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Abstract 

This paper examines copulas that best fits the equity returns. Using nine years data 

of daily returns of 30 representative stocks, this study finds that t copula 

unanimously dominates the goodness of fit criteria. The conclusion reveals the 

inappropriateness of using high-dimensional multivariate Gaussian distribution to 

model the dependence of asset returns, because the nested distribution 

underestimates the volatility and anomaly of asset performance. Furthermore, 

Gumbel, Clayton, and Frank copula do not capture the extreme value dependence 

among assets. The results suggest that the optimal procedure for Monte Carlo 

simulation of asset return is to fit the individual asset return marginal and model 

the dependence of asset trends through the copula. 
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1  Introduction  

This paper examines copulas that best fits the equity returns and suggest 

copula classes that should be adopted in modeling equity return dependence. 

Copulas as better solutions of modeling asset return dependence receive more 

attention in the recent uses in both academia and industry (Fernandez, 2008, 

Meucci, 2011). This paper thus attempts to provide empirical solution in terms of 

copula selection and examine the robustness of the suggestion of copula using 

different groups of equities at various dimensions. 

Linear correlation carries major disadvantages that prevent its application 

to the Monte Carlo simulation. One of the vital disadvantages is that a market 

shock that drives returns of different assets move simultaneously to the other side 

of the expected return can inflate the correlation and disregard the different 

correlation nature of the assets at the tranquil period.  

A recently prevalent approach that overcomes the disadvantages of linear 

correlation is to model the dependence of returns by copulas. A copula separates 

the randomness of one variable from the dependencies between it and other 

variables. Certain copulas can model the asymmetric distribution of tails by 

different level of dependencies at various market environments. This is the major 

advantage of using copulas to model and simulate interdependent variables 

compared to Cholesky decomposition, which is the current standard procedure in 

Monte Carlo simulations with asset return dependence incorporated.  

A copula method models each variable separately and then measures the 

relations between variables. One of the benefits of this two-stage model is that the 

univariate probability distribution of the return of each different asset can be 

modelled differently by a specific distribution type of choice without affecting the 

dependencies among the assets. Such dependencies among the returns of assets 

can be described by a multivariate probability distribution function. Copula is thus 

the aforementioned multivariate distribution function that generates joint 

outcomes of the variables.  
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Strictly defined and consistent with Nelsen, (1999), C: [0,1]d→[0,1] is a d-

dimensional copula if C is a joint distribution function of a d-dimensional random 

vector on the unit cube [0,1]d with marginal following uniform distribution. More 

specifically, C: [0,1]d→[0,1] is a d-dimensional copula if 

C(u1, …, ui-1, 0, ui+1,…,ud)=0                                                      (1) 

C(1,…, u, 1,…,1)=u                                                                    (2) 

C is d-increasing, i.e., for each hyper-rectangle  

B=∏ [xi, yi] ⊆ [0,1]dd
i=1                                              (3) 

the C-volume of B is non-negative: 

∫ dC(u) = ∑ (−1)N(Z)C(Z) ≥ 0Z∈×i=1
d {xi,yi}B                                (4) 

 where the N(Z)=#{k:zk=xk}                                                                     

     

Two most frequently used copula families are elliptical copulas and 

Archimedean copulas. An elliptical copula is the copula corresponding to an 

elliptical distribution by the Sklar’s theorem. Specifically, it is defined in the 

following Equation (5). 

𝐶�𝑢1, … ,𝑢𝑝� = 𝐹[𝐹1−1(𝑢1), … ,𝐹𝑝−1�𝑢𝑝�]                                             (5) 

where 𝐹  is the multivariate Cumulative Density Function of an elliptical 

distribution, 𝐹𝑖 is the Cumulative Density Function of the ith margin and 𝐹𝑖−1 is its 

inverse function.  

An Archimedean copula is set up through a generator φ as described in 

Equation (6). 

𝐶�𝑢1, … ,𝑢𝑝� = 𝜑−1[𝜑(𝑢1) + ⋯+ 𝜑�𝑢𝑝�]                                            (6) 

where 𝜑−1 is the inverse of the generator 𝜑. The generator, which determines a 

specific copula, must be a p-order monotonic function to make 𝐶�𝑢1, … ,𝑢𝑝� 

qualify for the aforementioned three features of copula. The most common 

Archimedean copula classes are the one-parameter families, such as Clayton 
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copula (Clayton, 1978), Frank copula (Frank, 1979), and Gumbel copula (Gumbel, 

1960), which are summarized in Table 1.  

 

 

Table 1: Common Archimedean Copulas 

Family Parameter Space Generator 𝜑 Generator Inverse 𝜑−1 

Clayton 𝛼 ≥ 0 𝑡−𝛼 − 1 (1 + 𝑠)−1 𝛼�  

Frank 𝛼 ≥ 0 
−𝑙𝑛

𝑒−𝛼𝑡 − 1
𝑒−𝛼 − 1

 
−𝛼−1ln (1 + 𝑒−𝑠(𝑒−𝛼 − 1) 

Gumbel 𝛼 ≥ 1 (−𝑙𝑛𝑡)𝛼 𝑒−𝑠
1 𝛼�  

 

 

According to Rachev, Stoyanov, and Fabozzi (2007) the most widely used copula 

is the Gaussian copula. Following Bouye et al. (2000), let ρ be a symmetric, 

positive definite matrix with diag ρ=1 and Φ𝜌  the standardized multivariate 

normal distribution with correlation matrix ρ. The multivariate Gaussian copula is 

C(u1,…, un,…,uN; ρ)= Φ𝜌(Φ−1(u1),…, Φ−1(un),…, Φ−1(uN))                        (7) 

The corresponding density is 

c(u1,…, un,…,uN; ρ)= 1

|𝜌|
1
2

exp �− 1
2
𝜍𝑇(𝜌−1 − 𝐼𝐼)𝜍�                                 (8) 

with 𝜍𝑛 = Φ−1(𝑢𝑛). The bivariate form, consistent with Schmidt (2006), is 

      𝐶𝛿
𝐺(𝑢1,𝑢2) = Φ𝛿{Φ−1(𝑢1),Φ−1(𝑢2)}                                               (9) 

 

= � �
1

2𝜋√1 − 𝛿2
exp {

−(𝑠2 − 2𝛿𝑠𝑡 + 𝑡2)
2(1− 𝛿2)

}𝑑𝑠𝑑𝑡
Φ−1(𝑢2)

−∞

Φ−1(𝑢1)

−∞
 

 

Gaussian copula allows generating joint symmetric dependence but it does 

not incorporate tail dependence. Specifically, Gaussian copula does not exhibit 

either lower or upper tail dependence unless the value of δ is 1 (Fernandez, 2008). 
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However, assets returns may present extreme-value dependency in both tails. The 

wide use of the Gaussian copula model causes the dramatic increase in market 

participants and volumes, and may cause significant losses when the asset return is 

non-normal. Therefore, recent studies have focused on the Student’s t-copula, for 

example, Mashal, Naldi, and Zeevi (2003).  

Following Bouye et al. (2000), let ρ be a symmetric, positive definite matrix 

with diag ρ=1 and T𝜌,𝜐 the standardized multivariate Student’s distribution with 𝜐 

degrees of freedom and correlation matrix ρ. The multivariate Student’s copula is 

       C(u1,…, un,…,uN; ρ, 𝜐)= T𝜌,𝜐(𝑡𝜐−1 (u1),…, 𝑡𝜐−1 (un),…, 𝑡𝜐−1 (uN))              (10) 

with 𝑡𝜐−1 the inverse of the univariate Student’s distribution. The corresponding 

density is 

       c(u1,…, un,…,uN; ρ)= 1

|𝜌|
1
2

Γ(𝜐+𝑁2 )�Γ�𝜐2��
𝑁

(1+1𝜐𝜍
⊺𝜌−1𝜍)−

𝜐+𝑁
2

�Γ(𝜐+12 )�
𝑁
Γ�𝜐2�∏ (𝟏+𝝇𝒏

𝟐

𝝊 )−
𝜐+1
2𝑵

𝒏=𝟏

                         (11) 

with 𝜍𝑛 = 𝑡𝜐−1(𝑢𝑛). 

 

Guo and Zhong (2015) document that due to the inherent instability, it is 

inappropriate to employ Pearson correlation coefficient to measure the volatility of 

a portfolio, such as  

𝜎𝑝2 = ∑ 𝜔𝑖
2𝜎𝑖2 + ∑ ∑ 𝑤𝑖𝑗𝑖𝑖 𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗                                                 (12) 

Guo and Zhong (2015) also document that for the similar reason, using 

Cholesky decomposition 2 in Monte Carlo simulations presents biased forecast 

2  Specifically, the Cholesky decomposition of a positive-definite matrix 𝔸  is a 
decomposition of the form 𝔸 = 𝕃𝕃∗, where 𝕃 is a lower triangular matrix with real and 
positive diagonal entries, and 𝕃∗ is the conjugate transpose of 𝕃. Cholesky decomposition 
allows for separating dependent variables into independent variables with designated 
correlation pattern. The first step is to compute the correlation matrix and then decompose 
the matrix to obtain the lower-triangular 𝕃. Applying this to a vector of uncorrelated 
samples, 𝒓�⃗ , produces a sample vector 𝕃 𝒓�⃗  with the correlation of the historical values 
being simulated. For example, for two correlated normally distributed variables with 
correlation coefficient equals ρ, one can first simulate two uncorrelated normal variables 
𝜔1 and 𝜔2;  then 𝜔1 and 𝜌𝜔1 + �1 − 𝜌2𝜔2 are correlated at the level of ρ. 
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with asymptotic volatility. Somewhat sadly, using the variance of portfolio 

presented in Equation (12) with ex post data and using Cholesky decomposition in 

Monte Carlo procedure is still the common practice in academia and industry. 

Underlying Cholesky decomposition is the implicit assumption is the stability of 

the correlation coefficient in the ℙ matrix.  

ℙ = �
1 ⋯ 𝜌1𝑗
⋮ ⋱ ⋮
𝜌𝑖1 ⋯ 1

�                                                              (13) 

In fact, any model that uses deterministic coefficients, rather than time 

varying variables suffers from similar problems as correlation coefficient. 

Examples of such deterministic coefficient include VAR, GARCH, cointegration, 

Granger causality, VECM, Kendall’s tau, Spearman's rank correlation coefficient, 

and Goodman and Kruskal's gamma. To generate time varying variables to 

describe the dependence among financial assets, distribution-based simulation 

dominates constant-based simulation.  

 

 

2  Methods and Models 
The further question is then which copula fits the asset return patterns best. 

Using the Gaussian copula as the benchmark, Student’s t copula has fatter head 

and tails. This contrasts to the leptokurtic distributions which has thinner head but 

fatter tails. Both Gaussian and Student’s t copula have both sides of the extreme 

observations being dependent. Clayton copula has only one side of the extreme 

observations being dependent to the same degree, compared to Gumbel copula 

that has both sides of the extreme observations being dependent to asymmetric 

degree. Frank copula, however, do not present significant degree to dependence at 

either side of the observations. Figure 1, 2, and 3 provides intuitive 

demonstrations of the five copulas in terms of their distribution features. The R 

program for copula demonstration is available by request. 

http://www.thefreedictionary.com/leptokurtic
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Well-known goodness of fit statistics are the 𝜒2, Kolmogorov-Smirnoff, and 

Anderson-Darling goodness statistics. However, this study does not consider these 

statistics as they are limited to the requirement of precise observations and cannot 

incorporate truncated data (Vose, Koupeev, et al., 2007). This paper instead 

considers three information criteria in terms of the goodness of fit of the five 

copulas to the returns of financial assets. The criteria are Akaike information 

criterion (AIC); Schwarz information criterion (SIC), also known as Bayesian 

information criterion (BIC); and Hannan-Quinn information criterion (HQIC).   
 

 
Figure 1: Probability Density of the Gaussian, Student’s t, Gumbel, Clayton, and 

Frank Copulas 
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Figure 2: Cumulative Distribution Cross Sections of the Gaussian, Student’s t, 

Gumbel, Clayton, and Frank Copulas 
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Figure 3: Probability Density Cross Sections of the Gaussian, Student’s t, Gumbel, 

Clayton, and Frank Copulas 

 

 

The information criteria statistics are computed as: 

 𝐴𝐼𝐶 = � 2𝑛
𝑛−𝑘−1

� 𝑘 − ln𝐿𝑚𝑎𝑥
2                                                    (14) 

                                            𝑆𝐼𝐶 = ln𝑛𝑘 − ln𝐿𝑚𝑎𝑥
2                                                          (15)    

                                            𝐻𝑄𝐼𝐶 = 𝑙𝑛(ln𝑘)2𝑘 − ln𝐿𝑚𝑎𝑥
2                                              (16) 
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where n is the number of observations; k is the number of parameters; and Lmax is 

the maximized value of the log-Likelihood for the estimated model. This study 

ranks the information criterion from the lowest to highest for a designated copula. 

The first item at the right side of Equations (14), (15), and (16) are the penalize 

term, as more parameters in a distribution ought to generate more precise 

description to the quantiles of distribution. This paper ranks the above-mentioned 

three information criteria for the five bivariate copulas for each pair of asset 

returns. For the 435 asset returns pairs generated from 30 assets, this study 

attempts to explore the copula that dominates the others. 

  

 

2  Data  
This paper randomly selects 30 stocks from the Russell 3000 index. The index 

list is according to the latest June 27, 2014 version as of December 18, 2014. 

Similar to Guo and Zhong (2015), this study first assigns random value between 0 

and 1 for all 3000 assets, and then select assets with random values between 0.49 

and 0.51. The assets that do not carry full historical data between December 5, 

2005 and December 8, 2014 are excluded. The random values assigned using the 

following procedure are uniformly distributed (Rotz, Falk, Wood, and Mulrow, 

2001) and are free of sampling bias or data mining concerns. Specifically, 

according to Wichman and Hill (1982, 1987), because the fractional part of the 

sum of three random numbers on [0,1] is still a random number on [0,1],  

For integer a, b, and c between 1 and 30000, assign the values to a, b, and c: 

a←MOD(170*a, 30323) 

b←MOD(171*a, 30269) 

c←MOD(172*a, 30307) 

The random number is the fractional part of the sum of a, b, and c. 
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Between December 5, 2005 and December 8, 2014, for each of the 30 stocks there 

is 2269 daily adjusted close price information from the Center for Research in 

Security Prices (CRSP). This generates 2268 daily returns for each asset; in other 

words, these are the daily returns in nine years assuming 252 trading days of every 

year. To covert the prices into continuously compounded returns, this paper 

applies the following Equation (17). 

𝑟𝑡
𝛾 = log𝑒 𝑝𝑡

𝛾 − log𝑒 𝑝𝑡−1
𝛾                                         (17) 

The assets selected in this paper are summarized in Table 2, and the key features 

of the assets are summarized in Table 3.  

 

 

Table 2: The 30 Assets Randomly Selected for Copula Goodness of Fit Tests 

Company Ticker Company Ticker 
ASPEN INSURANCE HOLDING AHL INGRAM MICRO INC IM 
BE AEROSPACE INC BEAV MARKEL CORP  MKL 
Belmond BEL MONARCH CASINO & RESORT MCRI 
COCA COLA BOTTLING COKE MOSAIC COMPANY  MOS 
DIEBOLD INC  DBD NU SKIN ENTERPRISES NUS 
MULTI-COLOR LABL PEPCO POM 
DOT HILL SYS CORP HILL POWELL INDUSTRIES INC POWL 
EZCORP INC  EZPW PRAXAIR PX 
FIRST FINL BANKSHARES FFIN RAMCO-GERSHENSON RPT 
FIRST LONG ISLAND CORP FLIC ROCKWOOD HOLDINGS INC ROC 
GENERAL COMMUNICATION  GNCMA SCHOLASTIC SCHL 
HEARTLAND FINANCIAL USA HTLF SANGAMO SGMO 
HOVNANIAN HOV SKYWORKS SOLUTIONS INC SWKS 
J & J JJSF MOLSON TAP 
INTER PARFUMS IPAR UNIFI UFI 
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Table 3: The Key Features of the 30 Assets for Copula Goodness of Fit Tests 

  

Market Cap  EV 
Trailing 

P/E  

Forward 

P/E 
PEG P/S P/B EV/Revenue EV/EBITDA 

AHL 2.77B 477.73M 8.72[MIN] 10.73 8.71 1.07 0.83 0.18 0.9 

BEAV 8.25B 10.58B 19.93 15.58 0.89 2.01 2.85 2.58 11.78 

BEL 1.22B 1.70B N/A 62[MAX] 23.66[MAX] 2.06 1.51 2.85 16.66 

COKE 799.72M 1.28B 33.67 19.42 N/A 0.47 3.7 0.75 10.24 

DBD 2.26B 2.52B 52.43 17.25 1.34 0.75 3.63 0.84 10.54 

LABL 905.28M 1.34B 24.94 16.09 1.34 1.15 2.93 1.72 9.9 

HILL 268.74M[MIN] 223.35M[MIN] 222[MAX] 15.88 1.54 1.28 5.05 1.08 43.88[MAX] 

EZPW 593.16M 882.93M N/A 7.09[MIN] 0.63 0.58 0.65[MIN] 0.89 6.26 

FFIN 1.93B 1.98B 22.11 20.27 2.11 7.56 2.89 7.89 N/A 

FLIC 371.45M 680.68M 16.37 14.33 2.15 5.02 1.52 9.71 N/A 

GNCMA 507.73M 1.56B 32 24.6 N/A 0.55 2.67 1.73 4.98 

HTLF 491.91M 1.09B 13.53 11.05 1.24 1.83 1.19 4.16 N/A 

HOV 568.94M 2.38B 32.77 11.14 2.48 0.29 N/A 1.22 21.44 

JJSF 2.03B 1.90B 28.45 25.04 2.6 2.16 3.53 2.06 13.11 

IPAR 860.81M 587.35M 39.13 27.54 2.32 1.74 2.12 1.23 12.09 

IM 4.27B 4.83B 16.65 9.01 0.85 0.1[MIN] 1.04 0.11[MIN] 6.65 

MKL 9.62B 8.53B 32.6 30.9 2.92 1.91 1.35 1.68 12.15 

MCRI 282.29M 305.66M 23.2 17.87 1.57 1.5 1.62 1.64 7.75 

MOS 16.85B 17.55B 59.78 N/A N/A 2.09 1.53 2.19 12.16 

NUS 2.66B 2.74B 10.25 10.82 -2.26[MIN] 0.92 2.94 0.91 5.49 

POM 6.85B 12.34B 25.71 20.76 2.85 1.41 1.57 2.55 9.86 

POWL 563.23M 441.01M 19.38 14.81 1.59 0.83 1.46 0.68 10.63 

PX 37.21B[MAX] 46.27B[MAX] 20.3 18.78 2.02 3.04 5.7[MAX] 3.76 11.96 

RPT 1.41B 2.32B N/A 13.84 3.24 6.85 1.73 11.4 19.7 

ROC 5.68B 6.25B 9.62 28.68 3.58 3.99 2.27 4.4 19.6 

SCHL 1.16B 1.32B 28.85 15.4 1.92 0.62 1.28 0.72 10.3 

SGMO 948.07M 626.96M N/A N/A N/A 20.89[MAX] 3.75 16.59[MAX] -21.13[MIN] 

SWKS 13.20B 12.38B 29.09 13.74 0.82 5.75 5.17 5.4 17.8 

TAP 13.64B 16.42B 24.53 17.32 3.89 3.26 1.63 3.91 19.89 

UFI 514.79M 595.61M 20.26 13.55 0.95 0.72 1.77 0.86 11.95 

 

 

In Table 3, the market capitalizations and enterprise values (EV) are based on 

the market quotes on December 10, 2014. The trailing Price-to-earnings (P/E), 

Price-to-Sales (P/S), Enterprise Value-to-Revenue, Enterprise Value-to-EBITDA 

(EV/EBITDA) are trailing twelve month data, the Price-to-Book (P/B) uses the 
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most recent quarter data as for December 18, 2014. The forward Price-to-earnings 

(P/E) in general uses pro forma earnings estimate to the 2015-2016 fiscal year, and 

the P/E-to-growth (PEG) indicates the 5-year expected growth level.  

 
 

4  Results and Discussions 

The distributions of returns of financial assets are frequently observed or 

assumed to be non-normal. Most frequently observed return distributions carry 

excess kurtosis and non-zero skewness. Harvey and Siddique (2000) discuss 

symmetrical skewness of asset returns and the premium associated with this 

skewness. Conrad, Dittmar, and Ghysels (2013) detail the skewness and kurtosis 

as markers for risk compensation in securities after considering 

comovements. Dong (2014) and Chen, Chen, and Lee (2013) suggest that the 

extreme negative investor sentiment leads to high dependence at the lower tail of 

the return quantile-quantile plot. While the optimistic market sentiment is less 

contagious, the returns at the upper tail are also dependent due to the massive fund 

import at market bubbles.  

The results of the 6525 information criteria, which are the 3 information 

criteria of the 5 copulas for 435 pairs of asset returns, nearly unanimously favors 

the Student’s t copula as the joint distribution of asset returns. The sizable outputs 

are available by request. This paper finds that the goodness of fit copula is not 

significantly linked to the type of the asset, no matter how the type is defined and 

categorized. Specifically, the extreme types of assets in various groups are 

presented in Table 3, and the following examples in Figure 4 are the 

demonstrations of the fitted t copula using the R copula functions (Hofert, 

Kojadinovic, Maechler, and Yan, 2014).  

The benefit of Student’s t copula is that it allows the joint distribution of 

assets to be fat headed and fat tailed. Such feature fits the nature of asset returns 



42                                          Evaluating the Goodness of Fit of Copulas on Equity Returns 

compared to normal distributions with excess kurtosis. Positive excess kurtosis 

allows for fat tails but limits the head of the distribution to be thinner than 

Gaussian distribution and is inconsistent with the common observations of volatile 

assets, which do not concentrate near the mean.  

 

 
                                BEL&HILL                                    BEL&IM                                                 BEL&PX  

 
                    BEL&SGMO                                              HILL&IM                                                           HILL&PX  
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                  HILL&SGMO                                               IM&PX                                                 IM&SGMO 

 
PX&SGMO 

Figure 4: t-Copula Simulation for 5 Assets with Extreme Financial Features 

 

 

While the Gumbel and Clayton copula allows for the asymmetric joint 

distribution, such asymmetry is redundant due to the nature of copulas. The 

different features of extreme value distribution can be captured by the independent 

marginals, such as the marginal of generalized hyperbolic distribution that 

Breymann and Lüthi (2013) suggest, of the univariate asset returns. This suggests 

another favorable feature of using copula to model the asset independence, which 

is the joint distribution is orthogonal to the statistic moments of individual asset. 
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In other words, copulas do not repeatedly incorporate the dependence of assets 

due to the similar variance, skewness, and kurtosis.  

 

 

5  Conclusions 

This paper uses asset returns and information criteria to conclude that the 

Student’s t copula is the most appropriate joint distribution to model the 

performance of financial assets. For each of the 30 representative stocks, this 

study fits the bivariate copulas to 9 years of historical returns, or 2268 

observations. In the 435 pairs of assets, the SIC, AIC, and HQIC information 

criteria indicate that t copula fits asset returns better compared to the Guassian, 

Gumbel, Clayton, and Frank copula. 

For a single asset, Gaussian distribution is commonly used in academia and 

industry to describe asset returns in spite of the widely-accepted conclusions that 

asset returns usually carry non-zero skewness and excess kurtosis. For multiple 

assets, academia and industry frequently use correlation coefficient to describe the 

dependence of assets. My study does not support such practice. The conclusions of 

this paper also suggest that it is inappropriate to use multivariate Gaussian 

distribution to model the dependence among assets. The reason is that any 

orthogonal cross section of a multivariate normal distribution must be a univariate 

normal distribution. However, this does not comprise the initiative to test the 

Gaussian copula, because joint normality does not dictate the individual 

distribution. 

For the simulation of a single asset, the predicted future returns may be biased 

if the Monte Carlo procedure is based on Gaussian distribution, as the projected 

return fails to consider the third and fourth moments of the historical distribution. 

For the simulation of a portfolio of assets, the predicted future returns may also be 

biased if the Monte Carlo procedure involves correlation coefficients, as the 
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dependent relationship among assets is time-varying and is very often a random 

walk (Guo and Zhong, 2014). Therefore using a univariate time series model, such 

as ARIMA, to fit the correlation coefficient limits the precision of the forecast. 

The reason is because there is no evidence to support the stability of coefficients 

in the time series model, which is highly dependent to the historical sample period 

selected. 

This paper suggests that the currently optimal method of modeling 

interdependent asset returns in a portfolio is to first fit the individual distributions 

and then fit the t-copula to the independent distributions. The study at the next 

step, which is relatively separated, is to explore the generalized return 

distributions for single assets to complete the chain of a new Monte Carlo 

procedure.  
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