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Abstract 

In this paper we construct new travelling wave solutions to the perturbed 

nonlinear Schrödinger's equation with Kerr law nonlinearity by introducing the 

sub-equation method and the generalized Riccati equation. The travelling wave 

solutions are expressed by hyperbolic functions, trigonometric functions and 

rational functions. We also discuss the reliability of the proposed method and 

compared the obtained solutions with those previously reported in the literature. 

The presented method provides a comprehensive approach to construct many new 

solutions for nonlinear partial differential equations. 
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1  Introduction  

The nonlinear equations have many wide array of application in many fields, 

analytical solutions to nonlinear partial differential equations play an important 

role in nonlinear science, especially in nonlinear physical science since they can 

provide much physical information and more inside into the physical aspects of 

the problem and thus lead to further applications. 

Phenomena in physics and other fields are often described by nonlinear 

partial differential equations (NPDEs). When we want to understand the physical 

mechanism of phenomena in nature, described by NPDEs, exact solutions for the 

NPDEs have to be explored. For example, the wave phenomena observed in fluid 

dynamics [1], elastic media [2], optical fibers [3], etc. Thus the methods for 

deriving exact solutions for the NPDEs need to be developed. Recently, many 

powerful methods have been established and improved. Among these methods we 

can mention the homogeneous balance method [4], the tanh-function method [5], 

the extended tanh-function method [6,7], the Jacobi elliptic function expansion 

method [8,9], the auxiliary equation method [10], the trigonometric function 

series method [11], the modified mapping method and the extended mapping 

method [12], hyperbolic function method [13], rational expansion method [14], 

sine-cosine method [15], F-expansion method [16], the transformed rational 

function method [17],  the multiple exp-function method [18], and so on. 

Recently, Wang et al. proposed a new method called the ( )G
G

′ -expansion 

method to construct traveling wave solutions for NPDEs, which are expressed by 

the hyperbolic, trigonometric and rational functions [19-21]. Recently, the 
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( )G
G

′ -expansion method has been successfully applied to obtain exact solutions for 

a variety of NPDEs [22-30]. 

Among these methods, the tanh-function method, the extended tanh-function 

method and the auxiliary equation method belong to a class called sub-equation 

method. These sub-equation methods consist of looking for the solutions of the 

nonlinear evolution equations in consideration as a polynomial in a variable that 

satisfies an ordinary differential equation, named the sub-equation. 

In the present article, we will consider the sub-equation method [31], by 

introducing the generalized Riccati equation and its twenty seven solutions [32], 

in order to obtain new travelling wave solutions to the nonlinear Schrödinger's 

equation (NLSE) with Kerr law nonlinearity. Furthermore, we will show that new 

travelling wave solutions can be expressed in terms of some elemental functions. 

The outline of this work is as follows: in section 2 a brief review of the 

nonlinear Schrödinger's equation with Kerr law nonlinearity is presented, in 

section 3, the sub-equation method is considered. Section 4 contains the 

application of the method to solve the NLSE with Kerr law nonlinearity and we 

discuss the reliability of the proposed method for the new exact solutions which 

can be compared with those solutions previously reported in the literature, see for 

example [33,34]. Finally in section 5 some conclusions are presented. 

 

 

2  The Nonlinear Schrödinger's Equation with Kerr law 

Nonlinearity 

In this paper, we will consider the perturbed NLSE with Kerr law 

nonlinearity [16]  

 ( )2 2 2
1 2 3 0,t xx xxx x

x
iu u u u i u u u u uα γ γ γ + + + + + =  

                 (1) 
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the above equation describes the propagation of optical solitons in nonlinear 

optical fibers that exhibits Kerr law nonlinearity. Where 1γ  is the third order 

dispersion, 2γ  is the nonlinear dispersion coefficient, while 3γ  is also a version 

of nonlinear dispersion [12]. The Kerr law nonlinearity originates from the fact 

that a light wave in an optical fiber faces nonlinear responses from nonharmonic 

motion of electrons bound in molecules, caused by an external electric field. Even 

though the nonlinear responses are extremely weak, their effects appear in various 

ways over long distances of propagation that are measured in terms of light 

wavelength. More details are presented in Refs. [33-41]. Recently, there are lots 

of contributions about Eq. (1), see for instance [36-56]. These papers have been 

concerned with finding various types of solutions, including fronts (kinks), bright 

solitary waves, and dark solitary waves in various media, such as power law (or 

dual-power law), parabolic law and Kerr law. The NLSE with Kerr law 

nonlinearity has important applications in various fields, such as semiconductor 

materials, optical fiber communications, plasma physics, fluid and solid 

mechanics. It is well known that in the absence of 1 2 3,  ,  γ γ γ  (i.e. 

1 2 3 0γ γ γ= = = ), Eq. (1) reduces to 

2 0 ,t xxiu u u uα+ + =        (2) 

Eq. (2) admits the bright soliton solution [57]:  

( ) ( )( ) ( )2 22, sec 2     ,
i x k t

u x t k h k x t e
µ µ

µ
α

 − − = −                 (3) 

where α, μ and k are arbitrary real constants, for the self-focusing case 0α > , 

and the dark soliton solution [58]: 

 ( ) ( )( ) ( )2 222, = tanh 2  ,
i x k t

u x t k k x t e
µ µ

µ
α

 − + − −                 (4) 

for the de-focusing case 0α < . 
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3  Description of the Sub-equation Method and its 

Applications to the Space-Time Partial Differential Equations  

Suppose the general nonlinear partial differential equation,  

 ( ), , , , , ,... 0    ,t x tt tx xxP u u u u u u =               (5) 

where u=u(x,t) is an unknown function, P is a polynomial in u(x,t) and its partial 

derivatives in which the highest order partial derivatives and the nonlinear terms 

are involved. The main steps of the sub-equation method combined with the 

generalized Riccati equation are described as follows [31]: 

Step1: The travelling wave variable ansätz 

 ( )( , ) ( ),    ,u x t u k x ctξ ξ= = −          (6) 

where c is the speed of the traveling wave, permits us to transform the equation (5) 

into an ordinary differential equation (ODE):  

 ( ), , ,  ... 0   ,Q u u u′ ′′ =                    (7) 

where the superscripts stands for the ordinary derivatives with respect to  ξ. 

Step 2: Suppose the traveling wave solution of equation (5) can be expressed by a 

polynomial in G(ξ) as follows: 

 ( )
max

0

( ) , 0   ,
m

m
n n

n

u a G aξ
=

= ≠∑               (8) 

where G satisfies the generalized Riccati equation, 
2 0    ,G r pG qG′ = + + =                  (9) 

an (n=1,2,3,…,mmax), r, p and q are arbitrary constants to be determined later. 

The generalized Riccati equation (9) has twenty seven solutions, (see for example 

[32]), which can be expressed as follow: 

Family 1: When p2 - 4qr <0 and pq ≠ 0 (or rq ≠ 0), the solutions of equation (9) are: 

                     ( )1
1 1tan

2 2
G p h h

q
ξ ξ  = − +     
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               ( )2
1 1cot

2 2
G p h h

q
ξ ξ  = − +     

 

 

( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

( )

( )
( ) ( )

( )

( )
( ) ( )

( )

3

4

5

2 2 2

6

2 2 2

7

1 tan sec
2

1 cot csc
2

1 1 12 tan cot
4 4 4

( ) cos1
2 sin

( ) cos1    ,
2 sin

G p h h h
q

G p h h h
q

G p h h h
q

X Y h X h h
G p

q X h Y

X Y h X h h
G p

q X h Y

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ
ξ

ξ

ξ
ξ

ξ

= − + ±

= − + ±

     = − + −          
 − − = − + + 
 
 − + = − + + 
 

  (10) 

with 24h qr p= − , where X and Y are two non-zero real constants and satisfies 

the condition X 
2 - Y 

2 > 0.  

           

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1
2

8 1 1
2 2

1
2

9 1 1
2 2

10

11

1 1
4 4

12 21 1 1
4 4 4

2 cos
sin cos

2 sin
sin cos

2 cos
sin cos

2 sin
sin cos

4 sin cos
   .

2 sin cos 2 cos

r h
G

h h p h

r h
G

p h h h

r h
G

h h p h h

r h
G

p h h h h

r h h
G

p h h h h h

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ

ξ ξ
ξ

ξ ξ ξ

−
=

+

=
− +

−
=

+ ±

= −
− + ±

=
− + −

         (11) 

 

Family 2: When p2 - 4qr >0 and pq ≠ 0 (or rq ≠ 0), the solutions of equation (9) 

are:  
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( )

( )

( ) ( ) ( )( )( )
( ) ( )( )( )
( )

( )

2 2
13

2 2
14

2 2 2
15

2 2 2
16

2 2 2
17

18

1 1tanh
2 2

1 1coth
2 2
1 tanh sec

2
1 coth csc ( )

2

1 1 12 tanh coth
4 4 4

G p h h
q

G p h h
q

G p h h i h h
q

G p h h h h
q

G p h h h
q

G

ξ ξ

ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ

  = + − −    
  = − + − −    

= − + − − ± −

= − + − − ± −

     = − + − − + −          

( ) ( )
( )

( )
( ) ( )

( )

2 2 2 2 2

2

2 2 2 2 2

19 2

( ) cosh1
2 sinh

( ) sinh1   ,
2 cosh

X Y h X h h
p

q X h Y

Y X h X h h
G p

q X h Y

ξ

ξ

ξ
ξ

ξ

 + − − − − = − + − + 
 
 − − + − − = − − − + 
 

  (11) 

where X and Y are two non-zero real constants and satisfies the condition       

Y 
2 - X 

2 > 0.  

      

( )
( )

( ) ( )

( )
( )

( ) ( )

( )
( )

( ) ( )

( )
( )

( ) ( )

21
2

20 2 2 21 1
2 2

21
2

21 2 2 21 1
2 2

2

22 2 2 2 2

2

23 2 2 2 2

2 cosh

sinh cosh

2 sinh

cosh sinh

2 cosh

sinh cosh

2 sinh

sinh cosh

r h
G

h h p h

r h
G

h h p h

r h
G

h h p h i h

r h
G

p h h h h

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ

ξ
ξ

ξ ξ

−
=

− − − −

−
=

− − − −

−
=

− − − − ± −

−
= −

− − + − − ± −
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( )
( ) ( )

( ) ( ) ( )( )
2 21 1

4 4

24
2 2 2 2 21 1 1 1

4 4 4 2

2 sinh cosh
   .

2 sinh cosh 2 cosh

r h h
G

p h h h h

ξ ξ
ξ

ξ ξ ξ

− −
=

− − − + − − −
 

(12) 

Family 3: When r =0 and pq ≠ 0, the solutions of equation (9) are: 

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

25

26

cosh sinh

cosh sinh
   ,

cosh sinh

pdG
q d p p

p p p
G

q d p p

ξ
ξ ξ

ξ ξ
ξ

ξ ξ

−
=

+ −  
+  = −

+ +  
             (13) 

where d is an arbitrary constant. 

 

Family 4: When q ≠ 0 and r =q = 0, the solution of equation (9) is:  

( )27
1

1     ,G
q c

ξ
ξ

= −
+

                         (14) 

where c1 is an arbitrary constant. 

Step 3: To determine the positive integer mmax, substitute equation (8) along with 

equation (9) into equation (7) and then consider homogeneous balance between 

the highest order derivatives and the nonlinear terms appearing in equation (7). 

Step 4: Substituting equation (8) along with equation (9) into equation (7) 

together with the value of mmax obtained in step 3, we obtain polynomials in iG  

(i=0,1,2,3 …) and vanishing each coefficient of the polynomial, yields a set of 

algebraic equations for an, p, q and r. 

Step 5: Suppose the value of the constants an, p, q and r can be determined by 

solving the set of algebraic equations obtained in step 4. Since the general 

solutions of equation (8) are known, substituting an, p, q and r into equation (7), 

we obtain analytical exact travelling wave solutions of the nonlinear evolution 

equation (5). 
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4  The Sub-equation Method Applied to the NLSE 
In this section we apply the sub-equation method to construct the exact 

analytical solutions for the perturbed nonlinear Schrödinger's equation with Kerr 

law nonlinearity:  

( )2 2 2
1 2 3 0    .t xx xxx x

x
iu u u u i u u u u uα γ γ γ + + + + + =  

     (15) 

Assume that Eq. (16), has traveling wave solutions in the following form:  

( ) ( ) ( )( ) ( ), exp , .u x t F i Kx t k x ctξ ξ= − Ω = −           (16) 

 By virtue of (16) and (17), we get:  

( )
( )

3 2 2 2
1 1 2 3

2 2 3 2 3 3
1 1 2

3 2 2

3 0 .

i k F K kF kF F kF F ckF KkF

F k F K F F Kk F K F KF

γ γ γ γ

α γ γ γ

′′′ ′ ′ ′ ′ ′− + + − +

′′ ′′+ Ω + − + + + − =   (17) 

 Then we have two equations as follows [33,34]: 

( )2 2 2 2
1 1 2 32 3 2 0   ,k F K c K F F F F Fγ γ γ γ′′′ ′ ′ ′+ − − + + =        (18) 

( ) ( ) ( )2 2 3 3
1 1 21 3 0   .k K F K K F K Fγ γ α γ′′− + Ω − + + − =       (19) 

Integrating (19) and taking zero be the integration constant, we have 

( )2 2 3
1 1 2 3

1 22 3 0   .
3 3

k F K c K F Fγ γ γ γ ′′ + − − + + = 
 

         (20) 

By (20) and (21), they have the same solutions. So, we have the following 

equation: 

( )
2 2 1 2

2 33 31 1
2 2 3

1 1 2

2 3    .
1 3

k K c K
k K K K K

γ γγ γ
γ γ α γ

+− −
= =

− Ω − + −
         (21) 

From (22), we can obtain: 

( )( )2
1 1 2 31

1
1 1 2

1 3 2 3
,    ,

3
K K c KCK K k

C C
γ γαγ γ

γ γ γ

− − −−
= Ω = + −

−
   (22) 

where we assume that: 

2 2
1 1 2 3

1 2, 2 3 ,    .
3 3

A k B K c K Cγ γ γ γ= = − − = +               (23) 
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Then the Eq. (20) and Eq. (21) are transformed into the following form:  
3 0   .AF BF CF′′ + + =                 (24) 

Based on the sub-equation method Refs. [10,11,34], Eq. (25) has the following 

formal solution: 

( )
max

0

.
m

i
i

i

F a Gξ
=

= ∑                  (25) 

where G(ξ) satisfies the generalized Riccati equation (9). To determine the 

positive integer mmax, we substitute the equation (26) along with (9) into (25) and 

then consider homogeneous balance between the highest order derivatives and the 

nonlinear terms appearing in equation (25), obtaining the following ansätz: 

( ) ( )0 1 ,F a a Gξ ξ= +                 (26) 

with mmax =1, substituting Eq. (27) into Eq. (25) the left hand sides of this 

equation is converted into the following polynomial in iG : 

( )

( ) ( )

3 2
20 0 0 11

1 1 1

2 3
2 320 1 1

1 1

3+ + + 2

33 2 0 .

Ba Ca Ca aBapra p a qra G
A A A A

Ca a Capqa G q a G
A A

ξ

ξ ξ

 
+ + + 

 
   

+ + + + =   
  

     (27) 

Setting each coefficient of this polynomial to zero, we obtain a set of 

simultaneous algebraic equations for a0, a1, p, q and r as follows: 
3

0 0
1

2
2 0 11

1 1

2
0 1

1

3
2 1

1

0

30 2

30 3

0 2 .

Ba Ca pra
A A

Ca aBa p a qra
A A

Ca apqa
A

Caq a
A

= + +

= + + +

= +

= +          (28) 

Solving the set of algebraic equations by using symbolic computation software, 

such as Mathematica, we obtain:  
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( )

2

0

2 2

1

2

2
3

2 2 2

3 3

24 ,

B Ap Aqr
a

C

B Ap Aqr B Ap Aqr
a

CApr

B Aqr
p

A
Bq
Ar

Bqr p
A

− − −
=

− − − − −
= −

− +
= −

= −

−
− =       (29) 

where r is an arbitrary constant. Therefore, we find the following solution of (27): 

( ) ( )3/22
,

C C
B GBF

A B r
ξ

ξ = +
−

            (30) 

where G(ξ) satisfies the generalized Riccati equation Eq. (9).  

Now on the basis of the solutions of the Riccati equation (9), we obtain some new 

solutions of the perturbed nonlinear Schrödinger's equation with Kerr law 

nonlinearity (16). 

When p2 - 4qr >0 ⇒ 0B
A

>  and pq ≠ 0 (or rq ≠ 0), the solutions (12), (13) and 

the equation (17) lead us to the hyperbolic travelling form solutions to the NLSE 

(16) given by the equation (31).  

Hence we get the exact solution of Eq. (16), for the case of the Riccati solutions 

( )13G ξ  and ( )16G ξ , is given by: 

( ) ( )1 , tanh ,
2

B Bu x t k x ct
C A

 
= − +  

 
      (31) 

see Figure 1. 
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Figure 1:  The graphic of solution (32), taking 1k = , 1c = , 2A = , 1B =  and  

1C = − . 

with 0A
C

< . Here |u| is the norm of u. The exact solution of Eq. (16), for the case 

of the Riccati solutions ( )14G ξ  and ( )17G ξ , is given by: 

( ) ( )2 , coth ,
2

B Bu x t k x ct
C A

 
= − +  

 
   (32) 

see Figure 2.  

with 0A
C

< , also the exact solution of Eq. (16) for the case of the Riccati solution 

( )15G ξ  is given: 

( ) ( ) ( )3
2 2, tanh sech  ,B B Bu x t k x ct i k x ct

C A A
    

= − + ± +            
  (33) 

with 0A
C

< , and the exact solutions of Eq. (16), for the case of the Riccati 

solutions ( ) ( )18 19 -  G Gξ ξ , are given by: 
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Figure 2:  The graphic of solution (33), taking 1k = , 1c = , 2A = , 1B =  and 

1C = − . 

 

( )
( )( )

( )( )
2 2 2

4 2

cosh
, ,

sinh

B
A

B
A

X Y X k x ctBu x t
C Y X k x ct

 + ± +
 = −
 ± + 

       (34)  

( )
( )( )

( )( )
2

5 2 2 2

sinh
, ,

cosh

B
A

B
A

Y X k x ctBu x t
C X Y X k x ct

 ± +
 = −
 + ± + 

   (35)  

( )
( )( )

( )( )
2 2 2

6 2

sinh
, ,

cosh

B
A

B
A

Y X X k x ctBu x t
C Y X k x ct

 − ± +
 = −
 ± + 

   (36)  

and 

( )
( )( )

( )( )
2

7 2 2 2

cosh
, ,

sinh

B
A

B
A

Y X k x ctBu x t
C Y X X k x ct

 ± +
 = −
 − ± + 

   (37)  
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with 0A
C

< , where X and Y are two non-zero real constants which satisfy the 

condition 2 2 0Y X− > , see Figures 3, 4, 5 and Figure 6. 

 

 
Figure 3:  The graphic of solution (35), taking 1k = , 1c = , 2A = , 1B = , 

1C = − , 1X =  and 2Y = . 

 

 
For the case of the Riccati solutions ( ) ( )20 24  G Gξ ξ− , the exact solutions of  

Eq. (16) are given by: 

( )
( )( )
( )( )

2
8

2

1 tanh
, ,

1 tanh

B
A

B
A

i k x ctBu x t
C i k x ct

 ± +
 = −
 + 

   (38) 

with 0A
C

< . 
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Figure 4:  The graphic of solution (36), taking 1k = , 1c = , 2A = , 1B = , 

1C = − , 1X =  and 2Y = . 

 

 
Figure 5:  The graphic of solution (37), taking 1k = , 1c = , 2A = , 1B = , 

1C = − , 1X =  and 2Y = . 
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Figure 6:  The graphic of solution (38), taking 1k = , 1c = , 2A = , 1B = , 

1C = − , 1X =  and 2Y = . 

 
 

When r =0 ⇒ 0A
C

<  and pq ≠ 0, the solutions (14) and the equation (17) lead us 

to the hyperbolic travelling form solution to the NLSE (16) given by: 

( )
( )( ) ( )( )( )
( )( ) ( )( )( )

2 2

9
2 2

1 cosh sinh
, ,

1 cosh sinh

B B
A A

B B
A A

d k x ct k x ctBu x t
C d k x ct k x ct

 ± + + + = −  + + + 
 


  (39) 

with 0A
C

< , where d is an arbitrary constant, see Figure 7. 

When q ≠ 0 and r =p =0 ⇒ 0B
A

= , the solution (15) and the equation (17) lead us 

to the travelling form solutions to the NLSE (16) given by: 

( ) ( )10
1

2 1, ,Au x t
C k x ct c

−
=

+ +
       (40) 

with 0A
C

< , where c1 is an arbitrary constant, see Figure 8. 
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Figure 7:  The graphic of solution (40), taking 1k = , 1c = , 2A = , 1B = , 

1C = − and 2d = . 

 

If we compared our solutions Eqs. (32)-(41) with those previously obtained 

in the literature (see, for example Zhang, et. al. [34]), some important differences 

can be observed for the new analytical exact solutions and we need to be sure that 

the solutions (32)-(41) are correct. For the case 0A
C

<  and 0B
A

> , the solutions 

of the present work can be compared with the results obtained with the aid of 

symbolic mathematical software, like Mathematica. The results obtained with 

Mathematica show that the solutions (32)-(41) are correct. The Mathematica code 

is given by: 
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Figure 8:  The graphic of solution (41), taking 1k = , 1c = , 2A = , 1C = − and 

1 1c = − . 

 

 

 

In [1]:=Subscript[F,1][y_]:=Sqrt[-B/C]Tanh[Sqrt[B/(2A)]y]; 

 

In[2]:=FullSimplify[D[Subscript[F,1][y],{y, 2}]  

  + (B/A)Subscript[F,1][y] 

  +(C/A)Subscript[F,1][y]^3] 

 

Out[2]=0 

 

In[3]:= Subscript[F,4][y]:=  

      (Sqrt[-(B/CC)](Sqrt[X^2+Y^2]+XCosh[Sqrt[2B/A]y])) 

      /(Y +  X Sinh[Sqrt[2]Sqrt[B/A] y]) 
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In[4]:= FullSimplify[D[Subscript[F,4][y], {y, 2}]  

  + (B/A)Subscript[F,4][y] 

  +(C/A)Subscript[F,4][y]^3] 

 

Out[4]=0 

  

In[5]:= Subscript[F,5][y]:=  

 (Sqrt[-(B/CC)] (Y+X Sinh[Sqrt[2] Sqrt[B/A] y])) 

        /(Sqrt[X^2 + Y^2] + X Cosh[Sqrt[2] Sqrt[B/A] y]); 

        

In[6]:= FullSimplify[D[Subscript[F,5][y], {y, 2}]  

  + (B/A)Subscript[F,5][y] 

  +(C/A)Subscript[F,5][y]^3] 

Out[6]=0 

 

In[7]:=Subscript[F, 7][y_] :=  

 (Sqrt[-(B/CC)] (Y + X Cosh[Sqrt[2] Sqrt[B/A] y])) 

   /(Sqrt[-X^2 + Y^2] - X Sinh[Sqrt[2] Sqrt[B/A] y]); 

 

In[8]:= FullSimplify[D[Subscript[F, 7][y], {y, 2}]  

  + (B/A)Subscript[F, 7][y] 

  +(C/A)Subscript[F, 7][y]^3] 

 

Out[8]=0. 

 

In[9]:= Subscript[F, 9][y_] := -(Sqrt[-B]/Sqrt[CC]) 

((1 - d (1Cosh[(Sqrt[2] Sqrt[B] y)/Sqrt[A]] +  

       Sinh[(Sqrt[2] Sqrt[B] y)/Sqrt[A]]))/ 

(1 + d(Cosh[(Sqrt[2] Sqrt[B] y)/Sqrt[A]] +  
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       Sinh[(Sqrt[2] Sqrt[B] y)/Sqrt[A]]))); 

In[10]:= FullSimplify[D[Subscript[F, 9][y], {y, 2}]  

  + (B/A)Subscript[F, 9][y] 

  +(C/A)Subscript[F, 9][y]^3] 

 

Out[10]=0. 

Where “Subscript[F, i][y_]” stands for: 

( ) ( )
( )( )    ,

exp
i

i

u
F

i Kx t
ξ

ξ =
− Ω

   (41) 

and therefore the functions ( )iF ξ  (see equation (31)), associated with the 

solutions (32)-(41), satisfy the required equation (25). 

 

 

5  Conclusions 

We have presented a direct method to obtain new explicit analytical exact 

solutions for NLSE with Kerr law nonlinearity. These solutions are obtained 

using the sub-equation method and the generalized solutions to the Riccati 

equation. These solutions have not been reported in the literature by applying 

directly the sub-equation method. This method is one of the most effective 

approaches to obtain explicit and exact solutions of nonlinear equations. Various 

methods have some merits and deficiencies with respect to the problem 

considered and there is no single best method to investigate the exact analytical 

traveling wave solutions of nonlinear equations. The presented method provides a 

comprehensive approach to construct many new solutions of NPDEs. We have 

confirmed the accuracy of the NLSE solutions here presented with the aid of a 

symbolic code in Mathematica, for the special case when 0A
C

<  and 0B
A

> , in 

the Eq. (25). 
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