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Sarima Modelling of Nigerian Bank Prime Lending Rates

Ette Harrison Etuk' and Uyodhu Amekauma Victor-Edema’

Abstract

The monthly Prime Lending Rates of Nigerian Banks are modeled herein by SARIMA
methods. The realization considered here spans from January 2006 to July 2014. The
original series called herein PLR has a generally horizontal secular trend. Its correlogram
reveals some seasonality of period 12 months. Moreover, preliminary data analysis shows
that yearly maximums are mostly between October and the next March, and the
minimums mostly between April and September. That means that the maximums tend to
lie in the first and the fourth quarters of the year and the minimums in the second and
third quarters of the year. That means that the series is seasonal of 12 monthly period.
Twelve-monthly differencing of PLR vyields the series called SDPLR which also has a
generally horizontal trend. Augmented Dickey Fuller (ADF) Tests consider both PLR and
SDPLR to be non-stationary. A non-seasonal differencing of SDPLR yields the series
DSDPLR which is considered stationary by the ADF tests. Its correlogram attests to a
12-monthly seasonality as well as the presence of a seasonal moving average component
of order one. The autocorrelation structure suggests the proposal of the following models:
(1) a SARIMA(0,1,1)x(0,1,1), (2) a SARIMA(0,1,1)x(1,1,1);, and (3) a
SARIMA(0,1,1)x(2,1,1),, . The foregoing models following a descending order of degree
of adequacy on AIC grounds. However, from the SARIMA(0,1,1)x(2,1,1);, model, a
SARIMA(0,1,0)x(2,1,1);, model becomes suggestive and it outdoes the rest on all counts.
Its residuals are mostly uncorrelated and also follow a normal distribution with mean zero.
Hence it is adequate and may be used to forecast the prime lending rates.
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1 Introduction

Prime lending rates are rates at which banks give loans to their best customers. These
customers are called best in the sense of having a long term relationship and credit
reputation with the bank and are often big-time and well-established clients. These rates
are usually minimal and they fluctuate according to the economic realities of the nation.
The aim of this work is to fit a seasonal autoregressive integrated moving average
(SARIMA) model to the monthly prime lending rates of Nigerian banks.

The rates are herein observed to show some seasonality of period 12 months as many
other economic and financial time series. Hence, the proposal of a SARIMA fit. In the
literature time series that have been modeled by SARIMA techniques because of their
intrinsically seasonal nature include temperature (Khajavi et al., [1]), tourism patronage
(Padhan, [2]), airways patronage (Box and Jenkins, [3]), inflation (Fannoh et al. [4]),
savings deposit rates (Etuk et al., [5]), rice prices (Hassan et al., [6]), tuberculosis
incidence (Moosazadeh et al., [7]), stock prices (Etuk, [8]), cucumber prices (Luo et al.,
[9]), internally generated revenues (Etuk et al., [10]), dengue numbers (Martinez et al.,
[11]), and tomato prices (Adanacioglu and Yercan, [12]), to mention but a few.

2 Materials and Methods
2.1 Data

The data analyzed in this work are 103 prime lending rates from January 2006 to July
2014 retrievable from the website of the Central Bank of Nigeria, www.cenbank.org.
They are published under the Money Market indicators subsection of the Data and
Statistics section.

2.2 Sarima Models

A stationary time series {X} is said to follow an autoregressive integrated moving
average model of order p and q denoted by ARMA(p,q) if it satisfies the following
difference equation

Xi—ou Xy —a, Xy, _"'_apxt—p =&+ Bie + Bré +"'+ﬂqgt—q (1)

where the sequence of random variables {&} is a white noise process. The a’s and B’s are
constants such that the model is both stationary and invertible. Suppose that the model (1)
is written as

A(L)X, =B(L)e, )
where A(L) and B(L) are the autoregressive (AR) and the moving average (MA)
operators respectively defined by A(L) =1 - ol - al? - ... - apl”and B(L) =1 + B,L +
B2L2 + ...+ Bqu and L is the backward shift operator defined by L*%, = Xix

If a time series is non-stationary, Box and Jenkins [3] proposed that differencing of the
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series a number of times may make it stationary. Let V be the difference operator. Then V
=1 - L. If d is the minimum number of times for which the d" difference {V?X;} of {X}
is stationary and {V*X} follows model (1) or (2) the original series {X} is said to follow
an autoregressive integrated moving average model of order p, d and g, denoted by
ARIMA(p,d,q).

If in addition the time series {X} is seasonal of period s, Box and Jenkins [3] moreover
proposed that it may be modeled by

A(L)D(L°)VIVEX, = B(L)O(L ), (3)

where Vg is the seasonal differencing operator defined by Vs = 1 — L°, D is the minimum
number of times of seasonal differencing for stationarity and ®(L) and ®(L) are the
seasonal AR and MA operators respectively. Suppose ®(L) and ®(L) are polynomials of
orders P and Q respectively model (3) is called a multiplicative seasonal autoregressive
integrated moving average model of order (p,d,q)x(P,D,Q)s, denoted by
SARIMA(p,d,q)x(P,D,Q)s model.

2.3 Sarima Model Fitting

The fitting of a SARIMA model of the form (3) starts invariably with the determination of
the orders p, d, g, P, D, Q and s. The seasonal period might be directly suggestive by
knowledge of the seasonal nature of the series as with monthly rainfall for which s =12 or
hourly atmospheric temperature for which s = 24. An inspection of the series could reveal
an otherwise unclear seasonality. Moreover the correlogram could reveal seasonality if
the autocorrelation function (ACF) has a sinusoidal pattern. In this case the period of
seasonality is the same as that of the ACF. The differencing orders d and D are often
chosen so that d + D < 3. This is usually enough to make the series stationary. Before and
after differencing at each stage the series is tested for stationarity using the Augmented
Dickey Fuller (ADF) Test. The AR orders p and P are estimated by the non-seasonal and
the seasonal cut-off lags of the partial autocorrelation function function (PACF)
respectively and the MA orders q and Q are estimated by the non-seasonal and the
seasonal cut-off lags of the ACF respectively.

The model parameters may be estimated by the use of a nonlinear optimization technique
like the least squares procedure or the maximum likelihood technique. This is due to the
presence of items of the white noise process in the model. The best of competing models
shall be chosen on minimum Akaike’s Information Criterion (AIC) grounds. Any chosen
model is tested for goodness-of-fit to the data by analysis of its residuals. An adequate
model must have residuals that are uncorrelated and/or follow the Gaussian distribution.

2.4 Statistical Software

The software used here is Eviews 7. It employs the least error sum of squares criterion for
model estimation.
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3 Results and Discussion

The time plot of the realization of the prime lending rates called herein PLR in Figure 1
shows a generally horizontal trend with a big hunch between 2009 and 2010. It is
observed that yearly minimums tend to lie in the second and third quarters of the year and
the maximums in the first and fourth quarters of the year.
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Figure 1. PLR
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It has a sinusoidal patterned ACF (see Figure 2) revealing a seasonal tendency of period
12 months. A 12-monthly differencing produces the series SDPLR which also has a fairly
horizontal trend with a hunch between 2009 and 2010 (See Figure 3). A non-seasonal
differencing of SDPLR yields the series DSDPLR which has a generally horizontal trend
(See Figure 4).
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Figure 2: Correlogram of PLR
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Figure 3: SDPLR

The ADF test statistic for PLR, SDPLR and DSDPLR are respectively -2.4, -2.4 and -5.8.
With the 1%, 5% and 10% critical values of -3.5, -2.9 and -2.6 respectively the ADF test
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considers both PLR and SDPLR non-stationary and DSDPLR as stationary.
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Figure 5: Correlogram of DSDPLR

2014

The correlogram of DSDPLR in Figure 5 shows an ACF of a series with a
SARIMA(0,1,1)x(0,1,1);, component and a seasonal AR component of order 2. The
SARIMA(0,1,1)x(0,1,1)1,
SARIMA(0,1,1)x(1,1,1); model (3) a SARIMA(0,1,1)x(2,1,1);, model and (4) a

models  proposed are (1)

SARIMA(0,1,0)X(2,1,1):, model.

a

model

(2)

a
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The SARIMA(0,1,1)x(0,1,1);, model as estimated in Table 1 is given by

X, =3046¢, , —.6386¢, ,, +.0563¢, ,,

X, =.2486¢, , —.7512¢, ,, + ¢,

Dependent Variable: DSDPLR

Method: Least Squares

Date: 09M10M4 Time: 19:43

Sample (adjusted). 2007M02 2014M07
Included observations: 90 after adjustments
Failure to improve SSR after 8 iterations

MA Backcast: 2006M01 2007M01

The additive SARIMA model suggestive by model (4) is estimated in Table 2 by

Table 1: Estimation of the SARIMA(0,1,1)x(0,1,1);, Model

Variable Coefficient Std. Error t-Statistic Prob.
MA(1) 0.304540 0107625 2.830573 0.0058
MA(12) -0.638577 0100668  -6.343388 0.0000
MA(13) 0.056343 0.110166 0.511443 0.6103
R-squared 0.514087 Mean dependentvar -0.010889
Adjusted R-squared 0502917 S.D. dependentvar 0.664303
2.E. of regression 0.468361 Akaike info criterion 1.353610
Sum squared resid 19.08448 Schwarz criterion 1.436937
Log likelinood -57.91246 Hannan-Quinn criter. 1.387212
Durbin-Watson stat 1.720081
Inverted MA Roots 93 B0+.48i .B0-48i A5+ B3
45-83i .09 -03+96i  -03-96i
-52+.83i -52-83i -.87-.48i -87+48i
-1.00

Table 2: Estimation of the Additive Sarima Model

Dependent Variable: DSDPLR

Method: Least Squares

Date: 091014 Time: 19:51

Sample (adjusted); 2007M02 2014M07
Included observations: 90 after adjustments
Failure to improve SSR after 9 iterations

MA Backcast 2006M02 2007M01

Variable Coefiicient Std. Error t-Statistic Prob.
MA(1) 0.248570 0.098703 2518356 0.0136
MA(12) -0.751223 0.089345  -5.408096 0.0000
R-sguared 0561111 Mean dependentvar -0.010889
Adjusted R-squared 0556123 3.0. dependentvar 0.664303
3.E. of regression 0.442586  Akaike info criterion 1.229606
Sum squared resid 17.23761  Schwarz criterion 1.285157
Log likelihood -53.33225 Hannan-Quinn criter. 1.252007
Durbin-Watson stat 1.683168
Inverted MA Roots 96 B3+.49i B3-.49i AT+.584]
AT-.84i -02+.97i -.02-.97i -51+.84i
-51-84i -87+.49i -.87-.49i -1.00

27

(4)

Q)
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Table 3: Estimation of the SARIMA(0,1,1)x(1,1,1);, Model
Dependent Variable: DSDPLR
Method: Least Squares
Date: 11/03/14 Time: 07:09
Sample (adjusted): 2008M02 2014M07
Included observations: 78 after adjustments
Convergence achieved after 27 iterations
MA Backcast: 2007M01 2008M01

Variable Coefficient Std. Error t-Statistic Prob.
AR(12) -0.308461 0.102135  -3.020138 0.0035
MA[1) 0277314 0.096452 2875154 0.0053
MA(12) -0.619369 0.073079  -B.475350 0.0000
MA(13) -0.561941 0.094494  -5.946816 0.0000
R-sguared 0.626500 Mean dependentvar 0.026795
Adjusted R-squared 0611358 S.D. dependentvar 0.656040
S.E. of regression 0408983 Akaike info criterion 1.098633
Sum squared resid 1237775 Schwarz criterion 1.220490
Log likelinood -38.88569 Hannan-Quinn criter. 1.148014
Durbin-Watson stat 1.940528
Inverted AR Roots .B8B-23i 88+.23i Bd-Bdi B4+ Bdi
.23-.88i 23+.88i -23+88i  -23-88i
-.64- 64 -64- 64 -.88-.23i -B88+.23i
Inverted MA Roots .99 B7+.49i B7-.49i 51-.85i
51+.85i .04-.98i .04+.98i -44- B7i
- 44+ 87 -77+54i  -T7-54i -84-13i
-84+13i

Table 4: Estimation of the SARIMA(0,1,1)x(2,1,1);, Model

Dependent Variable: DSDPLR

Method: Least Squares

Date: 09M10/14 Time: 20:27

Sample (adjusted). 2009M02 2014M07
Included observations: 66 after adjustments
Convergence achieved after 26 iterations
MA Backcast: 2008M01 2009M01

Wariable Coefficient Std. Error t-Statistic Prob.
AR(12) -0.931303 0.080534  -11.56521 0.0000
AR(24) -0.383290 0.064961  -5.900332 0.0000
MA{T) 0.116502 0.124558 0.935326 0.3533
MA{12) 0.948391 0.022273 4258032 0.0000
MAL13) 0.084726 0.121475 0.697481 0.4882
R-squared 0777617 Mean dependent var -0.019545
Adjusted R-squared 0763034 5.D.dependentvar 0.622275
S.E. of regression 0.302918 Akaike info criterion 0.522025
Sum squared resid 5.597318 Schwarz criterion 0.687908
Log likelihood -12. 22683 Hannan-Quinn criter. 0.587573
Durbin-Watson stat 1.810596
Inverted AR Roots 94- 19i 94+ 19i 81+.30i 91-.30i
72- 64i T2+ 64i B4+TF2i B4-72i
30+91i 30-910 19-94i 18+.94i
-19+.94i -19-94i -30-91i -30+91i
- B4+ T2 -64-T72i -T2+ 641 -TZ2-64i
-91-.30i -91+.30i -94+19i  -94-19i
Inverted MA Roots 96+ .26i .96-.26i T0-70i TJO0+70i
.26-.96i .26+.96i -09 -.26-.96i
- 26+.96i -TF1+70i -71-70i - 96+.26i

- 96-26i
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The SARIMA(0,1,1)x(1,1,1);, model as estimated in Table 3 is given by

X, +.3085X, ,, =.2773¢,, —.6114¢, ,, —.5619¢,_, + &, (6)

The SARIMA(0,1,1)x(2,1,1);, model as estimated in Table 4 is given by

X, +.9314X , +.3833X, ,, =.1165¢, , +.9484¢, , +.0847¢, , + ¢, (7)

which suggests a SARIMA(0,1,0)x(2,1,1);, model. This is estimated in Table 5 as

X, +.9329X, ,, +.3849X, ,, =.9330¢, ,, + &, 8)

Table 5: Estimation of the SARIMA(0,1,0)x(2,1,1);, Model
Dependent Variable: D3DPLR
Method: Least Squares
Date: 09/25M14 Time: 10:50
Sample (adjusted). 2009M02 2014M07
Included observations: 66 after adjustments
Convergence achieved after 7 iterations
MA Backcast 2008M02 2009M01

Variable Coefficient Std. Error t-Statistic Prob.
AR(12) -0.932895 0.074860  -12.44531 0.0000
AR(24) -0.384935 0061179 -6.291917 0.0000
MA[12) 0932851 0.019593 46 65244 0.0000
R-squarad 0767978 Mean dependentvar -0.019545
Adjusted R-squared 0760612 3.0D. dependentvar 0622275
3.E. of regression 0.304462 Akaike info criterion 0.503849
Sum squared resid 5.839924 Schwarz criterion 0.603379
Log likelihood -13.62702 Hannan-Cuinn criter. 0.543178
Durbin-Watson stat 1.534540
Inverted AR Roots B4-19i 94+ 19i 91+ 30i 91-30i
T2-64i T2+ 64i G4+ T2i B4-TF2i
30+.81i 30-91i 19-.94i 19+94i
- 19+.94| -19-.94i -30-91i -30+.91i
- G4+ 72 -64-72i - 72+.64i - 72-64i
-91-30i -91+.30i -94+19i -94-18i
Inverted MA Roots 6+ 26 96-.26i TJ0+70i TO0-T0i
_26-96i 26+ 96i - 26+ 96i - 26-.96i

-70-70i -70-70i -.96-.26i -.96+.26i
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Figure 6: Correlogram of the SARIMA(0,1,0)x(2,1,1)1, Residuals

Series: Residuals
7 — Sample 2009M02 2014MO7
Observations 66

Mean -0.040394
5 T . Median -0.018277
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Figure 7: Histogram of the SARIMA(0,1,0)x(2,1,1);, Residuals

In models (4) through (8), X represents DSDPLR. Model (8) is the most adequate on
minimum AIC grounds.

The residuals of model (8) are mostly uncorrelated (See Figure 6) and normally
distributed (See the Jarque Bera test of Figure 7) implying that model (8) is adequate.
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4 Conclusion

It may be concluded that the prime lending rates of Nigerian banks follow a
SARIMA(0,1,0)x(2,1,1);, model. Forecasting of these rates may be done on the
basis of this model.
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