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1 Introduction and Summary

In most practical quant trading applications3 one faces an old problem when

computing a sample covariance matrix of returns: the number N of returns (e.g.,

the number of stocks in the trading universe) is much larger than the number

T of observations in the time series of returns. The sample covariance matrix

Cij (i, j = 1, . . . , N) in this case is badly singular: its rank is at best T − 1.

So, it cannot be inverted, which is required in, e.g., mean-variance optimization

[17]. In fact, the singularity of Cij is only a small part of the trouble: its off-

diagonal elements (more precisely, sample correlations) are notoriously unstable

out-of-sample.

The aforesaid “ills” of the sample covariance matrix are usually cured via

multifactor risk models,4 where stock returns are (linearly) decomposed into con-

tributions stemming from some number K of common underlying factors plus

idiosyncratic “noise” pertaining to each stock individually. This is a way of di-

mensionally reducing the problem in that one only needs to compute a factor

covariance matrix ΦAB (A,B = 1, . . . , K), which is substantially smaller than Cij

assuming K ¿ N .5

In statistical risk models6 the factors are based on the first K principal com-

ponents of the sample covariance matrix Cij (or the sample correlation matrix).7

In this case the number of factors is limited (K ≤ T − 1), and, furthermore, the

principal components beyond the first one are inherently unstable out-of-sample.

In contrast, factors based on a granular fundamental industry classification8 are

much more ubiquitous (in hundreds), and also stable, as stocks seldom jump

industries. Heterotic risk models [8] based on such industry classifications siz-

ably outperform statistical risk models.9 Another alternative is to replace the

3 Similar issues are also present in other practical applications unrelated to trading or
finance.

4 For a general discussion, see, e.g., [3]. For explicit implementations (including source
code), see, e.g., [10], [12].

5 This does not solve all problems, however. Thus, unless K < T , the sample factor
covariance matrix is still singular (albeit the model covariance matrix Γij that replaces Cij need
not be). Furthermore, the out-of-sample instability is still present in sample factor correlations.
This can be circumvented via the heterotic risk model construction [8]; see below.

6 See [12], which gives complete source code, and references therein.
7 The (often misconstrued) “shrinkage” method [13] is nothing but a special type of statis-

tical risk models; see [9], [12] for details.
8 E.g., BICS (Bloomberg Industry Classification System), GICS (Global Industry Classifi-

cation Standard), ICB (Industry Classification Benchmark), SIC (Standard Industrial Classifi-
cation), etc.

9 In the heterotic risk model construction the sample factor covariance matrix at the most
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fundamental industry classification in the heterotic risk model construction by

a statistical industry classification based on clustering (using machine learning

techniques) the return time series data [11],10 without any reference to a funda-

mental industry classification. Risk models based on statistical industry classi-

fications outperform statistical risk models but underperform risk models based

on fundamental industry classifications [11].

In this paper we discuss a different approach to building a risk model using

machine learning techniques. The idea is simple. A sample covariance matrix

Cij is singular (assuming T ¿ N), but it is semi-positive definite. Imagine that

we could compute a large number M of “samplings” of Cij, call them C
(m)
ij ,

m = 1, . . . , M , where each “sampling” is semi-positive definite. Consider their

mean11

Γij =
1

M

M∑
m=1

C
(m)
ij (1)

By construction Γij is semi-positive definite. In fact, assuming C
(m)
ij are all (siz-

ably) different from each other, Γij generically will be positive definite and in-

vertible (for large enough M). So, the idea is sound, at least superfluously, but

the question is, what should these “samplings” C
(m)
ij be? Note that each element

of the sample covariance matrix Cij (i 6= j) only depends on the time series of

the corresponding two stock returns Ri(t) and Rj(t), and not on the universe of

stocks, so any cross-sectional “samplings” cannot be based on sample covariance

matrices. In principle, serial “samplings” could be considered if a long history

were available. However, here we assume that our lookback is limited, be it due

to a short history that is available, or, more prosaically, due to the fact that data

from a while back is not pertinent to forecasting risk for short horizons as market

conditions change.

A simple way around this is to consider cross-sectional “samplings” C
(m)
ij that

are not sample covariance matrices but are already dimensionally reduced, even

granular level in the industry classification typically would be singular. However, this is rectified
by modeling the factor covariance matrix by another factor model with factors based on the
next-less-granular level in the industry classification, and this process of dimensional reduction
is repeated until the resultant factor covariance matrix is small enough to be nonsingular and
sufficiently stable out-of-sample [8], [10]. Here one can also include non-industry style factors.
However, their number is limited (especially for short horizons) and, contrary to an apparent
common misconception, style factors generally are poor proxies for modeling correlations and
add little to no value [10].

10 Such statistical industry classifications can be multilevel and granular.
11 In fact, instead of the arithmetic mean, here we can more generally consider a weighted

average with some positive weights wm (see below). Also, in this paper C
(m)
ij are nonsingular.
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though they do not have to be invertible. Thus, given a clustering of N stocks

into K clusters, we can build a multifactor risk model, e.g., via an incomplete

heterotic construction (see below). Different clusterings then produce different

“samplings” C
(m)
ij , which we average via Eq. (1) to obtain a positive definite Γij,

which is not a factor model. However, as usual, the devil is in the detail, which

we discuss in Section 2. E.g., the matrix (1) can have nearly degenerate or small

eigenvalues, which requires further tweaking Γij to avert, e.g., undesirable effects

on optimization.

In Section 3 we discuss backtests to compare the machine learning risk models

of this paper to statistical risk models, and heterotic risk models based on fun-

damental industry classification and statistical industry classification. We briefly

conclude in Section 4. Appendix A provides R source code12 for machine learn-

ing risk models, and some important legalese relating to this code is relegated to

Appendix B.

2 Heterotic Construction and Sampling

So, we have time series of returns (say, daily close-to-close returns) Ris for our

N stocks (i = 1, . . . , N , s = 1, . . . , T , and s = 1 corresponds to the most recent

time in the time series). Let us assume that we have a clustering of our N stocks

into K clusters, where K is sizably smaller than N , and each stock belongs to

one and only one cluster. Let the clusters be labeled by A = 1, . . . , K. So, we

have a map

G : {1, . . . , N} 7→ {1, . . . , K} (2)

Following [8], we can model the sample correlation matrix Ψij = Cij/σiσj (here

σ2
i = Cii are the sample variances) via a factor model:

Ψ̃ij = ξ2
i δij +

K∑
A,B=1

ΩiA ΦAB ΩjB = ξ2
i δij + Ui Uj ΦG(i),G(j) (3)

ΩiA = Ui δG(i),A (4)

ξ2
i = 1− λ(G(i)) U2

i (5)

ΦAB =
∑

i∈J(A)

∑

j∈J(B)

Ui Ψij Uj (6)

12 The code in Appendix A is not written to be “fancy” or optimized for speed or otherwise.
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Here the NA components of Ui for i ∈ J(A) are given by the first principal

component of the N(A)×N(A) matrix [Ψ(A)]ij = Ψij, i, j ∈ J(A), where J(A) =

{i|G(i) = A} is the set of the values of the index i corresponding to the cluster

labeled by A, and NA = |J(A)| is the number of such i. Also, λ(A) is the

largest eigenvalue (corresponding to the first principal component) of the matrix

[Ψ(A)]ij. The matrix ΩiA is the factor loadings matrix, ξ2
i is the specific variance,

and the factor covariance matrix ΦAB has the property that ΦAA = λ(A). By

construction, Ψ̃ii = 1, and the matrix Ψ̃ij is positive-definite. However, ΦAB is

singular unless K ≤ T − 1.

This is because the rank of Ψij is (at most) T − 1. Let V
(a)
i be the principal

components of Ψij with the corresponding eigenvalues λ(a) ordered decreasingly

(a = 1, . . . , N). More precisely, at most T − 1 eigenvalues λ(a), a = 1, . . . , T − 1

are nonzero, and the others vanish. So, we have

ΦAB =
T−1∑
a=1

λ(a) Ũ
(a)
A Ũ

(a)
B (7)

Ũ
(a)
A =

∑

i∈J(A)

Ui V
(a)
i (8)

So, the rank of ΦAB is (at most) T − 1, and the above incomplete heterotic

construction provides a particular regularization of the statistical risk model con-

struction based on principal components. In the complete heterotic construction

ΦAB itself is modeled via another factor model, and this nested “Russian-doll”

embedding is continued until at the final step the factor covariance matrix (which

gets smaller and smaller at each step) is nonsingular (and sufficiently stable out-

of-sample).

2.1 Sampling via Clustering

However, there is another way, which is what we refer to as “machine learning

risk models” here. Suppose we have M different clusterings. Let Ψ̃
(m)
ij be the

model correlation matrix (3) for the m-th clustering (m = 1, . . . ,M). Then we

can construct a model correlation matrix as a weighted sum

Ψ̃ij =
M∑

m=1

wm Ψ̃
(m)
ij (9)

M∑
m=1

wm = 1 (10)
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The simplest choice for the weights is to have equal weighting: wm = 1/M . More

generally, so long as the weights wm are positive, the model correlation matrix Ψ̃ij

is positive-definite. (Also, by construction Ψ̃ii = 1.) However, combining a large

number M of “samplings” Ψ̃
(m)
ij accomplishes something else: each “sampling”

provides a particular regularization of the sample correlation matrix, and com-

bining such samplings covers many more directions in the risk space than each

individual “sampling”. This is because Ũ
(a)
A in Eq. (7) are different for different

clusterings.

2.2 K-means

We can use k-means [2], [14], [15], [4], [5], [16], [21] for our clusterings. Since

k-means is nondeterministic, it automatically produces a different “sampling”

with each run. The idea behind k-means is to partition N observations into K

clusters such that each observation belongs to the cluster with the nearest mean.

Each of the N observations is actually a d-vector, so we have an N × d matrix

Xis, i = 1, . . . , N , s = 1, . . . , d. Let Ca be the K clusters, Ca = {i|i ∈ Ca},
a = 1, . . . , K. Then k-means attempts to minimize

g =
K∑

a=1

∑
i∈Ca

d∑
s=1

(Xis − Yas)
2 (11)

where

Yas =
1

na

∑
i∈Ca

Xis (12)

are the cluster centers (i.e., cross-sectional means),13 and na = |Ca| is the number

of elements in the cluster Ca. In Eq. (11) the measure of “closeness” is chosen

to be the Euclidean distance between points in Rd, albeit other measures are

possible.14

2.3 What to Cluster?

Here we are not going to reinvent the wheel. We will simply use the prescription

of [11]. Basically, we can cluster the returns, i.e., take Xis = Ris (then d = T ).

However, stock volatility is highly variable, and its cross-sectional distribution

is not even quasi-normal but highly skewed, with a long tail at the higher end

13 Throughout this paper “cross-sectional” refers to “over the index i”.
14 E.g., the Manhattan distance, cosine similarity, etc.



Zura Kakushadze and Willie Yu 43

– it is roughly log-normal. Clustering returns does not take this skewness into

account and inadvertently we might be clustering together returns that are not

at all highly correlated solely due to the skewed volatility factor. A simple “ma-

chine learning” solution is to cluster the normalized returns R̃is = Ris/σi, where

σ2
i = Var(Ris) is the serial variance (σ2

i = Cii). However, as was discussed in

detail in [11], this choice would also be suboptimal and this is where quant trad-

ing experience and intuition trumps generic machine learning “lore”. It is more

optimal to cluster R̂is = Ris/σ
2
i (see [11] for a detailed explanation). A potential

practical hiccup with this is that if some stocks have very low volatilities, we could

have large R̂is for such stocks. To avoid any potential issues with computations,

we can “smooth” this out via “Winsorization” of sorts (MAD = mean absolute

deviation):15

R̂is =
Ris

σiui

(13)

ui =
σi

v
(14)

v = exp(Median(ln(σi))− 3 MAD(ln(σi))) (15)

and for all ui < 1 we set ui = 1. This is the definition of R̂is that is used

in the source code internally. Furthermore, Median(·) and MAD(·) above are

cross-sectional.

2.4 A Tweak

The number of clusters K is a hyperparameter. In principle, it can be fixed by

adapting the methods discussed in [11]. However, in the context of this paper, we

will simply keep it as a hyperparameter and test what we get for its various values.

As K increases, in some cases it is possible to get relatively small eigenvalues in

the model correlation matrix Ψ̃ij, or nearly degenerate eigenvalues. This can

cause convergence issues in optimization with bounds (see below). To circumvent

this, we can slightly deform Ψ̃ij for such values of K.

Here is a simple method that deals with both of the aforesaid issues at once.

To understand this method, it is helpful to look at the eigenvalue graphs given

in Figures 1, 2, 3, 4, which are based on a typical data set of daily returns for

N = 2000 stocks and T = 21 trading days. These graphs plot the eigenvalues for

a single “sampling” Ψ̃
(m)
ij , as well as Ψ̃ij based on averaging M = 100 “samplings”

(with equal weights), for K = 150 and K = 40 (K is the number of clusters).

15 This is one possible tweak. Others produce similar results.
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Unsurprisingly, there are some small eigenvalues. However, their fraction is small.

Furthermore, these small eigenvalues get even smaller for larger values of K, but

increase when averaging over multiple “samplings”, which also smoothes out the

eigenvalue graph structure.

What we wish to do is to deform the matrix Ψ̃ij by tweaking the small eigen-

values at the tail. We need to define what we mean by the “tail”, i.e., which

eigenvalues to include in it. There are many ways of doing this, some are sim-

pler, some are more convoluted. We use a method based on eRank or effective

rank [19], which can be more generally defined for any subset S of the eigenval-

ues of a matrix, which (for our purposes here) is assumed to be symmetric and

semi-positive-definite. Let

eRank(S) = exp(H) (16)

H = −
L∑

a=1

pa ln(pa) (17)

pa =
λ(a)

∑L
b=1 λ(b)

(18)

where λ(a) are the L positive eigenvalues in the subset S, and H has the meaning

of the (Shannon a.k.a. spectral) entropy [1], [22].

If we take S to be the full set of N eigenvalues of Ψ̃ij, then the meaning of

eRank(S) is that it is a measure of the effective dimensionality of the matrix

Ψ̃ij. However, this is not what we need to do for our purposes here. This is

because the large eigenvalues of Ψ̃ij contribute heavily into eRank(S). So, we

define S to include all eigenvalues λ̃(a) (a = 1, . . . , N) of Ψ̃ij that do not exceed

1: S = {λ̃(a)|λ̃(a) ≤ 1}. Then we define (here floor(·) = b·c can be replaced by

round(·))

n∗ = |S| − floor(eRank(S)) (19)

So, the tail is now defined as the set S∗ of the n∗ smallest eigenvalues λ̃(a) of Ψ̃ij.

We can now deform Ψ̃ij by (i) replacing the n∗ tail eigenvalues in S∗ by

λ̃∗ = max(S∗), and (ii) then correcting for the fact that the so-deformed matrix
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no longer has a unit diagonal. The resulting matrix Ψ̂ij is given by:

Ψ̂ij =
N−n∗∑
a=1

λ̃(a) Ṽ
(a)
i Ṽ

(a)
j + zi zj

N∑
a=N−n∗+1

λ̃∗ Ṽ
(a)
i Ṽ

(a)
j (20)

z2
i = y−2

i

N∑
a=N−n∗+1

λ̃(a) [Ṽ
(a)
i ]2 (21)

y2
i =

N∑
a=N−n∗+1

λ̃∗ [Ṽ
(a)
i ]2 (22)

Here Ṽ
(a)
i are the principal components of Ψ̃ij. This method is similar to that

of [18]. The key difference is that in [18] the “adjustments” zi are applied to

all principal components, while here they are only applied to the tail principal

components (for which the eigenvalues are deformed). This results in a smaller

distortion of the original matrix. The resultant deformed matrix Ψ̂ij has improved

tail behavior (see Figure 5). Another bonus is that, while superfluously we only

modify the tail, the eigenvectors of the deformed matrix Ψ̂ij are no longer Ṽ
(a)
i

for all values of a, and the eigenvalues outside of the tail are also deformed. In

particular, in some cases there can be some (typically, a few) nearly degenerate16

eigenvalues λ̃(a) in the densely populated region of λ̃(a) (where they are of order

1), i.e., outside of the tail and the higher-end upward-sloping “neck”. The de-

formation splits such nearly degenerate eigenvalues, which is a welcome bonus.

Indeed, the issue with nearly degenerate eigenvalues is that they can adversely

affect convergence of the bounded optimization (see below) as the corresponding

directions in the risk space have almost identical risk profiles.

3 Backtests

Here we discuss some backtests. We wish to see how our machine learning risk

models compare with other constructions (see below). For this comparison, we

run our backtests exactly as in [8], except that the model covariance matrix is

build as above (as opposed to the full heterotic risk model construction of [8]). To

facilitate the comparisons, the historical data we use in our backtests here is the

same as in [8]17 and is described in detail in Subsections 6.2 and 6.3 thereof. The

16 They are not degenerate even within the machine precision. However, they are spaced
much more closely than other eigenvalues (on average, that is).

17 The same data is also used in [11], [12].
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trading universe selection is described in Subsection 6.2 of [8]. We assume that i)

the portfolio is established at the open with fills at the open prices; and ii) it is

liquidated at the close on the same day (so this is a purely intraday strategy) with

fills at the close prices (see [6] for pertinent details). We include strict trading

bounds

|Hi| ≤ 0.01 Ai (23)

Here Hi are the portfolio stock holdings (i = 1, . . . , N), and Ai are the corre-

sponding historical average daily dollar volumes computed as in Subsection 6.2

of [8]. We further impose strict dollar-neutrality on the portfolio, so that

N∑
i=1

Hi = 0 (24)

The total investment level in our backtests here is I = $20M (i.e., $10M long and

$10M short), same as in [8]. For the Sharpe ratio optimization with bounds we use

the R function bopt.calc.opt() in Appendix C of [8]. Table 1 gives summaries

of the eigenvalues for various values of K. Considering that the algorithm is

nondeterministic, the results are stable against reruns. Table 2 summarizes the

backtest results. Here we can wonder whether the following would produce an

improvement. Suppose we start from the sample correlation matrix Ψij and run

the algorithm, which produces the model correlation matrix Ψ̃ij. Suppose now we

rerun the algorithm (with the same number of “samplings” M) but use Ψ̃ij instead

of Ψij in Eq. (6) to build “sampling” correlation matrices Ψ
(m)
ij . In fact, we can

do this iteratively, over and over again, which we refer to as multiple iterations in

Table 3. The results in Table 3 indicate that we do get some improvement on the

second iteration, but not beyond. Let us note that for K ≥ 100 with iterations

(see Table 3) the method of Subsection 2.4 was insufficient to deal with the issues

with small and nearly degenerate eigenvalues, so we used the full method of [18]

instead (see Subsection 2.4 and Table 3 for details), which distorts the model

correlation matrix more (and this affects performance).

4 Concluding Remarks

So, the machine learning risk models we discuss in this paper outperform sta-

tistical risk models [12]. They have the performance essentially similar to the

heterotic risk models based on statistical industry classifications using multilevel

clustering [11]. However, here we have single-level clustering, and there is no
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aggregation of clusterings as in [11]. Also, the resultant model correlation ma-

trix Ψ̃ij is not a factor model, whereas the models of [11] are factor models.

Note that both the machine learning risk models of this paper and the models of

[11] still underperform the heterotic risk models based on fundamental industry

classifications; see [8], [10].

In this regard, let us tie up a few “loose ends”, so to speak. Suppose we take

just a single “sampling” Ψ
(m)
ij . This is an incomplete, single-level heterotic risk

model. However, Ψ
(m)
ij by construction is positive-definite, so we can invert it and

use it in optimization. So, does averaging over a large number M of “samplings”

(as in the machine learning risk models of this paper), or implementing a multi-

level “Russian-doll” embedding [7] as in [11], add value? It does. Thus, two runs

based on a single “sampling” with K = 40 and M = 1 produced the following re-

sults: (i) ROC = 42.434%, SR = 15.479, CPS = 2.044; and (ii) ROC = 42.735%,

SR = 15.51, CPS = 2.054 (see Table 2 for notations). Also, what if, instead

of using a single k-means to compute Ψ
(m)
ij , we aggregate a large number P of

k-means clusterings as in [11]? This does not appear to add value. Here are the

results from a typical run with K = 30, M = 100 and P = 100: ROC = 42.534%,

SR = 15.764, CPS = 2.09. Apparently, and perhaps unsurprisingly, aggregating

multiple clusterings and averaging over multiple “samplings” has similar effects.

This, in fact, is reassuring.

A R Code

In this appendix we give R (R Project for Statistical Computing, https://www.r-

project.org/) source code for constructing machine learning risk models discussed

in the main text. The code is straightforward and self-explanatory. The sole func-

tion is qrm.calc.ml.cor.mat() with the following inputs: r1 is the N ×T matrix

of returns (N is the number of stocks, T is the number of points in the time se-

ries); k is the number of clusters K; nn is the number of iterations (see Section 3);

calc.num is the number of “samplings” M ; iter.num is the maximum number of

iterations (which we always set to 100, and which was never saturated in any of our

hundreds of thousands of kmeans() calls) used by the built-in R function kmeans()

internally called via the function qrm.stat.ind.class() given in Appendix A of

[11]; num.try is the number of clusterings qrm.stat.ind.class() aggregates in-

ternally, with num.try = 1 (which is the value we use) corresponding to a single

k-means clustering; reg.tail is the Boolean for regularizing (when set to TRUE) the

tail of the eigenvalues as in Subsection 2.4. The output of qrm.calc.ml.cor.mat()

is the inverse Γ−1
ij of the model covariance matrix Γij = σiσjΨ̃ij (or Γij = σiσjΨ̂ij,
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when reg.tail = TRUE – see Subsection 2.4), where σ2
i are the sample variances.

The weights with which the M “samplings” are combined are internally set to be

uniform. However, this can be modified if so desired. The weights can be based

on the Euclidean or some other distance, the sum over the specific variances ξ2
i ,

the average correlations, etc. In our simulations nontrivial weights did not add

value.

qrm.calc.ml.cor.mat <- function (r1, k, nn = 1,

calc.num = 100, iter.max = 100,

num.try = 1, reg.tail = F)

{
calc.mod.erank <- function(x)

{
take <- log(x) > 0

n <- sum(take)

x <- x[!take]

p <- x / sum(x)

h <- - sum(p * log(p))

er <- exp(h)

er <- er + n

return(er)

}

calc.het.cor <- function(p, ind)

{
u <- rep(0, nrow(ind))

for(a in 1:ncol(ind))

{
tt <- ind[, a] == 1

p1 <- p[tt, tt]

p1 <- eigen(p1)

u[tt] <- p1$vectors[, 1]

}
flm <- u * ind

q <- t(flm) %*% p %*% flm

g <- flm %*% q %*% t(flm)

diag(g) <- 1

return(g)
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}

calc.cor.mat <- function(p, r1, k, iter.max, num.try)

{
ww <- 0

gg <- 0

for(j in 1:calc.num)

{
ind <- qrm.stat.ind.class(r1, k,

iter.max = iter.max, num.try = num.try,

demean.ret = F)

g <- calc.het.cor(p, ind)

w <- 1 ### uniform weighting

gg <- gg + g * w

ww <- ww + w

}
gg <- gg / ww

return(gg)

}

gg <- cor(t(r1), t(r1))

for(a in 1:nn)

gg <- calc.cor.mat(gg, r1, k, iter.max, num.try)

if(reg.tail)

{
xx <- eigen(gg)

vv <- xx$values

uu <- xx$vectors

er <- trunc(calc.mod.erank(vv))

tt <- (er + 1):length(vv)

zz <- colSums(t(uu[, tt]^2) *

vv[tt]) / vv[er] / rowSums(uu[, tt]^2)

zz <- sqrt(zz)

vv[tt] <- vv[er]

uu <- t(t(uu) * sqrt(vv))

uu[, tt] <- zz * uu[, tt]

gg <- uu %*% t(uu)

}
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gg <- solve(gg)

ss <- apply(r1, 1, sd)

gg <- t(gg / ss) / ss

return(gg)

}

B Disclaimers

Wherever the context so requires, the masculine gender includes the feminine

and/or neuter, and the singular form includes the plural and vice versa. The

author of this paper (“Author”) and his affiliates including without limitation

Quantigicr Solutions LLC (“Author’s Affiliates” or “his Affiliates”) make no im-

plied or express warranties or any other representations whatsoever, including

without limitation implied warranties of merchantability and fitness for a partic-

ular purpose, in connection with or with regard to the content of this paper in-

cluding without limitation any code or algorithms contained herein (“Content”).

The reader may use the Content solely at his/her/its own risk and the reader

shall have no claims whatsoever against the Author or his Affiliates and the

Author and his Affiliates shall have no liability whatsoever to the reader or any

third party whatsoever for any loss, expense, opportunity cost, damages or any

other adverse effects whatsoever relating to or arising from the use of the Content

by the reader including without any limitation whatsoever: any direct, indirect,

incidental, special, consequential or any other damages incurred by the reader,

however caused and under any theory of liability; any loss of profit (whether

incurred directly or indirectly), any loss of goodwill or reputation, any loss of

data suffered, cost of procurement of substitute goods or services, or any other

tangible or intangible loss; any reliance placed by the reader on the completeness,

accuracy or existence of the Content or any other effect of using the Content; and

any and all other adversities or negative effects the reader might encounter in

using the Content irrespective of whether the Author or his Affiliates is or are or

should have been aware of such adversities or negative effects.

The R code included in Appendix A hereof is part of the copyrighted R code

of Quantigicr Solutions LLC and is provided herein with the express permission

of Quantigicr Solutions LLC. The copyright owner retains all rights, title and

interest in and to its copyrighted source code included in Appendix A hereof and

any and all copyrights therefor.
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Table 1: Summary of eigenvalues of the model correlation matrix Ψ̃ij for the

indicated values of the number K of clusters. All runs are for the number of

“samplings” M = 100 except for the second entry with K = 100 marked with an

asterisk, for which M = 1000. 1st Qu. = first quartile; 3rd Qu. = third quartile.

Mean is always 1 as Ψ̃ij is a correlation matrix with a unit diagonal (and the sum

of eigenvalues equals the sum of the diagonal elements).

K Min 1st Qu. Median Mean 3rd Qu. Max

10 0.078 0.4795 0.6579 1 0.8318 514.9

20 0.0684 0.45 0.6114 1 0.7856 503.6

30 0.0695 0.4221 0.5662 1 0.7533 499.7

40 0.07 0.3895 0.5346 1 0.7295 497.8

50 0.0684 0.3722 0.515 1 0.7025 496

60 0.0685 0.3574 0.4979 1 0.6841 495.9

70 0.0661 0.3469 0.4838 1 0.6686 497.1

70 0.0665 0.3477 0.4848 1 0.6701 496.9

70 0.0653 0.3464 0.483 1 0.6686 496.9

70 0.0652 0.3467 0.4825 1 0.6663 497.4

70 0.0642 0.3474 0.4835 1 0.67 496.6

70 0.0662 0.3477 0.4843 1 0.6679 496.7

70 0.064 0.3473 0.4853 1 0.6691 496.9

80 0.0614 0.3393 0.4739 1 0.6532 497.6

90 0.0355 0.3298 0.4626 1 0.641 497.6

100 0.015 0.3241 0.4532 1 0.6307 498.3

100∗ 0.0152 0.3318 0.4618 1 0.6276 498.1

101 0.0184 0.3217 0.4515 1 0.6278 498.6

102 0.0203 0.3219 0.4512 1 0.6255 498.6

103 0.0197 0.321 0.4496 1 0.6268 498.4

104 0.0153 0.319 0.4482 1 0.6245 498.5

105 0.0088 0.3204 0.4491 1 0.6236 498.2

106 0.0116 0.3191 0.447 1 0.6213 498.4

107 0.009 0.3176 0.4466 1 0.6215 498.2

108 0.0067 0.3165 0.4441 1 0.6187 498.4

109 0.0105 0.319 0.4447 1 0.6182 498.2

110 0.0032 0.3149 0.4432 1 0.6176 498.3

120 0.0026 0.3103 0.4355 1 0.6081 499

130 0.0051 0.3023 0.4259 1 0.5986 499.7

140 0.0022 0.2976 0.4209 1 0.5917 499.4

150 0.002 0.292 0.4132 1 0.5839 499.8
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Table 2: Backtest results for machine learning risk models for the indicated

number K of clusters, here and in Tables 3 and 4 the number of “samplings”

M = 100. ROC = annualized Return-on-Capital (in %). SR = annualized daily

Sharpe Ratio [20]. CPS = Cents-per-Share. The cases marked “tail” correspond

to using the deformed model correlation matrix Ψ̂ij; see Subsection 2.4 for

details. Also see Figures 6, 7, 8 for graphs of ROC, SR and CPS based on these

results.

K ROC (%) SR CPS

10 42.643 15.524 2.059

20 43.135 16.089 2.093

30 43.11 16.337 2.095

40 43.025 16.409 2.094

40 42.961 16.366 2.091

50 42.895 16.43 2.091

50 42.891 16.486 2.091

60 42.647 16.414 2.084

70 42.449 16.358 2.08

80 42.131 16.313 2.071

90 41.842 16.236 2.064

100 41.387 16.096 2.051

110 40.958 16.057 2.041

120, tail 40.726 15.902 2.033

130, tail 40.215 15.838 2.019

140, tail 39.894 15.819 2.011

150, tail 39.162 15.668 1.986
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Table 3: Backtest results for machine learning risk models for the indicated

number K of clusters with iterations (see Section 3 for details). X2, X3, X4

stand for 2, 3, 4 iterations, respectively. The cases marked “tail” correspond

to using the deformed model correlation matrix Ψ̂ij based on the method of

[18] (and not on the method of Subsection 2.4), whereby Ψ̂ij = Θij/
√

Θii

√
Θjj,

Θij =
∑N−n∗

a=1 λ̃(a) Ṽ
(a)
i Ṽ

(a)
j +

∑N
a=N−n∗+1 λ̃∗ Ṽ

(a)
i Ṽ

(a)
j ; see Subsection 2.4 for

notations. For comparison purposes, also see Table 4, which gives backtest

results for machine learning risk models without iterations using the deformed

model correlation matrix Ψ̂ij based on the method of [18].

K ROC (%) SR CPS

10, X2 42.614 15.213 2.036

10, X2 42.609 15.204 2.036

10, X2 42.627 15.236 2.037

20, X2 43.468 15.82 2.087

30, X2 43.64 16.054 2.099

40, X2 43.672 16.207 2.102

40, X2 43.668 16.186 2.102

40, X3 43.643 16.026 2.091

40, X4 43.508 15.899 2.08

50, X2 43.676 16.296 2.103

60, X2 43.75 16.398 2.109

70, X2 43.714 16.396 2.112

80, X2 43.62 16.41 2.113

90, X2 43.501 16.418 2.113

90, X3 43.654 16.33 2.109

90, X4 43.537 16.22 2.097

100, X2, tail 43.216 16.213 2.086

110, X2, tail 43.153 16.198 2.087

120, X2, tail 43.091 16.244 2.088

130, X2, tail 43.001 16.214 2.089

140, X2, tail 42.944 16.249 2.09

150, X2, tail 42.91 16.267 2.093
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Table 4: Backtest results for machine learning risk models for the indicated

number K of clusters, all without iterations, and using the deformed model

correlation matrix Ψ̂ij based on the method of [18]; see Table 3 for details.

K ROC (%) SR CPS

10 42.421 15.337 2.033

20 42.824 15.853 2.062

30 42.845 16.027 2.066

40 42.805 16.187 2.068

50 42.567 16.186 2.06

60 42.425 16.171 2.057

70 42.263 16.121 2.054

80 42.191 16.155 2.055

90 42.096 16.117 2.054

100 41.854 16.079 2.047

110 41.645 15.991 2.041

120 41.431 15.967 2.035

130 41.44 15.966 2.04

140 41.344 15.989 2.038

150 41.156 15.995 2.033
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Figure 1: A typical graph of the log of the eigenvalues (ordered decreasingly) of

the model correlation matrix Ψ̃
(m)
ij for a single “sampling” (M = 1). The number

of clusters K = 150. See Subsection 2.4 for details.
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Figure 2: A typical graph of the log of the eigenvalues (ordered decreasingly) of

the model correlation matrix Ψ̃ij obtained by combining M = 100 “samplings”

(with equal weights). The number of clusters K = 150. See Subsection 2.4 for

details.
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Figure 3: A typical graph of the log of the eigenvalues (ordered decreasingly) of

the model correlation matrix Ψ̃
(m)
ij for a single “sampling” (M = 1). The number

of clusters K = 40. See Subsection 2.4 for details.
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Figure 4: A typical graph of the log of the eigenvalues (ordered decreasingly) of

the model correlation matrix Ψ̃ij obtained by combining M = 100 “samplings”

(with equal weights). The number of clusters K = 40. See Subsection 2.4 for

details.
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Figure 5: A typical graph of the log of the eigenvalues (ordered decreasingly)

of the deformed (by adjusting the low-end “tail” eigenvalues) model correlation

matrix Ψ̂ij obtained by combining M = 100 “samplings” (with equal weights).

The number of clusters K = 150. See Subsection 2.4 for details.
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Figure 6: Return-on-Capital (ROC) vs. K (the number of clusters) based on

simulations from Table 2. For multiple simulations per K, the average ROC is

shown.
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Figure 7: Sharpe Ratio (SR) vs. K (the number of clusters) based on simulations

from Table 2. For multiple simulations per K, the average SR is shown.
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Figure 8: Cents-per-Share (CPS) vs. K (the number of clusters) based on simu-

lations from Table 2. For multiple simulations per K, the average CPS is shown.


