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Perturbation Least-Squares Chebyshev

method for solving fractional order

integro-differential equations
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Abstract

A numerical scheme based on the perturbation Least-Squares Cheby-
shev procedure for solving fractional order integro - differential equa-
tions is presented in this paper. An approximate solution taken together
with the Least - Squares method are utilized to reduce the fractional
integro-differential equations to system of algebraic equations, which
are solved for the unknown constants associated with the approximate
solution. Three numerical examples are considered to demonstrate the
accuracy and effectiveness of the method. The results obtained are in
good agreement with existing results in literature to a reasonable extent
and converge to the exact solutions of the chosen problems when such
existed in closed form .

Keywords: Perturbation; curve fitting; fractional integro-differential and

Least-squares

1 Department of Mathematics, Faculty of Physical Sciences, University of Ilorin, Ilorin,
Nigeria. E-mail: tomotayoadebayo@yahoo.com

2 Department of Mathematics and Statistics, School of Applied Arts and Sciences,
Federal Polytechnic, Bida, Nigeria.

Article Info: Received : May 7, 2015. Revised : June 12, 2015.
Published online : October 1, 2015.



38 Perturbation Least-Squares Chebyshev method ...

1 Introduction

Fractional Calculus entails Fractional Differential equations and Fractional

Integro-Differential Equations. Fractional Integro-Differential Equations FIDEs

arose in many phenomena in Applied Sciences and Engineering. It is a known

fact that many occurrences found in Physics, Chemistry, Biology, Mathemat-

ics, Acoustics, Biotechnology and so on are more accurately modeled with

FIDEs. Still, many of these models do not have analytic or exact solutions. So

researchers have lately proposed many numerical and analytic approaches for

proffering solutions for this class of problems. [1], used the Adomian Decompo-

sition Method to solve fractional Integro-differntial equations. Homotopy Per-

turbation and Homotopy Analysis methods were applied to solve initial value

problems of fractional order by [2]. [3] employed Variational Iteration Method

and Homotopy perturbation Method for finding the numerical solutions of

fourth-order fractional integro- differential equations. B-spline Wavelets was

applied to solve FIDEs by [4]. [5] gave an application of Chebyshev wavelets

Method for the solutions of class of nonlinear fractional integro-differential

equations in large interval. FIDEs was also solved with the Laplace Decompo-

sition Method by [6]. [7] applied Least squares method and Shifted Chebyshev

Polynomial for the numerical solutions of Fractional Integro-Differential Equa-

tions.

In this paper, we are presenting a perturbation Least squares Chebyshev

method for the solution of Fractional Integro- differential equations of the

type:

Dαu(t) = f(t) +

∫ 1

0

k(t, s)u(s)ds, 0 ≤ t ≤ 1 (1)

with initial condition y(0) = y0

where k(t, s), f(t) are given smooth functions and u(t) is the unknown function

to be determined.

2 Definitions of relevant terms of calculus of

fractional order

In this section, we give brief definitions and properties of fractional deriva-



Taiwo, O. Adebayo and Fesojaye, M. Olalekan 39

tives relevant to the presentation in the next sections.

Definition 2.1. A real function f(t), t ∈ N is said to be in space Cµ ,µ

∈ R if there exist a real number ρ > µ , such that

f(t) = tρf1(x) (2)

where f1(t) = c(0,∞). If β ≤ µ, then cµ ∈ cβ.

Definition 2.2. The Riemann-Liouville integral operator of order α > 0 of

a function, f ∈ cu ,u ≥ −1 is defined as [8]:

Jαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, α > 0, t > 0 (3)

Listed here are some of the properties of Riemann-Liouville fraction integra-

tion. For f ∈ cu , u ≥ −1 , a, b ≥ 0 ,c > −1:

JaJ bf(t) = Ja+bf(t) (4)

JaJ bf(t) = J bJaf(t) (5)

Jatc =
Γ(c + 1)

Γ(a + c + 1)
ta+c (6)

Definition 2.3. The fractional derivative of f(t) in the Caputo sense is

defined as [9].

Dα
∗ f(t) =

1

Γ(m− α)

∫ t

0

(t− τ)m−α−1f (m)(τ)dτ (7)

for m− 1 < α ≤ m, m ∈ N ,t > 0; where α ≥ 0 is the order of the derivative.

Stated here, are basic properties of Caputo derivatives; if k, k1, k2 are con-

stants, then;

Dα
∗ f(k) = 0 (8)

Dα
∗ f(tn) = 0, if, n ∈ N0, n < dαc (9)

Dα
∗ f(tn) =

Γ(n + 1)

Γ(n + 1− α)
if, n ∈ N0, n ≥ dαc (10)

dαc is a function called the smallest integer greater than or equal to α and α

an element of N0 is the integer order derivative. N0 = (0, 1, 2, · · · )

Dα
∗ J

αf(t) = f(t) (11)
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JαDα
∗ f(t) = f(t)−

m−1∑

k=0

f (k)(0+)
tk

k!
, t > 0 (12)

Dα
∗ (k1f(t) + k2f(t)) = k1D

α
∗ f(t) + k2D

α
∗ f(t) (13)

3 Basic properties of Chebyshev Polynomials

The Chebyshev polynomials of the first kind and of degree k are defined

on the interval [−1, 1] [10] as;

Tk(t) = cos−1(kcos(t)) (14)

T0(t) = 1, T1(t) = t, T2(t) = 2t2 − 1. (15)

and the recurrence relation is given as

Tk+1(t) = 2tTk(t)− Tk−1(t), k = 2, 3 · · · (16)

Snyder(1966) also stated shifted Chebyshev polynomials of degree n on the

closed interval [0,1] as;

T ∗
n(t) = Tn (2t− 1) (17)

The recurrence formula on the closed form interval [0, 1] is ;

T ∗
n+1(t) = 2(2t− 1)T ∗

n(t)− T ∗
n−1(t); n ≥ 1 (18)

Also, few terms are listed thus:

T ∗
0 (t) = 1, T ∗

1 (t) = 2t− 1, T ∗
2 (t) = 8t2 − 8t + 1 (19)

3.1 Perturbation Least - Squares Chebyshev Polynomi-

als Method

The Least - Squares curve fitting is a procedure for fitting a unique curve

through giving set of data points. The method of curve fitting is discussed

in detail by [11]. The Least Squares - Chebyshev Polynomials method as
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applied to fractional integro differential equations is hereby presented in this

subsection. In this approach, we employ an approximate solution of the form:

uk(t) =
m∑

k=0

ckT
∗
k (t) +

n∑

k=0

τkT
∗
k (t) (20)

where uk(t) denotes the approximate solution of the given problem in equation

(1), ck and τk are unknown constants defined for k = 0, 1, 2, ...m and k =

0, 1, 2, ...n also Tk(t) is the shifted Chebyshev Polynomials defined in equation

(14) with the recurrence relation given in equation (18). Now, we substituted

equation (20) into (1) to get;

Dα

(
m∑

k=0

ckT
∗
k (t) +

n∑

k=0

τkT
∗
k (t)

)
= f(t)

+

∫ 1

0

k(t, s)

[
m∑

k=0

ckT
∗
k (t) +

n∑

k=0

τkT
∗
k (t)

]
dt

(21)

We computed the error in equation (21) above and is denoted by E(t, c0, c1,

· · · , ck) and given as:

E(t, c0, c1, · · · , ck) = Dα

(
m∑

k=0

ckT
∗
k (t) +

n∑

k=0

τkT
∗
k (t)

)
− f(t)

−k(t, s)

[
m∑

k=0

ckT
∗
k (t) +

n∑

k=0

τkT
∗
k (t)

]
dt (22)

Simplifying equation (22) gives;

E(t, c0, c1, · · · , ck) =
m∑

k=0

ckD
α (T ∗

k (t)) +
n∑

k=0

DατkT
∗
k (t)− f(t)

−
∫ 1

0

k(t, s)

[
m∑

k=0

ckT
∗
k (t) +

n∑

k=0

τkT
∗
k (t)

]
dt

(23)

Let w(s) be the positive weight function defined in (0, 1) and because it is

defined in this interval, w(s)=1. Consequently, we have:

S(c0, c1, · · · , ck) =

∫ 1

0

E [(s, c0, c1, · · · , ck)]
2 w(s)ds (24)
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S(c0, c1, · · · , ck) =

∫ 1

0

{
m∑

k=0

ckD
αT ∗

k (t) +
n∑

k=0

DατkT
∗
k (t)− f(t)

−
∫ 1

0

k(t, s)

[
m∑

k=0

ckT
∗
k (t) +

n∑

k=0

τkT
∗
k (t)

]
dt

}2

ds

(25)

The values of c0, c1, · · · , ck give the coefficients of the approximate solution

of equation (1). To get these values using least squares method, we need to

find the minimum value of S(c0, c1, · · · , ck). This is done by finding partial

derivatives of S(c0, c1, · · · , ck) and equating the results to zero. Consequently

the results in (m + 1) system of equations are expressed in matrix form as:




A11 A12 A13 · · · A1m τ11 τ12 · · · τ1m

A21 A22 A23 · · · A2m τ21 τ22 · · · τ2m

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Am1 Am2 Am3 · · · Amn τm1 τm2 · · · τmn







c0

c1

...

cm

τ1

τ2

...

τn




=




B1

B2

...

Bm

...

...

...

Bm+1




The matrix is then solved with the Gaussian elimination method to get the

unknown constants.

4 Numerical Experiments

The method discussed above is hereby demonstrated with the following

numerical examples. The examples are Fractional integro-differential equations

of fractional order.

Example 1. Consider the fractional order Integro- Differential equation.

D
1
2 u(t) =

(
8
3
t

3
2 − 2t

1
2

)
√

π
+

t

12
+

∫ 1

0

tsu(s)ds, 0 ≤ t, s ≤ 1 (26)

subject to u(0) = 0 . This problem has an exact solution of t2− t [7]. We take

m = 5, n = 1 and use the Perturbation Least-Squares Chebyshev Method
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in equation (20). Also, we make use of six terms of the shifted Chebyshev

Polynomials for k = 5.

u5(t) =
5∑

k=0

ckT
∗
k (t) +

1∑

k=0

τkT
∗
k (t) (27)

u5(t) =c0T
∗
0 (t) + c1T

∗
1 (t) + c2T

∗
2 (t) + c3T

∗
3 (t) + c4T

∗
4 (t)

+ c5T
∗
5 (t) + τ0T

∗
0 + τ1T

∗
1 (t)

(28)

Substituting (28) into (26) and simplifying further we got the following equa-

tions:
1.166666667a0 + 0.4951966673a1 − 0.6241542824a2

+0.5583454737a3 − 0.4160499541a4 + 0.4322016693a5

+0.6063077784τ1 = −0.2238526193

(29)

0.8249855834a1 + 0.4951966673a0 + 1.159046793a2

−.8272909647a3 + .8444844662a4 − .7634975441a5

+0.9407015114τ1 = 0.08298126588

(30)

6.476952936a2 − .6241542824a0 + 1.159046793a1

−0.2395141584a3 + 0.4786277972a4 − 0.5156700155a5

+1.286917482τ1 = 0.8876384042

(31)

9.994458600a3 + 0.9061289423a5 − 0.8729937326τ1

+.5583454737a0 − 0.8272909647a1 − 0.2395141584a2

−0.8030659854a4 = −0.09973243609

(32)

13.63643757a4 − 1.195029765a5 + 0.8967522289τ1

−0.4160499541a0 + 0.8444844662a1 + .4786277972a2

−.8030659854a3 = 0.1118348224

(33)

17.05283883a5 + .9061289423a3 − 1.195029765a4

−0.8064432488τ1 + 0.4322016693a0 − 0.7634975441a1

−0.5156700155a2− = 0.1184832081

(34)

1.074935954τ1 − 0.8729937326a3 + 0.8967522289a4

−0.8064432488a5 + 0.6063077784a0 + 0.9407015114a1

+1.286917482a2 = 0.08507621290

(35)
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These equations were solved for unknowns to get following values;

a0 =− 0.1247251552, a1 = 0.004448370365, a2 = 0.1250465289,

a3 =− 0.4787098650× 10−5, a4 = 0.1163226749× 10−5,

a5 =− 3.182034463× 10−7, τ1 = −0.4108697853× 10−2

(36)

On substitution into the approximate solution we have;

u5(t) = −0.004120728171− 0.9916147915t + 1.000915409t2

−0.0008073610644t3 + 0.0005561934352t4 − 0.0001629201645t5
(37)

Example 2. Consider the fractional order Integro- Differential equation.

D
5
6 u(t) = f(t) +

∫ 1

0

texu(x)dx, 0 ≤ t, x ≤ 1 (38)

subject to u(0) = 0, where

f(t) = − 3

91

t
1
6 Γ(5

6
)(−91 + 216t2)

π
+ (5− 2e)t

with the exact solution u(t) = t− t3 (Mohammed, 2014).

Similarly, substituting (37) into(26) and simplifying further we got the follow-

ing approximate solution:

u5(t) = −0.00006848728738 + 1.000106452t− 0.000233146t2

−0.9994447054t3 − 0.0007128815566t4 + 0.0003168631342t5
(39)

Example 3. Consider the fractional order Integro- Differential equation.

D
5
3 u(t) =

3
√

3Γ(2
3
)t

1
3

π
− 1

5
t2 − 1

4
t +

∫ 1

0

(tx + t2x2)u(x)dx, 0 ≤ t, x ≤ 1 (40)

with the exact solution u(t) = t2 [7].

Also, substituting (39) into(26) and simplifying further we got the following

approximate solution:

u5(t) = −0.000004105902790 + 0.000557383t + 1.000011307t2

+0.00005868537207t3 + 0.000000605187348t4 + 0.000002099039719t5
(41)

The numerical results for these three problems are tabulated in the tables

below.
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Table 1: Table of Results for Example 1

t Exact Approx Error

0.00 0.000000000000 -0.004120728171 4.1207e-03

0.10 -0.090000000000 -0.093273806580 3.2738e-03

0.20 -0.160000000000 -0.162412691200 2.4127e-03

0.30 -0.210000000000 -0.211540468200 1.5405e-03

0.40 -0.240000000000 -0.240659280200 6.5928e-04

0.50 -0.250000000000 -0.249770521100 2.2948e-04

0.60 -0.240000000000 -0.238875031900 1.1250e-03

0.70 -0.210000000000 -0.207973296600 2.0267e-03

0.80 -0.160000000000 -0.157065637400 2.9344e-03

0.90 -0.090000000000 -0.086152409740 3.8476e-03

1.00 0.000000000000 0.004765801506 4.7658e-03

Table 2: Table of Results for Example 2

t Exact Approx Error

0.00 0.000000000000 -0.000068487287 6.8487e-05

0.10 0.099000000000 0.098940313620 5.9686e-05

0.20 0.192000000000 0.191946880500 5.3120e-05

0.30 0.273000000000 0.272952453900 4.7546e-05

0.40 0.336000000000 0.335957323900 4.2676e-05

0.50 0.375000000000 0.374961210900 3.8789e-05

0.60 0.384000000000 0.383963644800 3.6355e-05

0.70 0.357000000000 0.356964345900 3.5654e-05

0.80 0.288000000000 0.287963605100 3.6395e-05

0.90 0.171000000000 0.170962663900 3.7336e-05

1.00 0.000000000000 -0.000035904822 3.5905e-05
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Table 3: Table of Results for Example 3

t Exact Approx Error

0.00 0.000000000000 -0.000004105903 4.1059e-06

0.10 0.010000000000 0.010051804240 5.1804e-05

0.20 0.040000000000 0.040108294100 1.0829e-04

0.30 0.090000000000 0.090165721140 1.6572e-04

0.40 0.160000000000 0.160224449300 2.2445e-04

0.50 0.250000000000 0.250284851500 2.8485e-04

0.60 0.360000000000 0.360347312000 3.4731e-04

0.70 0.490000000000 0.490412229800 4.1223e-04

0.80 0.640000000000 0.640480019600 4.8002e-04

0.90 0.810000000000 0.810551115700 5.5112e-04

1.00 1.000000000000 1.000625973000 6.2597e-04

5 Conclusion

Perturbation Least - Squares Chebyshev method was successfully used to

solve fractional order integro differential equations . The method used an

approximate solution that reduced the FIDEs into a system of equations. The

procedure provided realistic solutions which converged to exact solutions of

the problems. This showed that the method agreed with the exact solutions

when such exist to a reasonable decimals and hence confirmed that the method

could handle the class of problems discussed effectively.
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