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Abstract 
Value at Risk (VaR) is the most popular market risk measure as it summarizes in one 
figure the exposure to different risk factors. It had been around for over a decade when 
Expected Shortfall (ES) emerged to correct its shortcomings. Both risk measures can be 
estimated under several models. We explore the application of a parametric model to fit  
the joint distribution of risk factor returns based on multivariate finite Gaussian Mixtures, 
derive a closed-form expression for ES under this model and estimate risk measures for a 
multi-asset portfolio over an extended period. We then compare results versus benchmark 
models (Historical Simulation and Normal) through back-testing all of them at several 
confidence levels. Evidence shows that the proposed model is a competitive one for the 
estimation of VaR and ES. 
 
JEL classification numbers: C46, G17 
Keywords: Value at Risk, Expected Shortfall, Finite Gaussian Mixture, Historical 
Simulation, Delta-Normal, Backtesting. 

 
 
1  Introduction  
According to the Basel Committee, failure to capture major on- and off-balance sheet 
risks ... was a key destabalising factor during the crisis. In response to the detected 
shortcomings in capital requirements, {the enhanced treatment introduces a stressed 
Value at Risk (VaR) capital requirement (see BCBS (2011), paragraphs 11 and 12). 
VaR, the most used market risk measure to estimate daily potential losses in either trading 
or investment books, was not able to grasp the extent of the sub-prime mortgage market 
collapse in the United States that triggered aggregated losses in market value over 130 
billion (from February 2007) for firms such as Citigroup, Merryl Linch, Morgan Stanley, 
UBS, among many others. 
This was mainly due to calculations based on historical simulations (heavily dependent on 
sample window) or debatable assumptions whose validity was often not even verified. 
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In spite of the above, VaR is still the most favored metric by institutions and regulators to 
monitor and control market risk (see, for instance, CNBV 2005) and the Basel Committee 
uses it to set minimum capital requirements. This Committee, however, has recently 
agreed to move from VaR(99%) to ES(97.5%) (see BCBS  2013). 
In the context of risk management, Behr and Poetter (2009) model ten European daily 
stock indexes returns using hyperbolic, logF and mixtures of Gaussian distributions and 
conclude that the fit of the latter is slightly superior for all countries. Tan and Chu 
(TanChu2012) model the returns of an investment portfolio using a Gaussian Mixture and 
estimate Value at Risk. Kamaruzzaman et.al. (2012) fit a two-component Gaussian 
Mixture to univariate monthly log-returns of three Malaysian stock indexes. In a different 
work (2013) they estimate VaR and ES (using an expression that is a particular case of 
equation (8) below) for monthly and weekly returns of and index and find, through 
backtesting that GM is an appropriate model. Zhang and Cheng (2005) use Gaussian 
Mixtures with different number of components to estimate VaR of Chinese market 
indexes, bound it with the VaR of the components and link it to the behaviour of price 
movements and psychologies of investors. 
Alexander and Lazar (2006) use the normal mixture GARCH(1,1) model for exchange 
rates. They find that a two-component model performs better than those with three or 
more components and better than Student's t-GARCH models. 
Haas et al (2004) introduce a general class of normal mixture GARCH(p,q) models for a 
stock exchange index. Their models have very flexible individual variance processes but 
at the cost of parsimony: their best models require from 17 to 22 parameters to model the 
returns of only one index. 
Hardy (2001) fits a regime-switching lognormal model to monthly returns of two equity 
indexes and estimates VaR and ES using the payoff function of a European put option 
written on an index. 
Several other distributions have been used to model risk factors returns, such as 
non-symmetric t distribution (Yoon and Kang 2007) or Generalized Error Distribution 
(see Theodossiou 2000). 
We propose the family of finite Gaussian Mixtures (GM) as an alternative model to fit 
risk factors returns distributions and estimate risk metrics. The GM family preserves 
parsimony of the usual parametric models while explicitly capturing high volatility 
episodes through at least one of the components. We fit the portfolio profit and loss 
distribution and then estimate VaR and ES at several confidence levels using three models: 
a non-parametric one based on the empirical distribution of the risk factors returns 
(Historical Simulation: HS) and two parametric models; one based on the Normal 
distribution (Delta-Normal) and another one based on the GM family (Delta-GM). 
This paper is organized as follows. In Section 2 we introduce finite Mixture distributions 
in general and finite Gaussian Mixtures in particular and review some of their properties. 
In Section 3 we construct the portfolio loss random variable and its distribution as a linear 
function of risk factor2 returns. We formally define VaR and ES and introduce their 
estimators under the three candidate models. A description of backtesting procedures for 
each metric closes that section. In Section 4 we propose a trial portfolio, estimate VaR 
and ES at different confidence levels for several years and back-test models under study. 
                                                 

2By risk factors we understand the variables that determine the market value of the asset, specified 
through a valuation model. 
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In Section 5 we outline conclusions and potential future work. The Appendix contains 
proof and derivation of expressions used in Section 3. 

 
 
2  Finite Gaussian Mixtures 
In this section we introduce the family of mixture distributions and review some 
properties of finite Gaussian Mixtures in both the univariate and multivariate cases. 
 
Definition 2.1 Let X ∈ ℝd be a random vector. We say that it follows a finite 
(g-component) mixture distribution if its density function can be written as.  

𝑓𝑓𝑿𝑿(𝒙𝒙) = �𝜋𝜋𝑗𝑗𝑓𝑓𝑗𝑗 (𝒙𝒙)
𝑔𝑔

𝑗𝑗=1

 

where fj: ℝd → ℝ+, j=1, …, g are density functions and πj, j=1, …, g are positive 
constants such that  
 
∑ 𝜋𝜋𝑗𝑗
𝑔𝑔
𝑗𝑗=1 = 1 

 
Let us assume that the random vector X, is defined over a sample space Ω and follows a 
g-component mixture distribution. An intuitive interpretation is that there exists a 
partition {Ω1, Ω2, …, Ωk} of the sample space Ω, where πj = Pr[Ωj], j=1, …, g. Densities 
in the mixture (fj, j ∈ {1, …, g}) correspond to conditional probability densities of X given 
Ωj, j ∈ {1, …, g} respectively. In this case, the posterior probability of Ωj given a 
realization x of X, is 
 

𝑃𝑃�Ω𝑗𝑗 �𝑋𝑋 = 𝒙𝒙� =
𝜋𝜋𝑗𝑗𝑓𝑓𝑗𝑗 (𝒙𝒙)

∑ 𝜋𝜋𝑖𝑖𝑓𝑓𝑖𝑖(𝒙𝒙)𝑔𝑔
𝑖𝑖=1

 

 
Definition 2.2 We say that a random vector X ∈ ℝd follows a finite Gaussian Mixture 
distribution if its density function is a mixture of d-variate normal densities: 
 

𝑓𝑓𝑿𝑿(𝒙𝒙) = �𝜋𝜋𝑗𝑗
1

(2𝜋𝜋)𝑑𝑑/2�Σ𝑗𝑗 �
1/2 𝑒𝑒𝑒𝑒𝑝𝑝 �−

1
2
�𝒙𝒙 − 𝝁𝝁𝑗𝑗 �

′Σ𝑗𝑗−1�𝒙𝒙 − 𝝁𝝁𝑗𝑗 ��
𝑔𝑔

𝑗𝑗=1

 

 
where πj, j=1, …, g are as in the previous definition, μj ∈ ℝd and Σj ∈ ℝdxd are positive 
definite matrices for each j=1, …, g. 
 
Due to linearity of the integral, Definitions 2.1 and 2.2 may be written in terms of 
cumulative distributions functions, instead of densities. Besides that, the family of finite 
Gaussian Mixture distributions displays the following properties: 
• it encompasses the Normal distribution (with g=1), 
• it is very flexible: a g-component univariate Gaussian Mixture distribution can be 

defined using up to 3g-1 parameters, and it can be used to model a continuous 
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distortion of the normal -skewness, leptokurtosis, contamination models, 
multi-modality, etc- often with g=2 only (see McLachlan and Peel 2000). 

• it is not difficult to simulate, so it can be used in Monte Carlo or bootstrap processes. 
• it matches financial stylized facts (as opposed to other distributions like Student t or 

hyperbolic), markedly market volatility regimes. 
• it is closed under convolution. 
The last property is very important and will be used in Section 3.2 to obtain aggregated 
risk measures. Since it inherits this property from the Normal distribution, we state it for 
both distributions and assign them a number for later reference. The proof makes use of 
characteristic functions (see McNeil, et. al. 2005). 
 
Property 2.3 (Normal case) If X ~ Nd(μ,Σ) and l(x) = -(c+w’x), then l(X) ~ N(μl,σl

2), with 
μl = -(c+w’μ) and σl

2 = w’Σw.  
 
Property 2.4 (Gaussian Mixture case) If X ~ GMd (π,{μj}j=1,…,g, {Σ j}j=1,…,g), π, μj ∈ ℝd, Σj 
∈ ℝdxd, j=1,…,g and l(x) = -w’x, then l(X) ~ GM(π,{μlj}j=1,…,g, {σlj

2}j=1,…,g), with μlj = 
-w’μj and σlj

2 = w’Σjw, for each j=1, …, g.  
 
Regarding estimation, we can obtain parameter estimators through the usual methods of 
moments or maximum likelihood. Lopez de Prado and Foreman (2013) introduce a 
method that exactly fits the first three sample moments. On the other hand, the likelihood 
equation (written for a univariate g-component Gaussian Mixture) 
 
𝜕𝜕
𝜕𝜕𝜽𝜽

ln 𝐿𝐿(𝛉𝛉) = � ln �� 𝜋𝜋𝑖𝑖𝑓𝑓𝑖𝑖�𝒚𝒚𝒋𝒋;𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖�
𝑔𝑔

𝑖𝑖=1
�

𝑛𝑛

𝑗𝑗=1
= 𝟎𝟎 

 
does not admit a closed-form solution. So it is necessary to use a numerical algorithm to 
solve the equation for the parameters θ = (π,{μj}j=1,…,g, {Σ j}j=1,…,g) and obtain Maximum 
Likelihood Estimators. For this purpose, we favor the EM algorithm published by 
Dempster, Laird and Rubin (1977). For details on the EM algorithm, see McLachlan and 
Krishnan (1997) and about its application to Gaussian mixtures, see McLachlan and Peel 
(2000). 

 
 
3  Loss Distribution and Risk Measures  
In this section we derive the -aggregated- Portfolio Loss Distribution following the lines 
of McNeil, et al (2005). We then linearize the loss function through a loss operator that is 
approximately equal to it for small changes in the underlying risk factors. Finally we 
formally define both market risk measures to be calculated on the loss distribution and 
introduce their estimators under three different models. 

 
3.1 Portfolio Loss Distribution  
Given a portfolio of assets subject to market risk, consider the aggregated -profit and- loss 
random variable for the time interval [tΔ,(t+1)Δ]: 
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𝐿𝐿[𝑡𝑡Δ ,(𝑡𝑡+1)Δ] = 𝐿𝐿𝑡𝑡+1 = −(𝑉𝑉𝑡𝑡+1 − 𝑉𝑉𝑡𝑡) = −[𝑓𝑓(𝑡𝑡 + 1,𝒁𝒁𝑡𝑡 + 𝑿𝑿𝑡𝑡+1) − 𝑓𝑓(𝑡𝑡,𝒁𝒁𝑡𝑡)] 
 
Where 
 
1) L[tΔ,(t+1)Δ] is the loss over the time interval [tΔ,(t+1)Δ], 
2) Δ is the time horizon (we will assume that t is measured in days and that Δ=1), 

therefore 
3) Lt+1 is the portfolio loss from day t to day t+1, 
4) Vt = f(t, Zt) is the portfolio market value at time t, 
5) f: ℝ+ x ℝd → ℝ is a measurable function, 
6) Zt ∈ ℝd is the d-dimensional vector of risk factors at time t, 
7) Xt = Zt - Zt-1 contains the risk factor returns from t-1 to t. 
 
According to the above definitions, losses are positive and profits are negative. As the 
value of risk factors Zt is known at time t, the loss distribution is completely determined 
by the distribution of risk factor returns in the following period. It is then possible to 
define the loss operator lt: ℝd → ℝ that maps risk factor returns into portfolio loss: 
 
𝑙𝑙𝑡𝑡(𝑥𝑥) = −[𝑓𝑓(𝑡𝑡 + 1,𝑍𝑍𝑡𝑡 + 𝑥𝑥) − 𝑓𝑓(𝑡𝑡,𝑍𝑍𝑡𝑡)], 𝑥𝑥 ∈ ℝ𝑑𝑑                             (1) 

 
Observe that Lt+1=lt(Xt+1). If the function f is differentiable, it is possible to write the 
linear approximation (delta in derivatives nemotecnia) of the loss operator lt in equation 
(1) as 
 
𝑙𝑙𝑡𝑡
Δ(𝒙𝒙) = −�𝑓𝑓𝑡𝑡(𝑡𝑡,𝒁𝒁𝑡𝑡) + ∑ 𝑓𝑓𝑍𝑍𝑗𝑗(𝑡𝑡,𝒁𝒁𝑡𝑡)𝑥𝑥𝑗𝑗

𝑑𝑑
𝑗𝑗=1 � = −�𝒄𝒄𝑡𝑡 +𝝎𝝎𝑡𝑡

′𝒙𝒙�                     (2) 
 
where 
ct = ft(t, Zt) ≈ 0 for small time increments, such as one day, 
ωt’ = (fZj(t, Zt)j=1,…,d is the vector of risk factor sensitivities, and 
fu(t,∙)=∂f(t, )/∂u. 
 
If the function f has non-vanishing second-order derivatives, the approximation (2) can 
include them, producing a Delta-Gamma model. The loss operator (and random variable) 
moments are, from equation (2): 
 

𝐸𝐸(𝐿𝐿𝑡𝑡+1) ≈ 𝐸𝐸𝑙𝑙𝑡𝑡∆(𝑿𝑿) = −� 𝑓𝑓𝑍𝑍𝑗𝑗 (𝑡𝑡,𝒁𝒁𝒕𝒕)𝐸𝐸𝐸𝐸𝑡𝑡+1,𝑗𝑗

𝑑𝑑

𝑗𝑗=1
= 𝝎𝝎𝑡𝑡

′𝝁𝝁 = 𝜇𝜇𝐿𝐿 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿𝑡𝑡+1) ≈ 𝑉𝑉𝑉𝑉𝑉𝑉 �𝑙𝑙𝑡𝑡∆(𝑿𝑿)� = 𝑉𝑉𝑉𝑉𝑉𝑉(∑ 𝑓𝑓𝑍𝑍𝑗𝑗 (𝑡𝑡,𝒁𝒁𝒕𝒕)𝐸𝐸𝐸𝐸𝑡𝑡+1,𝑗𝑗
𝑑𝑑
𝑗𝑗=1 ) = 𝝎𝝎𝑡𝑡

′𝚺𝚺𝝎𝝎𝑡𝑡 = 𝜎𝜎𝐿𝐿2     (3) 

with 𝝁𝝁′ = (𝐸𝐸𝑋𝑋𝑡𝑡+1)𝑗𝑗=1
𝑑𝑑   and  Σ𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑡𝑡+1,𝑖𝑖 ,𝑋𝑋𝑡𝑡+1,𝑗𝑗 ). 

 
In what follows we will assume that returns Xt come from a stationary process to ease 
notation, that is, they are independent and identically distributed (iid) random vectors and 
so we can omit the t subscript. 
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3.2 Market Risk Measures  
Market Risk measures to be estimated are Value at Risk and Expected Shortfall, as 
defined below, according to McNeil et. al. (2005). 
 
Definition 3.1 (VaR). Let L be a -positive- loss random variable and FL:ℝ→[0,1] its 
distribution function. We define Value at Risk at confidence level α ∈ (0,1) as 

𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 : = inf
𝑢𝑢∈ℝ

{𝐹𝐹𝐿𝐿(𝑢𝑢) ≥ 𝛼𝛼}. 
 
Definition 3.2 (ES). Let L and FL be as above. Suppose also that E|L|<+∞. Expected 
Shortfall at confidence level α ∈ (0,1) is defined as 

𝐸𝐸𝐸𝐸𝛼𝛼 : =
1

1 − 𝛼𝛼
� 𝑉𝑉𝑉𝑉𝑉𝑉𝑢𝑢𝑑𝑑𝑑𝑑

1

𝛼𝛼
 

It is clear that VaRα is just the α-quantile of the loss distribution: VaRα=qα(FL)=FL
-1(α) and 

that ESα is the average of all quantiles above confidence level α, as long as the loss 
distribution is continuous. 
Acerbi and Tasche (2002) provide a generalized ES definition that includes the case of 
non-continuous loss distributions (such as the empirical distribution), introducing a term 
to correct the bias of VaRα as an estimator of the α -quantile: 
 
Definition 3.3 (GES). Let L and FL be as in Definition 3.2. Generalized Expected 
Shortfall at confidence level α ∈ (0,1) is 
 

𝐺𝐺𝐺𝐺𝐺𝐺𝛼𝛼 : =
1

1 − 𝛼𝛼
��𝑉𝑉𝑉𝑉𝑉𝑉𝑢𝑢𝑑𝑑𝑑𝑑

1

𝛼𝛼

+ 𝑞𝑞𝛼𝛼�1 − 𝛼𝛼 − 𝑃𝑃(𝐿𝐿 ≥ 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼)�� 

 
For continuous distributions Definitions 3.2 and 3.3 coincide and the following 
proposition provides a useful tool for calculations. The proof is in the Appendix A.1. 
 
Proposition 3.4. If L is a loss random variable with continuous distribution function FL 
and E|L|<∞, then 
 
𝐸𝐸𝐸𝐸𝛼𝛼 = 𝐸𝐸[𝐿𝐿|𝐿𝐿 > 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 �]                                              (4) 
 
If the distribution of L is a location and scale distribution, VaR calculation depends only 
on the moments described in equations (3): 
 
𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 = 𝝎𝝎′𝝁𝝁 + 𝑞𝑞𝛼𝛼(𝝎𝝎′𝚺𝚺𝝎𝝎)1 2⁄  = 𝜇𝜇𝐿𝐿 + 𝑞𝑞𝛼𝛼𝜎𝜎𝐿𝐿                                (5) 
 
where qα is the quantile in Definition 3.1 for a distribution function FL with location 
parameter zero and scale parameter one. 
Property 2.3 guaranties that under the Delta-Normal model, the random variable L follows 
a univariate Normal distribution and in this case equation (5) provides our VaR estimator. 
For the non-parametric model (HS) the distribution of L is the empirical distribution and it 
suffices to take the appropriate order statistic to obtain 
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𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼� = 𝐿𝐿(⌊𝑛𝑛𝑛𝑛 ⌋)                                                    (6) 
 
where L(j) is the jth order statistic, n is the sample size, and ⎿x⏌ is the biggest integer 
that is less than or equal to x. Finally, for the Delta-GM model, Property 2.4 ensures that 
the distribution of L is a univariate finite Gaussian Mixture and it is necessary to solve for 
q the following equality: 
 
𝐹𝐹𝐿𝐿(𝑞𝑞𝛼𝛼 ;𝝅𝝅,𝝁𝝁,𝝈𝝈) − 𝛼𝛼 = 0                                                 (7) 
 
With respect to ES, the Appendix contains derivations of closed expressions for the 
estimator for both parametric models under consideration, whereas for the HS model it is 
built using the empirical distribution and Definition 3.2 or 3.3 together with expression 
(6). Final formulas for each model are 
 

HS 𝐸𝐸𝐸𝐸𝛼𝛼� = 1
𝑛𝑛−⌊𝑛𝑛𝑛𝑛 ⌋

∑ 𝐿𝐿(⌊𝑗𝑗 ⌋)
𝑛𝑛
𝑗𝑗=⌊𝑛𝑛𝑛𝑛 ⌋+1

Delta_Normal 𝐸𝐸𝐸𝐸𝛼𝛼 = 𝜇𝜇 + 𝜎𝜎
1−𝛼𝛼

𝜙𝜙�Φ−1(𝛼𝛼)�

Delta-MG 𝐸𝐸𝐸𝐸𝛼𝛼 = 1
1−𝛼𝛼

∑ �𝜋𝜋𝑗𝑗Φ�−𝑧𝑧𝑗𝑗 ,𝛼𝛼� �𝜇𝜇𝑗𝑗 + 𝜎𝜎𝑗𝑗
ϕ�𝑧𝑧𝑗𝑗 ,𝛼𝛼�
Φ�−𝑧𝑧𝑗𝑗 ,𝛼𝛼�

��𝑔𝑔
𝑗𝑗=1

           (8) 

 
where zj,α=(qα – μj)/σj and FL(qα)=α. 

 
3.3 Backtesting and Model Comparison 
Once risk figures are systematically estimated over time, the performance of the 
estimation model can be monitored. This process of monitoring is known as backtesting 
and can also be used to compare performance among different models, as suggested by 
Campbell (2005). 
Let us assume that for each time t we have one-period α-level estimations for VaR and ES, 
denoted 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼�  and 𝐸𝐸𝐸𝐸𝛼𝛼� , respectively. We can then define excess indicator and excess 
loss random variables 
 
1�𝛼𝛼(𝐿𝐿𝑡𝑡+1) ≔ 1�𝑉𝑉𝑉𝑉𝑉𝑉�𝛼𝛼 ,𝑡𝑡 ,+∞�(𝐿𝐿𝑡𝑡+1) and 

𝑀𝑀�𝛼𝛼 ,𝑡𝑡+1(𝐿𝐿𝑡𝑡+1) ≔ �𝐿𝐿𝑡𝑡+1 − 𝐸𝐸𝐸𝐸�𝛼𝛼 ,𝑡𝑡�1𝛼𝛼(𝐿𝐿𝑡𝑡+1)                                  (9) 
 
where 1A(u) is the indicator function of the set A. The process {1α(Lt)}t∈ℕ is a process of 
iid Bernoulli random variables with success probability 1-α. After estimating VaR figures 
for times t=1, …, n, we can expect that 
 

�1�𝛼𝛼(𝐿𝐿𝑡𝑡)
𝑛𝑛

𝑡𝑡=1

~𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛, 1 − 𝛼𝛼) 

 
Kupiec (1995) constructs a test for H0:p=p0 vs HA:p≠p0 based on the likelihood ratio as 
test statistic. Asymptotically, this statistic follows a chi-square distribution with one 
degree of freedom, but for any given sample size exact rejection regions can be calculated 
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for the binomial distribution, as shown in Casella and Berger (2002) based on work by 
Casella (1986). We have written a Matlab function that implements the exact test at a 
confidence level equal to that of the corresponding VaR estimation and returns a 
non-rejection interval. 
Turning now to ES, we should expect that excess losses behave like realizations of iid 
variables from a distribution with mean zero and an atom of probability mass of size α at 
zero. Testing the latter property is equivalent to backtesting VaR, so we will concentrate 
on a procedure to test the former: zero-mean behaviour. 
Recall first the one sample test under normal population for H0:μ=μ0. This can be 
conducted using the test statistic z=√n(μ-μ0)/σ, which follows a normal distribution if σ is 
known or a Student t distribution if it is estimated. 
Efron and Tibshirani (1994) propose a non-parametric bootstrap hypothesis test based on 
the empirical distribution of the above test statistic under the null hypothesis. 
We will use the non-parametric bootstrap test for HS and a parametric bootstrap version 
for the Delta-Normal and Delta-GM models. 
The bootstrap test is conducted as follows: draw N samples of size n with replacement 
from {m,t(lt) }t=1,…,n, as defined in (9), or from the fitted parametric distribution and for 
each bootstrap sample, say m1, …, mn, compute the statistic 
 
𝑡𝑡(𝑚𝑚) = 𝑚𝑚�

𝑠𝑠 √𝑛𝑛⁄
                                                      (10) 

 
where s is the standard deviation of the bootstrap sample. The Achieved Significance 
Level (ASL) for the alternative hypothesis HA:μ>0 is estimated as 
 
𝐴𝐴𝐴𝐴𝐴𝐴� 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = #{𝑡𝑡(𝑚𝑚) > 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 }/𝑁𝑁                                       (11) 
 
where tobs = t(m) is the value of the statistic (10) observed in the original sample. We test 
against a one-sided alternative based on the evidence of lack of symmetry of m (see 
Figure 2). 
As noted by Efron and Tibshirani (1994), the estimate ASLboot has no interpretation as an 
exact probability, but like all bootstrap estimates is only guaranteed to be accurate as the 
sample size goes to infinity. 

 
 
4  VaR and ES estimation in Πractice 
In this section we propose a portfolio of assets with exposure to the three usual risk factor 
classes (interest rates, equities and foreign exchange). We then fit multivariate Normal 
and Gaussian Mixtures distributions to the historical daily risk factor returns (using the 
EM algorithm to maximize the likelihood of the latter). From daily sensitivities to each 
risk factor and assumed distributions, we estimate market risk measures (VaR and ES) for 
both parametric models (Delta-Normal and Delta-GM) as well as for the empirical 
distribution (HS model) at three different confidence levels (95, 97.5 and 99%) for each 
asset and the portfolio, for 1700 consecutive days (from July 2007 until March 2014). 
Finally we compare models through backtesting for each risk figure and asset. 
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Table 1: Portfolio Description 

Asset Instrument Face value 
(MXN mln) or mln shares 

FX USDMXN 50 
Equity Naftrac02 10 
Bond Cetes185d 15 000 
 
The proposed portfolio contains three assets: a short position of 50 million in US dollars 
(USD, this can be thought of as a debt), 15000 million face value (in MXN) of a Mexican 
sovereign zero coupon bond maturing in 6 months (Cetes), and 10 million shares of 
Naftrac02. This is an Exchange Traded Fund (ETF) that replicates the performance of 
Mexican Stock Exchange Index (IPC). For the sake of simplicity, it will be treated as an 
individual common share and not as a fund. Table 1 shows the main features of selected 
assets, while Table 2 displays market values and risk factor sensitivities as of April 30, 
2013, under the assumption that losses are positive. For VaR and ES estimation, 
sensitivities are updated for each historical scenario. 
 

Table 2: Portfolio Market Value and Sensitivities as of Apr 30, 2013 

Instrument Precio 
(MXN) 

MtM 
(MXN mln) 

 
Sensitivity 

Value 
(MXN mln) 

USDMXN 12.1401 -607.005 Delta FX -607.005 
Naftrac02 42.26 422.600 Delta IPC 422.600 
Cetes185d 9.8096 14 714.463 DV01 (MXN rate) -0.742 
 
In order to estimate risk measures under HS, as well as parameters of parametric 
distributions (Normal and Gaussian Mixture) for each historical scenario, we took 
samples of 1000 daily returns (approximately 4 years) from USDMXN foreign exchange 
(FX), Mexican 6-month sovereign rate and Naftrac02. Estimators for the normal 
distribution are the usual unbiased estimators based on maximum likelihood. In the case 
of GM, we have implemented the EM algorithm in VBA for Microsoft Excel and fitted a 
tri-variate Gaussian Mixture with two components. Table 3 and Table 4 show an example 
of estimators for Normal and Gaussian Mixture distributions, correspondingly, with 
standard errors in parenthesis. 
 

Table 3: (x10-4) with Standard Errors for Normal  
 μ   Σ  

   
0.7 

(0.03) 
-0.6 

(0.03) 
47.1 
(8.3) 

0.8 
(2.3) 

2.9 
(4.1) 

-2 937.4 
(972.4)  

2.3 
(0.09) 

-74.3 
(14.8) 

     
126 604.1 
(4 894.8) 

 
Note that with obtained Gaussian Mixture distribution estimators, the stylized 
two-component case interpretation holds: the first component describes the behaviour of 
the risk factor returns under the business as usual regime, while the second component 
describes it under stressed times, so that its mean is well-separated and its variance is 
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significantly higher than that of the first component. If we take the USDMXN risk factor, 
for instance, over the sample time span MXN experienced an average daily depreciation 
of 0.008%, which can be decomposed into two regimes: a slight daily appreciation of 
0.013% under business as usual (81% of the time), with and annual volatility of 
8.97%(={3.2*10-5*250}1/2), and a daily depreciation of 0.098% for the remaining 19% of 
the time, with and annual volatility of 24.13%(={2.33*10-5*250}1/2), 2.7 times the 
volatility under the business as usual regime. 
 

Table 4: Example of Estimators (x10-4) for Gaussian Mixture  
j πj  μj   Σj  

     
0.32 

(0.000) 
-0.21 

(0.000) 
3.71 

(0.004) 

1 
8111 

(1.14) 
-1.30 

(0.004) 
7.82 

(0.004) 
-487 

(0.190)  
0.85 

(0.000) 
-0.31 

(0.005) 

       
26 770 

(8.1) 

     
2.33 

(0.001) 
-2.43 

(0.001) 
245 

(0.114) 

2 
1889 

(1.14) 
9.83 

(0.012) 
-18.84 

(0.002) 
-13 460 
(7.050)  

8.22 
(0.004) 

-419 
(0.228) 

       
541 220 
(269.2) 

 
Another important feature is that under any of the parametric assumptions the mean of the 
daily portfolio -profit and- loss distribution is the same (MXN 290 906), while standard 
deviations for both distributions are quite similar: MXN 10.708 million under normality 
and MXN 10.699 million under GM. This means that the Gaussian Mixture model does 
not modify neither the mass center nor the dispersion of the returns joint distribution, but 
only decomposes them into components, while showing a higher kurtosis. 
We now turn to risk estimation under the three models (HS, Delta-Normal and Delta-GM) 
at three confidence levels (95, 97.5, and 99%) for each asset and the portfolio. To obtain 
portfolio risk measures, in each historical scenario we take the weighting vector ω to be 
sensitivities calculated as shown in the last column of Table 2. 
According to Definition 3.1, VaR has been estimated as the corresponding quantile of the 
loss distribution. Calculations are straightforward for both the empirical distribution and 
Normal assumption (equations (5) and (6)), but not for the Gaussian Mixture. For this, we 
have developed a Matlab code to estimate any given quantile for a univariate Gaussian 
Mixture with and arbitrary number of components using equation (7). Table 5 displays 
average VaR figures over 1700 scenarios for each instrument and the portfolio under the 
three considered models. 
 

Table 5: Average VaR(99%) (figures in MXN mln)  
Method USDMXN Naftrac02 Cetes Portfolio 

HS 13.461 14.034 7.148 27.695 
Delta-Normal 11.560 10.961 6.462 21.803 

Delta-GM 15.226 13.961 8.538 29.936 
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As for ES, equation (8) provides closed-form expressions for its calculation under the 
three models. Table 6 averages ES(97.5%) for each instrument and the portfolio over the 
1700 historical scenarios for each one of the models. 
 

Table 6: Average ES(97.5%) (MXN mln)  
Method USDMXN Naftrac02 Cetes Portfolio 

HS 15.805 13.917 8.102 29.205 
Delta-Normal 11.616 11.016 6.494 21.911 

Delta-GM 15.283 14.011 8.555 30.004 
 
To assess the performance of the different models and discriminate among them, we have 
conducted backtesting for VaR and ES following the procedures described in Section 3.3. 
Table 7 shows the number of times loss in any given day exceeded estimated VaR the day 
before (Lt+1 > VaRa,t) over 1700 scenarios for each confidence level, asset and model. The 
first column also shows non-rejection intervals at corresponding confidence level. We 
have written in italics the violations, whether figures were too conservative (less 
violations than the lower bound: risk over-estimation) or too aggressive (more violations 
that the upper bound: risk under-estimation). Fixed income risk is over-estimated by all 
models at 95 and 97.5% levels. Those are the only violations of Delta-GM model, making 
it the strongest one. On the other hand, Delta-Normal is the only model that 
under-estimates FX, equity and portfolio risks at the 99% level, making it the weakest of 
the three. Historical Simulation stands in the middle, due to under-estimation of FX risk at 
95 and 99% levels. 
 

Table 7: VaR Backtesting 
Confidence Model USDMXN Naftrac02 Cetes Portfolio 

 HS 115 88 48 79 
95% D-N 80 87 32 77 

[68,103] D-GM 96 93 42 75 
 HS 54 43 25 40 

97.5% D-N 59 56 20 51 
[29, 58] D-GM 44 44 18 34 

 HS 31 24 14 19 
99% D-N 40 37 14 31 

[7, 17] D-GM 19 28 7 17 
 
Figure 1 shows historical VaR(99%) development for the three models as well as daily 
losses. Even though most excesses are concentrated in the months after the bankruptcy of 
Lehman-Brothers with 13 out of 17 for Delta-GM from September 2008 to May 2009, it 
is worth mentioning the speed of adjustment for this model after sudden changes in 
volatility. Over that period, HS shows 16 excesses while Delta-Normal experienced 22. 
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Figure 1: Backtesting VaR(99%) 

 
Table 8 shows estimated bootstrap ASLs for each asset, model and confidence level, 
according to equation (11). We compare each figure against one minus the corresponding 
confidence level. For the Delta-Normal model, the null hypothesis that ES properly 
estimates average excess loss is to be rejected for every asset class and the portfolio, 
besides Fixed Income. HS and Delta-GM models, on the other hand, are equivalent in the 
sense that every time the null hypothesis is rejected for one of them, it is also rejected for 
the other. Moreover, the null hypothesis is rejected only in the case of Equities at 97.5 and 
99% confidence levels. This is consistent with findings of McNeil and Frey (2000) for 
Normal and Generalized Pareto Distributions. At any other instance, ES is a reasonable 
estimator of average excess losses for both models. 
Figure 2 displays excess losses over VaR(97.5%) for each model. Not only does the 
Normal model shows more excesses, but they are bigger than those of the other models. 
Negative excess losses are close to zero in the Normal case due to the small difference 
between VaR and ES (see Tables 5 and 6). HS displays more and higher excesses than 
GM (t-statistics are 0.52 and 0.19), so the latter is slightly -but not significantly- superior 
than the former. 
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Table 8: ES no-parametrical Significance Levels 
Confidence    ES p-values  

level Method USDMXN Naftrac02 Cetes Portfolio 
 HS 0.5212 0.6518 0.4068 0.4884 

95% D-N 0.0054 0.0008 0.0968 0.0092 
 D-GM 0.5504 0.3904 0.6884 0.7782 
 HS 0.0576 0.0094 0.1438 0.0436 

97.5% D-N 0.0084 0.0008 0.0998 0.0144 
 D-GM 0.0382 0.0062 0.1376 0.0500 
 HS 0.0146 0.0014 0.0770 0.0170 

99% D-N 0.0064 0.0002 0.0840 0.0056 
 D-GM 0.0230 0.0018 0.1216 0.0300 

 

Figure 2: Backtesting ES(97.5%) 

 
 
5  Conclusions 
Among the three models under study, Delta-Normal is the most aggressive, in the sense 
that it consistently produces the smallest figures for VaR and ES. We believe, however, 
that its major drawback is that, having so little mass at the tail of the distribution, 
switching from VaR(99%) to ES(97.5%) (as proposed by Basel Committee) means a 
uniform increase of 0.5% in risk figures. This has the benefit of saving capital, but it can 
expose financial institutions to significant losses when high volatility episodes happen. 
When using Historical Simulation, there is a significant adjustment of 47, 37 and 30% 
between VaR and ES for α=95, 97.5 and 99%. This is a confirmation of its strong 
dependence on the sample window, given the fact that the sample window includes the 
whole credit crisis time span. Over this period there existed returns much higher than the 
mean of the empirical distribution as well as recurrent changes in monetary policy rate 
that influenced short-term interest rates. 
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With respect to the finite Gaussian Mixture model, since it explicitly includes a 
component to model high volatility periods, it usually (but not always) produces the most 
conservative VaR figures: 10% higher than HS and 29% higher than Delta-Normal on 
average. Going from VaR(99%) to ES(97.5%) represents an increase of only 0.2% on 
average, but it fluctuates across assets and along time, as volatility changes. This is a 
distribution that displays excess kurtosis and can fit historical volatility to each risk factor 
simultaneously. 
A technical but relevant detail, noted in Section 4, is that the GM model does not modify 
the mass center or the dispersion of the returns distribution, but only segments them into 
components. This implies that Lopez de Prado and Foreman's (2013) critique does not 
hold and therefore it is not necessary to explicitly fit sample moments with ad-hoc 
estimators. We then have maximum likelihood estimators, with their advantage over 
moment estimators, that in turn perfectly fit the first sample moment and quite well the 
second one; making it unnecessary to compute higher moments. 
We believe that we have shown strong evidence that the finite Gaussian Mixture model is 
appropriate to estimate tail risk measures in the context of changing volatility. We have, 
however, based our model on a stationary assumption for the returns distribution (or 
equivalently, the one-period loss distribution). We should now relax this assumption and 
fit a regime-switching model to test whether adding new parameters produces more 
precise estimators and assess its impact on parsimony. 
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Appendix  
 
Proof and Derivations 
In this appendix we prove Proposition 3.4 and derive closed-form expressions for 
Expected Shortfall under the two studied parametric models. In Section A.2 we derive ES 
under Normal assumption, filling in the details of the proof that can be found in McNeil, 
et al (2005). The reason to include this proof is that from there we can adapt the result to 
obtain the corresponding expression for finite Gaussian Mixture distribution in Section 
A.3. 
 
A.1 Proof of Proposition 3.4 
If L is continuous with distribution function FL and E|X|<+∞, then ES=E[L|L>VaR]. 
Proof. It is well-known that the random variable U=FL(L) follows a uniform distribution 
in [0,1] with density function fU(u)=1, u ∈ [0,1]; therefore 

�𝑉𝑉𝑉𝑉𝑉𝑉𝑢𝑢𝑑𝑑𝑑𝑑
1

𝛼𝛼

= �𝑉𝑉𝑉𝑉𝑉𝑉𝑢𝑢1(𝛼𝛼 ,1)(𝑢𝑢)𝑓𝑓𝑈𝑈(𝑢𝑢)𝑑𝑑𝑑𝑑
1

0

= 𝐸𝐸�𝑉𝑉𝑉𝑉𝑅𝑅𝑈𝑈1(𝛼𝛼 ,1)(𝑈𝑈)�, 

where 1A(∙) is the indicator function of the set A. Using that VaRU=FL
-1(U) and that 

continuity of FL implies FL
-1 is strictly increasing: 
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Dividing by 1-α, we obtain: 
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A.2 ES for Normal 
Let L~N(μ, σ2) and let qα=VaRα be the α-quantile of FL, i.e., FL(qα)=α. Let fL(·)=φ(·;μ,σ2) 
be the density function of L and let φ(·)=φ(·;0,1) be the standard normal density function 
with α -quantile equal to zα. Using equation (4) and the distribution of L, we have: 
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A.3 ES for Gaussian Mixtures 
Let L~GM(π,μ,σ), recall that qα = VaR(α) is the solution of equation (7). From Definition 
3.1, equation (3.4) and the distribution of L, we have 
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𝑑𝑑𝑑𝑑
+∞

𝑞𝑞𝛼𝛼
 

      = 1
1−𝛼𝛼

∑ 𝜋𝜋𝑗𝑗 ∫ 𝑢𝑢𝑢𝑢�𝑢𝑢; 𝜇𝜇𝑗𝑗 ,𝜎𝜎𝑗𝑗2�𝑑𝑑𝑑𝑑
+∞
𝑞𝑞𝛼𝛼

𝑘𝑘
𝑗𝑗=1                               (14) 

 
The integral within the sum is the same as (12), with the only difference that the lower 
limit of the integral depends on the specific component. Making the change of variable 
u=σj z + μj and defining zj,α=(qα-μj)/σj we obtain an analogous result to (13): 

𝐸𝐸𝐸𝐸(𝛼𝛼) =
1

1 − 𝛼𝛼
�𝜋𝜋𝑗𝑗 �𝜎𝜎𝑗𝑗𝜙𝜙�𝑧𝑧𝑗𝑗 ,𝛼𝛼� + 𝜇𝜇𝑗𝑗 �1 −Φ�𝑧𝑧𝑗𝑗 ,𝛼𝛼���
𝑘𝑘

𝑗𝑗=1

 

      = 1
1−𝛼𝛼

∑ 𝜋𝜋𝑗𝑗Φ�−𝑧𝑧𝑗𝑗 ,𝛼𝛼� �𝜇𝜇𝑗𝑗 + 𝜎𝜎𝑗𝑗
𝜙𝜙�𝑧𝑧𝑗𝑗 ,𝛼𝛼�
Φ�−𝑧𝑧𝑗𝑗 ,𝛼𝛼�

�𝑘𝑘
𝑗𝑗=1                            (15) 

 
Note that zj,α depends on α through qα and on the component through parameters μj and σj, 
but it is not the α -quantile of the j-th component distribution, that is to say, it is not the 
case that Φ(zj,α)=α. In other words, μj + σj φ(zj,α) /Φ(-zj,α) is not the ESα corresponding to 
the j-th component. 
It is possible, however, to write the finite Gaussian Mixture Expected Shortfall as the 
weighted summation of the component-specific Expected Shortfalls. To see this, let 
Lj~N(μj, σj

2), then, according to Section A.2: 
 

𝐸𝐸𝐸𝐸𝛼𝛼�𝐿𝐿𝑗𝑗 � = 𝜇𝜇𝑗𝑗 + 𝜎𝜎𝑗𝑗
𝜙𝜙�Φ−1(𝛼𝛼)�

1 − α

𝐸𝐸𝐸𝐸𝛼𝛼(𝐿𝐿) = �𝜆𝜆𝑗𝑗𝐸𝐸𝐸𝐸𝛼𝛼�𝐿𝐿𝑗𝑗 �
𝑘𝑘

𝑗𝑗=1

.

 

where,   𝜆𝜆𝑗𝑗 = 𝜋𝜋𝑗𝑗
Φ�−𝑧𝑧𝑗𝑗 ,𝛼𝛼�

1−𝛼𝛼

𝜇𝜇𝑗𝑗+𝜎𝜎𝑗𝑗
𝜙𝜙�𝑧𝑧𝑗𝑗 ,𝛼𝛼�

Φ�−𝑧𝑧𝑗𝑗 ,𝛼𝛼�

𝜇𝜇𝑗𝑗+𝜎𝜎𝑗𝑗
𝜙𝜙�Φ−1(𝛼𝛼)�

1−α

 

 
 


