηHZ1 + a4Z2 + (−a2 − k5)Z6 − a2Z7,

θZ7 = (σV + θc)Z6 − k6Z7.

System (27) is simplified as follows. Firstly, all the negative terms in the

2nd, 3rd, 4th, 5th and 7th equations of (27) are moved to the respective left-

hand sides.

Z2 =
σHZ1

θ + k2

+
µ2π1

(θ + k3)(θ + k2)
,

Z3 =
π1

θ + k3

,

Z4 =
σHZ1τH

(θ + k2)(θ + k4)
+

µ2τHπ1

(θ + k3)(θ + k2)(θ + k4)
,

Z5 =
σHZ1τHγ1

(θ + k2)(θ + k4)(θ + µH)
+

µ2τHπ1γ1

(θ + k3)(θ + k2)(θ + k4)(θ + µH)
,

Z7 =
σV + θc

θ + k6

Z6.

Secondly, the (resulting) equations are then re-written in terms of Z1 and

Z6 and substituted into the remaining equations of (27), and all its negative

terms are moved to the right-hand side. Doing all these lead to the following

equations:[
1 +

θ + a1

k1

+
a1σH

k1(θ + k2)
+

σHa1τH

(θ + k2)(θ + k4)k1

+
σHa1τHγ1

(θ + k2)(θ + k4)(θ + µH)k1

]
Z1

+ Γ =
a3ηV Z6 + a3Z7 + µ1Z3

k1

,
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[
1 +

θ

k2

]
Z2 =

σH

k2

Z1 +
µ1

k2

Z3,[
1 +

θ

k3

]
Z3 =

π1

k3

,[
1 +

θ

k4

]
Z4 =

τH

k4

Z2,[
1 +

θ

µH

]
Z5 =

γ1

µH

Z4,[
1 +

θ + a2

k5

+
a2(σv + θc)

k5(θ + k6)

]
Z6 =

a4ηHZ1 + a4Z2

k5

,[
1 +

θ

k6

]
Z7 =

(σv + θc)

k6

Z6.

Now we can rewrite the equations as:

Z1[1 + F1(θ)] + Γ = (MZ̄)1,

Z2[1 + F2(θ)] = (MZ̄)2,

Z3[1 + F3(θ)] = (MZ̄)3,

Z4[1 + F4(θ)] = (MZ̄)4, (28)

Z5[1 + F5(θ)] = (MZ̄)5,

Z6[1 + F6(θ)] = (MZ̄)6,

Z7[1 + F7(θ)] = (MZ̄)7.

where,

F1 =

[
θ + a1

k1

+
a1σH

k1(θ + k2)
+

σHa1τH

(θ + k2)(θ + k4)k1

+
σHa1τHγ1

(θ + k2)(θ + k4)(θ + µH)k1

]
,

F2 =
θ

k2

,

F3 =
θ

k3

,

F4 =
θ

k4

,

F5 =
θ

µH

,

F6 =
θ + a2

k5

+
a2(σv + θc)

k5(θ + k6)
,

F7 =
θ

k6

.
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with,

M =



0 0 µ1

k1
0 0 a3ηV

k1

a3

k1
σH

k2
0 µ2

k2
0 0 0 0

0 0 0 0 0 0 0

0 τH

k4
0 0 0 0 0

0 0 0 γ1

µH
0 0 0

a4ηH

k5

a4

k5
0 0 0 0 0

0 0 0 0 0 (σv+θc)
k6

0


,

The notation M(Z̄)i (with i = 1, 2, 3, 4, 5, 6, 7) denotes the ith coordinate

of the vector M(Z̄). It should be noted that the matrix M has non-negative

entries, and the equilibrium Ē1 satisfies Ē1 = MĒ1.

Furthermore, since the coordinates of Ē1 are all positive, it follows then

that if Z̄ is a solution of equation (28), then it is possible to find a minimal

positive real number, s, such that [19, 22]

| Z̄ |≤ sĒ1, (29)

where,

| Z̄ |= (| Z1 |, | Z2 |, | Z3 |, | Z4 |, | Z5 |, | Z6 |, | Z7 |)

with the lexicographic order and | · | is a norm in C.

The goal is to show that Reθ < 0. Assume the contrary (i.e., Reθ ≥ 0).

We consider two cases: θ = 0 and θ 6= 0.

Assume the first case θ = 0. Then, equation (27) is a homogeneous linear

system in the variables Zi (i = 1, 2, 3, 4, 5, 6, 7). The determinant of this system

corresponds to that of the Jacobian of system (25) evaluated at Ē1, which is

given by
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M = −k2k3k4k6a1a2µH − k2k3k4k5k6a1µH − k2k3k4a1a2σV

− k2k3k4a1a2µHθc − k1k2k3k4k6a2µH − k1k2k3k4k5k6µH

− k1k2k3k4a2σV µH − k1k2k3k4a2µHθc − k3k4k6a2a1µHσH

− k3k4k5k6a1σHµH − k3k4a1a2σHσV µH − k3k4a1a2σHθcµH

− k3k6a1a2τHσHµH − k3k5k6a1τHσHµH − k3a1a2τHσHµHσV

− k3a1a2τHσHµHθc − k3k6a1a2τHσHγ1 − k3K5k6a1τHσHγ1

− k3a1a2τHσHγ1σV − k3ka1a2τHσHγ1θc + k3k4a3a4σHµHσV

+ k3k4a3a4σHµHθc + k3k4k6a3a4σHµHηV + k2k3k4a3a4σvµHηH

+ k2k3k4a3a4θcµHηH + k2k3k4k6a3a4µHηHηV .

= −k2k3k4k6a1a2µH − k2k3k4k5k6a1µH − k2k3k4a1a2σV

− k2k3k4a1a2µHθc − k1k2k3k4k6a2µH − k1k2k3k4k5k6µH

− k1k2k3k4a2σV µH − k1k2k3k4a2µHθc − k3k4k6a2a1µHσH

− k3k4k5k6a1σHµH − k3k4a1a2σHσV µH − k3k4a1a2σHθcµH

− k3k6a1a2τHσHµH − k3k5k6a1τHσHµH − k3a1a2τHσHµHσV

− k3a1a2τHσHµHθc − k3k6a1a2τHσHγ1 − k3K5k6a1τHσHγ1

− k3a1a2τHσHγ1σV − k3ka1a2τHσHγ1θc

+ k3k4a3a4µH

[
σHσV + σHθc + σHηV + k2σvηH + k2θcηH + k2k6ηHηV

]
.

= −k2k3k4k6a1a2µH − k2k3k4k5k6a1µH − k2k3k4a1a2σV

− k2k3k4a1a2µHθc − k1k2k3k4k6a2µH − k1k2k3k4a2σV µH

− k1k2k3k4a2µHθc − k3k4k6a2a1µHσH − k3k4k5k6a1σHµH

− k3k4a1a2σHσV µH − k3k4a1a2σHθcµH − k3k6a1a2τHσHµH

− k3k5k6a1τHσHµH − k3a1a2τHσHµHσV − k3a1a2τHσHµHθc

− k3k6a1a2τHσHγ1 − k3K5k6a1τHσHγ1 − k3a1a2τHσHγ1σV

− k3ka1a2τHσHγ1θc − k1k2k3k4k5k6

[
1− (R0)

2

]

Since the model parameters are non-negative, and by algebraic manipula-

tion, we finally get:
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⇒M = −k2k3k4k6a1a2µH − k2k3k4k5k6a1µH − k2k3k4a1a2σV

− k2k3k4a1a2µHθc − k1k2k3k4k6a2µH − k1k2k3k4a2σV µH

− k1k2k3k4a2µHθc − k3k4k6a2a1µHσH − k3k4k5k6a1σHµH

− k3k4a1a2σHσV µH − k3k4a1a2σHθcµH − k3k6a1a2τHσHµH

− k3k5k6a1τHσHµH − k3a1a2τHσHµHσV − k3a1a2τHσHµHθc

− k3k6a1a2τHσHγ1 − k3K5k6a1τHσHγ1 − k3a1a2τHσHγ1σV

− k3ka1a2τHσHγ1θc − k1k2k3k4k5k6

[
1− (R0)

2

]
6= 0

(30)

Therefore the system (25) has a trivial solution Z̄ = 0 (which corresponds to

the DFE, E0.)

Now we consider the case θ 6= 0. In this case, by assumption, Re θ > 0.

Thus, | 1 + Fi(θ) |> 1 for i = 1, 2, 3, 4, 5, 6, 7. Now, define F (θ) = min |
1 + Fi(θ) |, i = 1, 2, 3, 4, 5, 6, 7. Then, F (θ) > 1. Therefore, s

F (θ)
< s. Since s is

a minimal positive real number such that | Z̄ |≤ sĒ1, then

| Z̄ |> s

F (θ)
Ē1. (31)

Taking norms on both sides of the third equation of (28), and using the

fact that I is non-negative, gives

F (θ) | Z2 |≤ I(| Z |)2 ≤ s(I | Ē1 |)2 ≤ sI∗∗H . (32)

Then, it follows from the above inequality that | Z2 |≤ s
F (θ)

I∗∗H which

contradicts the equation (31). Hence, Re θ < 0, which implies that Ē1 is LAS,

if R01 > 1.

The epidemiological implication of Theorem (8) is that the disease would per-

sists in the community if the basic reproduction threshold R01 > 1.

2.3.2 Global Stability of EEP of the Model (8)

The global stability of EEP of the model (8) is consider for the special case

where the dengue induce mortality is very negligible (so that, δH = δV = 0)

and at the endemic stage S∗∗H ≥ SH , E∗∗H ≥ EH , S∗∗V ≥ SV , E∗∗V ≥ EV .
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Theorem 3. The unique EEP, E1, of the model (8), is globally asymptotically

stable in Ω whenever R0 > 1.

Proof. Consider the non-linear Lyapunov function

F =

[
SH − S∗∗H − S∗∗ln

SH

S∗∗H

]
+

[
EH − E∗∗H − E∗∗H ln

EH

E∗∗H

]
+ a1

[
IH − I∗∗H − I∗∗H ln

IH

I∗∗H

]
+ a2

[
MH −M∗∗

H −M∗∗
H ln

MH

M∗∗
H

]
+ a3

[
TH − T ∗∗H − T ∗∗H ln

TH

T ∗∗H

]
+ a4

[
RH −R∗∗H −R∗∗H ln

RH

R∗∗H

]
+ a5

[
AV − A∗∗V − A∗∗V ln

AV

A∗∗V

]
+

[
SV − S∗∗V − S∗∗V ln

SV

S∗∗V

]
+

[
EV − E∗∗V − E∗∗V ln

EV

E∗∗V

]
+ a6

[
IV − I∗∗V − I∗∗V ln

IV

I∗∗V

]
(33)

with Lyapunov derivative of (33) given by

Ḟ =

[
1− S∗∗H

SH

]
ṠH +

[
1− E∗∗H

EH

]
ĖH + a1

[
1− I∗∗H

IH

]
İH

+ a2

[
1− M∗∗

H

IM

]
ṀH + a3

[
1− T ∗∗H

TH

]
ṪH + a4

[
1− R∗∗H

RH

]
ṘH

+ a5

[
1− A∗∗V

AV

]
ȦV +

[
1− S∗∗V

SV

]
ṠV +

[
1− E∗∗V

EV

]
ĖV

+ a6

[
1− I∗∗V

IV

]
İV ,

(34)

where,

a1 = 0, a2 =
µ1

(µ1 + µ2 + µH)
, a3 = 0,

a4 = 0, a5 =
γm

(γm + µV + Ca)
, a6 = 0,
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Substituting these value in to the equation (34), we get

Ḟ = πH −
C1(ηV EV + IV )

NH

SH − µHSH − πH
S∗∗H
SH

+
C1(ηV E∗∗V + I∗∗V )

N∗∗
H

S∗∗H

+ µHS∗∗H +
C1(ηV EV + IV )

NH

SH − (µH + σH)EH −
C1(ηV E∗∗V + I∗∗V )

N∗∗
H

S∗∗H
E∗∗H
EH

+ µ1MH − µ1M
∗∗
H

E∗∗H
EH

+ (µH + σH)E∗∗H +
µ1

(µ1 + µ2 + µH)

[
π1 − π1

M∗∗
H

MH

+ (µ1 + µ2 + µH)M∗∗
H − (µ1 + µ2 + µH)MH

]
+

γm

(γm + µV + Ca)

[
πV

− πV
A∗∗V
AV

− (γm + µV + Ca)AV + (γm + µV + Ca)A
∗∗
V

]
+ γmAV − (µV + Cm)SV

− γmAV
S∗∗V
SV

+ (µV + Cm)S∗∗V − C2(ηHEH + IH)

NH

SV +
C2(ηHE∗∗H + I∗∗H )

N∗∗
H

S∗∗V

+
C2(ηHEH + IH)

NH

SV − (σV + θc + µV + Cm)EV −
C2(ηHE∗∗H + I∗∗H )

N∗∗
H

E∗∗V
EV

S∗∗V

+ (σV + θc + µV + Cm)E∗∗V ,

(35)

In the above equation (35), we will use the following relations:

πH =
C1(ηV E∗∗V + I∗∗V )

N∗∗
H

S∗∗H + µHS∗∗H ,

µ1 =
(µH + σH)E∗∗H − C1(ηV E∗∗

V +I∗∗V )

N∗∗
H

S∗∗H

M∗∗
H

,

M∗∗
H =

π1

(µ1 + µ2 + µH)
,

A∗∗V =
γm

(γm + µV + Ca)
,

(µV + Cm) =
γmA∗∗V +

C2(ηV E∗∗
V +I∗∗V )

N∗∗
V

S∗∗V

S∗∗V
,

(σV + θc + µV + Cm) =

C2(ηV E∗∗
V +I∗∗V )

N∗∗
V

S∗∗V

E∗∗V
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Now from equation (35), we get

Ḟ ≤ πH − πH
S∗∗H
SH

− C1(ηV E∗∗V + I∗∗V )

N∗∗
H

S∗∗H
E∗∗H
EH

+ µ1M
∗∗
H − µ1M

∗∗
H

E∗∗H
EH

− µ1MH

+ 2µ1M
∗∗
H − µ1

(M∗∗
H )2

MH

+ γmA∗∗V − γmAV + γmA∗∗V − γm
(A∗∗V )2

AV

+ (γmAV − γmAV
S∗∗V
SV

)− C2(ηHEH + IH)

NH

SV +
C2(ηHE∗∗H + I∗∗H )

N∗∗
H

S∗∗V

− (µV + Cm)SV +
C2(ηHEH + IH)

NH

SV − (σV + θc + µV + Cm)EV

+ (µV + Cm)S∗∗V + (σV + θc + µV + Cm)E∗∗V − C2(ηHE∗∗H + I∗∗H )

N∗∗
H

E∗∗V
EV

S∗∗V ,

(36)

Finally,

Ḟ ≤ πH(1− S∗∗H
SH

)− C1(ηV E∗∗V + I∗∗V )

N∗∗
H

S∗∗H
E∗∗H
EH

+ µ1M
∗∗
H (1− E∗∗H

EH

)

+ µ1M
∗∗
H

[
2− M∗∗

H

MH

− MH

M∗∗
H

]
+ γmA∗∗V

[
2− AV

A∗∗V
− A∗∗V

AV

]
+ γmAV (1− S∗∗V

SV

) +
C2(ηHE∗∗H + I∗∗H )

N∗∗
H

S∗∗V

[
1− E∗∗V

EV

]
,

(37)

Since the arithmetic mean exceeds the geometric mean, it follows then that[
2− M∗∗

H

MH

− MH

M∗∗
H

]
≤ 0,[

2− AV

A∗∗V
− A∗∗V

AV

]
≤ 0,

Also since, SH , EH , MH , AV , SV , EV , approaches S∗∗H , E∗∗H , M∗∗
H , A∗∗V , S∗∗V , E∗∗V

asymptotically, or SH , EH , M ,
HAV , SV , EV becomes, and remains, less than

S∗∗H , E∗∗H , M∗∗
H , A∗∗V , S∗∗V , E∗∗V in finite time, then from equation (37), we get

SH − S∗∗H ≤ 0, EH − E∗∗H ≤ 0,

SV − S∗∗V ≤ 0, EV − E∗∗V ≤ 0,
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i.e.,

S∗∗H ≥ SH , E∗∗H ≥ EH ,

S∗∗V ≥ SV , E∗∗V ≥ EV ,

Therefore from equation (37), we can finally say that

Ḟ ≤ 0 for R0 > 1

Thus, by the Laypunov function F , and the LaSalle Invariance Principal [18],

every solution to the equations in the model (8) approaches E1 as t → ∞ for

R0 > 1.

At the end of the discussion, we can say that, the model (8) has a globally-

asymptotically stable DFE whenever R0 ≤ 1 and a unique EEP for R0 > 1.

It is shown that the unique EEP of the model (8) is globally-asymptotically

stable, for the special case whenever disease-induce mortality is very negligible

and the threshold quantity that is the basic reproduction number greater than

the unity (R0 > 1).

3 Numerical Simulations and Discussions

The model (8) is simulated, using the parameter values given in Table 2

and Table 3 (unless otherwise stated).

Figure 2 presents the simulations of the dengue transmission model (8),

showing a contour plot of the reproduction threshold R0 which depicts that if

the rate C2 = CV H at which human acquire infection from infected mosquitoes

(exposed or infectious) and the rate C1 = CHV at which mosquitoes acquires

infection from infected humans (exposed or infectious) decreases then the bur-

den of the dengue disease decreases (in line with theorem 1). However if the

rates C1 and C2 increases then the burden of the disease increases (in line with

Theorem 3).

Figure 3 presents the simulations of the dengue transmission model (8),

showing a contour plot of the reproduction threshold R0 which indicates that

if the rate σV at which the vector individuals transfer from exposed class to



Md. Saddam Hossain, Jannatun Nayeem and Dr. Chandranath Podder 69

infected class increases and at the same time if we have the effective precau-

tionary measures the we would be able to control the disease spread and no

endemic will occur (in line with Theorem 1), otherwise the disease burden will

increases.

Figure 4 depicts that if the rate σH at which the exposed human popu-

lation developed clinical symptoms of dengue disease move to infectious class

decreases and the rate σV , at which the exposed vectors developed clinical

symptoms of dengue disease move to infectious class decreases, then the total

number of infected human population also decreases, otherwise burden of the

disease increases.

Figure 5, 6, 7, 8 and 9 monitor the effect of the effective vector control

rate Cm and Ca. If we do not have any necessary precautionary measures,

then the total number of vector population increases rapidly (Figure 5) and

persist in the community ultimately. If we take the precautionary measures

in the aquatic stage (i.e., if the control rate Ca increases), the number of total

infected vector IV decreases rapidly as like figure (7). However if we take the

necessary precautionary measures in the adult stage (i.e., if the control rate Cm

increases), the total infected vector IV also decreases, (Figure 6). Additionally

if we take the precautionary step in the aquatic and adult both stage, then

the total number of infected vector decreases drastically (Figure 8). To see

the total changes in the vector population after some necessary precautionary

measures, we have, from Figure 8, that the total vector population NV de-

creases rapidly. Figure 5 and 6, present the comparative situation before and

after the precautionary measures have taken.

Figure 10 and 11 present the effect of the migratory infected individuals.

From Figure 11 we see that if the rate µ1 at which the migratory population

added to the exposed class EH and the rate µ2 at which the migratory individ-

uals added to the infected class IH varies, then the number of new infectious

cases varies as well.

From Figure 10, we see that, small rate of increase in µ1 and in µ2 can

increases the total number of infection and can create an endemic. From Figure

10, we can also see a comparative presentation of the model (8) simulation

where, if µ1 = µ2 = 0, then the number of new infected population decreases.

If µ1 = µ2 6= 0, then the number of new infected individuals increases rapidly

and converges to the endemic situation.
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4 Conclusion

A deterministic model for dengue transmission dynamics presented and

rigorously analysed. The disease-free equilibrium, E0, is shown to be locally

asymptotically stable when the associated epidemic threshold known as the

basic reproduction number, R0, for the model is less than unity. This equi-

librium (DFE) is shown to be globally-asymptotically stable whenever R0 is

less than unity (Theorem 7). The model has a unique endemic equilibrium

(EEP), E1, is shown to be locally asymptotically stable whenever R0 is greater

than unity (Theorem 8). By considering special cases EEP is shown to be

globally-asymptotically stable whenever R0 > 1 (Theorem 9). Numerical sim-

ulation reveals that if the rate at which human acquire infection from infected

mosquitoes (CV H) and the rate at which mosquitoes acquires infection from

infected humans (CHV ) increases then the burden of the dengue disease in-

creases. Numerical simulations indicates that if the rate of migratory exposed

(µ1) or migratory infected (µ2) individuals increases then the rate of cumula-

tive number of new cases increases. Numerical simulations suggest that proper

treatment decreases the rate of infectiousness. Numerical simulation depicts

that if we take the precautionary measures more seriously then it would be

more effective then even giving the treatment to the infected individuals. Nu-

merical simulations reveals that the spread of dengue virus can be controlled

more effectively, if we take the precautionary measures at the aquatic and

adult stages.
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Table 3.1: Description of variables of the dengue model (8):

Variables Description

SH(t) Susceptible humans
EH(t) Exposed humans
IH(t) Infected humans
MH(t) Migrated class of individuals comes from different parts of the

world to the host country and contains the virus of dengue
TH(t) Treated humans
RH(t) Recovered individuals
AV (t) Aquatic class
SV (t) Susceptible mosquitoes
EV (t) Exposed mosquitoes
IV (t) Infected mosquitoes
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Table 3.2: The value of the parameters of the dengue model (8):

Parameter Description Baseline values

πH Recruitment rate of humans 20day−1 [7]
πV Recruitment rate of vectors 5000day−1[20]
1

µH
Natural death rate of humans 67years [20]

1
µV

Natural death rate of vectors [4, 14]days[20, 41]

CHV Contact rate from host to vector 0.75day−1[24]
CV H Contact rate from vector to host 0.375day−1[24]
σH Exposed individuals with develop clinical symptoms

of dengue disease move to infectious class at that rate (0, 1)day−1 [29]
σV Exposed vectors develop symptom of disease and

move to infections class at this rate (0, 1) assumed
τH Rate of treatment Variable
δH Disease induced death 10−3day−1[5]
π2 Migrated population Variable
µ1, µ2 Transition rates between EH and IH classes Variable
γ1 Transfer rate from treatment class to recovery class 0.1428day−1[5, 24]
δV Disease induced death rate for infectious negligible
γm The mean aquatic transition rate Variable
Ca Control effect rate Variable
ηH , ηV Modification parameters (0, 1][7]
Cm Control effect rate Variable
θc Extrinsic incubation rate of vector Variable

Table 3.3: The values for variables for the figure (3.2–3.11)

SH EH IH MH TH RH AV SV EV IV

6000 500 300 50 290 280 1000000 10000 5000 3000
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Figure 2: Simulations of the model (8) showing a contour plot of R0 as a

function of contact rate from vector to host (C2 = CV H) and contact rate from

host to vector (C1 = CHV ). Parameter values used are as given in table (3.2),

(3.3), with ΠH = 20, σV = 0.0130, δH = 0.0001, δV = 0.01, σH = 0.0230,

γ1 = 0.0428, γm = 0.00575, Ca = 0.850, Cm = 0.650, π1 = 7, τH = 0.190,

ηH = .03902, ηV = 0.0129, θc = .075, µ1 = 0.0, µ2 = 0.0, πV = 5000,

µH = 0.01492537, µV = 0.363

Figure 3: Simulations of the model (8) showing a contour plot of R0 as a

function of control rate at the adult stage (Cm) and transfer rate from exposed

to infected class (σV ). Parameter values used are as given in table (3.2), (3.3),

with ΠH = 2, C1 = 0.75, C2 = 0.375, δH = 0.0001, δV = 0.01, γ1 = 0.001428,

γm = 0.003575, Ca = 0.450, π1 = 7, τH = 0.190, ηH = .02902, ηV = 0.0129,

θc = .075, µ1 = 0.0, µ2 = 0.0, πV = 5000, µH = 0.01492537, µV = 0.363
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Figure 4: Simulations of the model (8) showing the total number of infected

human population (EH + IH + MH + TH) as a function of time (for reducing

values of σH and σV ), using the parameter values in table (3.2) and (3.3) with

ΠH = 20, C1 = 0.035, C2 = 0.0375, σV = 0.0130, σH = 0.01250, δH = 0.0001,

δV = 0.01, γ1 = 0.01428, γm = 0.013575, Ca = 0.0, Cm = 0.0, π1 = 7,

τH = 0.0, ηH = .12902, ηV = 0.073, θc = .075, µ1 = 0.0, µ2 = 0.0, πV = 5000,

µH = 0.01492537, µV = 0.363333, R0 = 0.5337.

Figure 5: Simulations of the model (8) (without precautionary measures Ca =

Cm = 0) showing the total number of vector population (AV + SV + EV + IV )

as a function of time, using the parameter values in table (3.2) and (3.3) with

ΠH = 20, C1 = 0.75, C2 = 0.375, σV = 0.135, σH = 0.125, δH = 0.0001,

δV = 0.01, γ1 = 0.1428, γm = 0.035, Ca = 0.0, Cm = 0.0, π1 = 7, τH = 0.0,

ηH = .02902, ηV = 0.037103, θc = 0.75, µ1 = 0.0, µ2 = 0.0, πV = 5000,

µH = 0.01492537, µV = 0.363333, R0 = 2.1326.



78 Effects of Migratory Population and Control Strategies ...

Figure 6: Simulations of the model (8) (with precautionary measures at the

adult stage Cm 6= 0 and aquatic stage Ca = 0) showing the total number of

infected vector individuals (EV +IV ) as a function of time, using the parameter

values in table (3.2) and (3.3) with ΠH = 20, C1 = 0.75, C2 = 0.375, σV =

0.135, σH = 0.125, δH = 0.0001, δV = 0.01, γ1 = 0.01428, γm = 0.03575,

Ca = 0.0, Cm = 0.89, π1 = 7, τH = 0.0, ηH = .129, ηV = 0.171, θc = .0075,

µ1 = 0.0, µ2 = 0.0, πV = 5000, µH = 0.01492537, µV = 0.363333,R0 = 0.7455.

Figure 7: Simulations of the model (8) (with precautionary measures at the

aquatic stage Ca 6= 0 and Cm = 0) showing the total number of infected vector

individuals (EV +IV ) as a function of time, using the parameter values in table

(3.2) and (3.3) with ΠH = 20, C1 = 0.75, C2 = 0.375, σV = 0.135, σH = 0.125,

δH = 0.0001, δV = 0.01, γ1 = 0.01428, γm = 0.03575, Ca = 0.89, Cm = 0.0,

π1 = 7, τH = 0.0, ηH = .12902, ηV = 0.17, θc = .01175, µ1 = 0.0, µ2 = 0.0,

πV = 5000, µH = 0.01492537, µV = 0.363333, R0 = 0.6637.
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Figure 8: Simulations of the model (8) (with precautionary measures at the

aquatic stage Ca 6= 0 and both adult stage Cm 6= 0) showing the total number of

infected vector individuals (EV +IV ) as a function of time, using the parameter

values in table (3.2) and (3.3) with ΠH = 20, C1 = 0.75, C2 = 0.375, σV =

0.0135, σH = 0.125, δH = 0.0001, δV = 0.01, γ1 = 0.01428, γm = 0.013575,

Ca = 0.89, Cm = 0.89, π1 = 7, τH = 0.42, ηH = 0.129, ηV = 0.173, θc = .01175,

µ1 = 0.0, µ2 = 0.0, πV = 5000, µH = 0.01492537, µV = 0.363333,R0 = 0.6304.

Figure 9: Simulations of the model (8) (with precautionary measures at the

aquatic stage Ca 6= 0 and both adult stage Cm 6= 0) showing the total number

of vector individuals (AV + SV + EV + IV ) as a function of time, using the

parameter values in table (3.2) and (3.3) with ΠH = 20, C1 = 0.75, C2 =

0.375, σV = 0.01130, σH = 0.01125, δH = 0.0001, δV = 0.01, γ1 = 0.01428,

γm = 0.013575, Ca = 0.889, Cm = 0.89, π1 = 7, τH = 0.42, ηH = .02902, ηV =

0.01137103, θc = .01175, µ1 = 0.0, µ2 = 0.0, πV = 5000, µH = 0.01492537,

µV = 0.363333, R0 = 0.3093.
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Figure 10: Simulations of the model (8) (with µ1 = µ2 6= 0) showing the total

number of infected human population (EH + IH + MH + TH) as a function of

time, using the parameter values in table (3.2) and (3.3) ΠH = 20, C1 = 0.75,

C2 = 0.375, σV = .130, σH = 0.1250, δH = 0.0001, δV = 0.01, γ1 = 0.01428,

γm = 0.03575, Ca = .450, Cm = .650, π1 = 20, τH = 0.19000, ηH = .012902,

ηV = 0.0137103, θc = .075, µ1 = 0.050000, µ2 = 0.69000, πV = 5000, µH =

0.01492537, µV = 0.363333.

Figure 11: Simulations of the model (8) by considering different values of µ1

and µ2, where ΠH = 20, C1 = 0.75, C2 = 0.375, δH = 0.0001, δV = 0.01,

γ1 = 0.01428, γm = 0.03575, π1 = 20, θc = .075, πV = 5000, µH = 0.01492537,

µV = 0.363333, and other parameters are as in table (3.2) and (3.3).


