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Abstract 

It is generally difficult to identify the exact outliers in periodic process and the 

suitable outlier detection method without a given underlying outlier process; also 

important is to discover the unusual data whose behavior is very exceptional when 

compared to the rest of the data set since the presence of the outlier can mar the 

model characterization techniques. Hampel suggested an identifier using the 

median to estimate data location and median absolute deviation to estimate the 

standard deviation. We apply the Modified Hampel Statistics by introducing the 

Jacknife method to the estimation of the parameters needed in Hampel detecting 

method to robust estimates. The two methods considered are implemented on-line 

and off-line points in finite samples taken for both real-life and simulated data 

using PAR (I) model. The results in both cases show that the Modified Hampel 

Statistic has higher rate of outlier identification for on-line detection. However, all 

the points identified by the Hampel method are also confirmed by the new Robust 
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Hampel Method. The robust method identified less off-line points than the 

Hampel Method, this further shows the effectiveness of our robust method in an 

attempt to reject off-line points that are falsely identified by Hampel method as 

outliers.  

 

Mathematics Subject Classification: C52 

Keywords: Outlier detection; Hampel test statistic; Robust Hampel method and 

Jacknife method 

 

 

1 Introduction 

In time series analysis, the first exploration of data pre-processing is to 

detect outliers. Following the work of Fox (1972) a number of research have been 

conducted on maximum likelihood based on their detections methods assuming 

known process (see Bianco et al 1996, Garcia et al 2001). It is generally difficult 

to know the exact outliers in periodic process and the suitable outlier’s detection 

method without a given underlying outlier process. When data analysis is focused 

on either on-line or off-line points, operations are conducted without due 

cognizance to the presence of outliers and it could jeopardize the model 

characterization techniques.  For instance, if a data set contains a single out-of-

scale observation, most useful parameters and statistics for describing and 

characterizing data set deviate significantly (Liu et al, 2004). 

In statistical analysis of time series, if multiple outliers exists, the single test 

is applied iteratively (Kelly 1988, and Hewitson 2006). However robust methods   

are reliable in detecting outliers in data set since they are designed to 

accommodate the influence of outliers and consequently make estimation resistant 

(Kniget and Way, 2011). The generalized extreme studentized deviate (Rosner, 

1975) alleviates the primary limitations of Grubbs and Tietjen-Movre Test 

Statistic in that it relies on knowing the timing of the suspected outliers. However 
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it is computationally difficult and has no visible truncation point. The study of 

influence function curve (Hampel, and Andrews et al, 1971) serves to deepen the 

understanding of estimators (e.g. of the relation between trimmed means, 

Winsorized means and Huber-estimators), and also serves to derive new 

estimators with specified robustness properties. 

To robustly detect outliers in time series, Hampel (1994) suggested as 

identifier using the median to estimate data location and median absolute 

deviation to estimate the data standard deviation. An inclusion of Jacknife 

procedure to Hampel statistic when the outlying points are known may improve 

the detection rate of the statistic. In this paper, we introduce Jacknife method 

discussed in Lasisi, T.A et al (2013) section 4.1 PP 88 for the estimation of 

parameters needed in Hampel detecting method to give robust estimates. Since 

robust estimates are less susceptible to effect of outliers, we shall consider 

explicitly the Hampel test and its modifications to capture additive, innovative, 

level shift and transitory change outliers.  

 

 

2 Statistical Methods of Detecting Outliers 

Most statistical methods are generally not suitable to detect outliers in 

quantitative real- valued data except in situations when complex data 

transformations are required before actual data processing. In this section we 

consider Hampel method of detecting outliers and improve on this method to 

accommodate these limitations in terms of their applicability and robustness. We 

concentrate specifically on modifying this outlier test statistic to make it more 

resistant to effects of outliers.  
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2.1 Hampel’s Methods and its Modification 

The influence curve is essentially an earlier derivative of an estimator 

viewed as functional distribution as it has been shown that it can be used not only 

to derive asymptotic variances, but also to study several local robustness 

properties which are defined and intuitively in  terpreted (see Hampel F.R., 1971). 

Let be the real line and V be a real-valued functions defined on some subset of 

the of all probability measures on  . Suppose that F   is the probability measure 

on   for which V is defined.  Denote by yδ  the probability measure determined 

by point mass 1 in any given point y∈ . According to Hampel (1974), the 

mixture of F  and some yδ  are written as ( )1 ,   0< 1yFε εδ ε− + ∀ < . The 

influence curve , ( )V FIC ⋅  of the estimator V at the underlying probability 

distribution F  is defined pairwise by  

( ) ( ){ }, ( ) lim 1T F y yIC V F V F
ε

ε εδ ε
→∞

 = − + −                                                   (1) 

 Assuming that the limit in equation (5.1) is defined for every point y∈ , 

Shangodoyin (1998), and Moeng et al (2009) have used equation (5.1) to 

determine the time occurrence of an outlier and the order of ARIMA model for a 

given series.  

Suppose that we define ( )V ydF y= ∫  for all probability measure with 

existing first moment and let the mean of F  exist and equal toµ ; the influence 

curve of V  is defined as 

    ( ), ( ) 0
lim 1  ( )T F yIC y y y R
ε

ε µ ε µ ε µ
→

=  − + −  = − ∀ ∈                                (2) 

The influence of an outlier on the value y  say has been measured 

graphically using equation (5.2)  (Gnanadesican and kettering, 1975) and given an 

estimator of autocorrelation function of ARMA model using a modification of 

equation (5.2). The scale estimate which is the counterpart of the mean as the most 

robust estimator of location for accessing the influence of outliers was proposed 
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by Hampel(1974), and he suggested an identifier using the median to estimate the 

data, location and mean absolute deviation to estimate standard deviation. To 

robustly estimate the location and shape parameters the median and the median 

absolute deviation (MAD) are often recommended. The median is given as  

( )
( ) [ ]1 2 2

2N

Z N Z N
Median Z

+ +  =
                                                              

(3) 

and the median absolute deviation is given as  

[ ]
( ) ( ) ( )1 2 of , ,...,

N

N N N N

MAD Z

median Z median Z Z median Z Z median Z = − − − 
      (4) 

If we assume the robust estimator of the median as to be Rm  obtained by using the 

u methodology derived in chapter four; then a modified Hampel method is Robust 

Median Absolute Deviation (RMAD) from median of 

          1 2, ,...,R R N RZ m Z m Z m − − −                                                            (5) 

To obtain robust the parameter, suppose that the unknown parameter is ℱ, may be 

the median. Let ℱ be the unknown parameter and 1,..., nZ Z  are n independent 

identically distributed periodic observations with outliers, let  
0( )

ˆ
Z be an  estimate 

of ( )Z  based on all the  n  observations and let ( ) ,  J=1,...,P
JZ

  be the estimate of  

( )Z  obtained after the deletion of J-th groups of observations. Then ( )JZ
 is the 

estimate of  ( )Z  from the remaining ( 1)( )Jp l− observations. By using Turkey 

(1957) pseudo-values, then 

( )
0( ) ( ) ( )

ˆ 1
JZ Z Zp p= − −     In this study, 2p = , therefore we have   

0( ) ( ) ( )
ˆ 2

J JZ Z Z= −     The Jacknife estimate of  ( )Z is the average of the 

( )
ˆ

Z ,   J=1,2 , as  

  
0

2 2

( ) ( ) ( ) ( )
1 1ˆ ˆ 2
2 2 JZ Z Z Z

J J
= = −∑ ∑                                                                 (6) 
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 A given observation ( ).Z is identified as outlier if
 

  ( ) ( ) ( )(.) ,N N NZ MEDIAN Z g N MAD Zα− ≥                                                    (7)
 

Where g a function is related to the number of data points and Nα  is specified 

rejection level (Davies and Gather, 1996). 

Now, without loss of generality, we use the quantity 

( ) ( ) ( )(.) ,N N NZ RMEDIAN Z g N RMAD Zα− ≥                                                 (8) 

 for the robust Hampel test statistic. 

According to Davies and Gather (1996), to select   ( ),Ng Nα , we assume 

that the observation Z follows normal distribution ( )2,Z ZN µ σ ; an outlier 

identifier is defined by specifying a lower bound ( ),N NL Z α  and an upper bound  

( ),N NR Z α  that depend on the sample and chosen the value 

of ( )11 1 N
Nα α= − − . All points less than ( ),N NL Z α  or greater than  

( ),N NR Z α  will be defined as lying in the outlier region ( )2, ,N Z ZOUT α µ σ ; thus 

the set of all TZ  identified to be Nα  outliers by identifier is given by 

( ) ( ), , ,N N N NOR Z L Zα α = −∞   or ( ), ,N N NR Z α α   . Davies and Gather   

(1996) have suggested by simulations, a way of specifying the function ( ),Ng Nα  

in equations (5.4) and (5.5); the method is to standardize an outlier identifier for a 

given for given Nα  such that  

      ( ) ( )( )2, , , 1 0.95N N N Z ZP OR Z outα α µ σ α⊂ = − =                                           (9)  

this probability is calculated under assumptions of iid  sample NZ . The 

simulations resulted into various values of  ( ),Ng Nα  for 20,50 and 100N = . 

Davies and Gather (1996). 
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3 Empirical Illustrations 

          The two methods considered in this chapter are implemented on-line and 

off-line outlier points in finite samples taken for both real-life and simulated PAR 

(1) data. The outlier detection rates in both on-time and off-time are evaluated. In 

declaring there is an outlier at time point t , for series tZ , the condition is that all 

tZ  for which we have 

 ( ) ( , ) ( )t N N NZ MED Z g N MAD Zα− ≥   

and  

( ) ( , ) ( )t N N NZ RMED Z g N RMAD Zα− ≥    

is confirmed as outliers for Hampel and Robust identifier respectively. 

 

 

3.1 Real-life Data 

         The data collected on precipitation for Maun Airport were utililized for three 

periods, namely, January, February and October; these being the only months for 

which h the initial check-up of outliers in series using SPSS did not show the 

presence of outliers. For these periods, the actual outliers are added at time points 

2,6,11,16,18,21,24,26,27 and 30 in the series using 1.75( )ty  is tZ . The functional 

form of the critical values of the test statistic used is based on Davies and Gather 

(1993) simulated values of (30,0.05)g  is 2.88 . 

 In Τable 1, we have generated the results of the test statistic for January; the 

robust method has a higher rate of outlier identification for on-time detection with 

a maximum of 0.6 than Hampel method with maximum of 0.15. All the points 

identified by Hampel method are also confirmed by our new robust Hampel 

method. Although the robust method identified more off-time points than the 

Hampel method but the rate of identification is with a maximum of 0.15. The AO, 

TC and IO re   spectively perform better with a collective maximum of 0.6 and 
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minimum of 0.4 on-time point’s identification for robust method; while these 

outlier models record a maximum of 0.3 and minimum of 0.2 on-time points 

confirmation for Hampel method. 

 The LS fails to identify any time points as outliers for both robust Hampel 

and conventional Hampel methods; one may conclude that the January period is 

prone to AO, TC, and IO outlier generating models. 

 

Table  1: January Results For Hampel And Hampel Modified Test Statistic 

 
   In Τable 2, we also generated the results of the test statistic for February; the 

robust method has a higher rate of outlier identification for on-time detection with 

TEST  

STATISTIC  

AO IO LS TC 

MAD CUT-OFF 

VALUE 

 

161.84 

 

185.92 

 

249.13 

 

162.12 

RMAD  

CUT-OFF 

VALUE 

 

188.16 

 

    134.54 

 

253.19 

 

187.80 

MAD ON-

TIMING 

 POINTS 

12,19,31(3) 12,31(2) NIL 12,31(2) 

MAD OFF-

TIMING 

POINTS 

NIL 15(1) 

 

NIL 15,19(2) 

RMAD    ON -

TIMING 

POINTS 

12,17,19,25,27 

31 (6) 

12,17,25,31(4) NIL 12,17,25,27,31 

(5) 

RMAD   OFF-

TIMIG  

POINTS 

10,15,21(3) 

 

10,15(2) NIL 15,19,21(3) 



T.A. Lasisi and D.K. Shangodouin                                                                             33 

a maximum of 0.7 than Hampel method with maximum of 0.5. All the points 

identified by Hampel’s method are also confirmed by our new robust Hampel 

method. Although the robust method identified more off-time points than the 

Hampel method, but the rate of identification is with a maximum of 0.25. It is also 

evident that for February period, all the outlier generating models perform better 

with an overall  maximum  of 0.7 and minimum 0.4 on-time points identification 

for robust method, whereas these outlier models record a maximum of 0.5 and 

minimum of 0.2 on-time confirmation for Hampel method. The AO, LS and TC 

fail to identify off-time points as outliers for both robust Hampel and conventional 

Hampel method; this make these approaches more acceptable is in practice.   

 

Table  2: February Results For Hampel And Hampel Modified Test Statistic 

TEST 

STATISTIC  
         AO            IO         LS        TC 

MAD CUT-

OFF VALUE 
     141.96 132.72 185.36 163.52 

RMAD  

CUT-OFF 

VALUE 

      127.96 175.84 136.08 116.48 

MAD ON-

TIMING 

POINTS 

12, 17, 27, 31(4) 12, 17, 19, 27, 31(5) 17,27,31(3) 17,27,31(3) 

MAD OFF-

TIMING 

POINTS 

NIL 29(1) NIL NIL 

RMAD    ON -

TIMING 

POINTS 

12,17,22,25,27,31 

(6) 

12,17,19,22,25,27,31 

(7) 

12,17,27,28, 

31(5) 

12,17,27,31(4) 

RMAD OFF-

TIMING 

POINTS 

2,10,21(3) 10(1) NIL NIL 
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 In Τable 3, we also generated the results of the test statistic for October 

period; the robust method has a higher rate of outlier identification for on-time 

detection with a maximum of 0.6 than Hampel method with maximum of 0.4. All 

the points identified by Hampel method are also confirmed by our new robust 

Hampel method. Although the robust method identified more off-time points than 

the Hampel method, the rate of identification is with a maximum of 0.15. For 

October period, all the outlier generating models perform better with an overall 

max of 0.6 and minimum 0.4 on-time points identification for robust method, 

whereas these outlier models record a maximum of 0.4 and minimum of 0.2 on-

time confirmation for Hampel method. All the generating models identify off-time 

points as outliers for both robust Hampel and conventional Hampel method but 

with LS and TC having more identifying prowess than both AO and IO. 

     

Table 3: October Results For Hampel And Hampel Modified Test Statistic 

TEST 

STATISTIC  

AO IO LS TC 

MAD CUT-OFF 

VALUE 

27.16 35.28 40.04 162.12 

RMAD  

CUT-OFF 

VALUE 

36.12 33.32 27.72 187.80 

MAD ON-

TIMING POINTS 

3,7,12,22,28(

4) 

3,7,12,18(4) 3,7(2) 12,31(2) 

MAD OFF-

TIMING POINTS 

30(1) 5(1) 4,8(2) 15,19(2) 

RMAD    ON -

TIMING POINTS 

3,7,12,27,28(

5) 

3,7,12,18,22,28(

6) 

3,7,12,22,28(5

) 

12,17,25,27,32

(5) 

RMAD OFF-

TIMING POINTS 

30(1) 5(1)  4,8,30(3) 15,19,21(3) 
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 3.2 Simulated Studies 

The simulation results are obtained under 500 replications of normal random 

series of size 50 for PAR (1) processes generated using the following equations: 

( ,1) ( , ) 1 ( ,1)

( ,2) ( ,2) 1 ( ,2)

( ,3) ( ,3) 1 ( ,3)

( ,4) ( ,4) 1 ( ,4)

0.15

0.25

0.35

0.45

t r t r m t r

t r t r t r

t r t r t r

t r t r t r

Y Y
Y Y
Y Y
Y Y

ε

ε

ε

ε

−

−

−

−

= +

= − +

= +

= +

 

The autoregressive model parameters are; 
(1) (2) (3) (4)

1 1 1 1=0.15, 0.25,  0.35 and 0.45φ φ φ φ= − = =  

The simulation model for the periodic series ( , )t r my  is Normal Rand ()*(b-a) 

+ε  for a=0.1 and b=2; we generate the error terms using simulation model 

Normal Rand (sigma=1, miu=0). The magnitude of outliers are injected using 

( , ) ( , )0.75t r m t r mD Y= (for various outlier models) at time 

 points { }: 5,10,15,20,25,30,35,40,45  50t T and=  

 We have generated the results of the test statistic for first quarter; the robust 

method has a higher rate of outlier identification for on-time detection with a 

maximum of 0.6 than Hampel method with maximum of 0.5. All the points 

identified by Hampel method are also confirmed by our new robust Hampel 

method. Although the robust method identified more off-time points than the 

Hampel method but the rate of identification is with a maximum of 0.125. The 

AO, TC and IO respectively perform better with a collective maximum of 0.6 and 

minimum of 0.5 on-time point’s identification for robust method; these outlier 

models however, record a flat rate of 0.5 on-time point’s confirmation for Hampel 

method. The LS fails to identify any on-timing points as outliers for robust 

Hampel, it however, identifies four on-timing points for conventional Hampel 

method. They both identify two off-timing points each. One may again conclude 

that the first quarter period is prone to AO, TC, and IO outlier generated models. 
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Table  4: Simulated Period 1 For Hampel And Hampel Modified Test Statistic 

TEST 

STATISTIC 

AO IO LS TC 

MAD CUT-OFF 

VALUES 

1.3839 1.3839 2.0928 1.6692 

RMAD CUT-

OFF 

VALUES 

1.5185 1.5185 2.0455 1.6769 

MAD ON-

TIMING 

POINTS 

6,11,26,36,51(5) 6,11,26,36,51(5) 6,26,36,51(4) 6,11,26,36,51(5) 

MAD OFF-

TIMING 

POINTS 

3,15,20,39,38(5) 3,15,38,39(4) 37,39(2) 15,19,39(3) 

RMAD ON-

TIMING 

POINTS 

6,11,26,36,41,51 

(6) 

6,11,26, 

36,51(5) 

NIL 6,11,26,36,51(5) 

RMAD OFF-

TIMINGPOINTS 

3,15,20,38,39(5) 3,15,39(3) 13,30(2) 3,15,39(3) 

 

 

 We have generated the results of the test statistic for second quarter; the 

robust method has a higher rate of outlier identification for on-time detection with 

a maximum of 0.5 than Hampel method with maximum of 0.3. All the points 

identified by Hampel method are also confirmed by our new robust Hampel 

method. Although the robust method identified no off-timing points, the Hampel 

method identified three and one off-timing points respectively for both LS and IO. 

Only the LS appears to give the best performance in this second quarter period 

with a maximum of 0.6 and minimum of 0.3 on-time points identification for 

robust method. The AO, IO and TC fail to identify any off-time points for robust 
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method but the Hampel method slightly identifies at the rate of 0.001 off-time 

points for the LS. At this juncture, it is evident that LS is considerably affected by 

the outlier generating models. 

 

Table  5: Simulated Period 2 For Hampel And Hampel Modified Test Statistic 

TEST 

STATISTIC 

AO IO LS TC 

MAD CUT-OFF 

VALUES 

3.0983 3.0026 3.2316 3.0977 

RMAD CUT-

OFF 

VALUES 

3,7589 3.1780 2.8262 3.7549 

MAD ON-

TIMING 

POINTS 

11,36,51(3) 11,36,51(3) 36(1) 11,36,51(3) 

MAD OFF-

TIMING 

POINTS 

NIL 9(1) 9,12,37(3) NIL 

RMAD ON-

TIMING 

POINTS 

11,36,51(3) 11,31,36,46,51(5) 11,31,36,46,51(5) 11,36,46,51(4) 

RMAD OFF-

TIMINGPOINTS 

NIL NIL 12,37(2) NIL 

      

 We have generated the results of the test statistic for quarter three; the robust 

method has a higher rate of outlier identification for on-time detection with a 

maximum of 0.6 than Hampel method with maximum of 0.4. Although the 

Hampel method identifies more off-time points than the robust, the rate of 

identification is with a maximum of 0.1. All the points identified by Hampel 
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method are also confirmed by our new robust Hampel method. AO and LS 

collectively perform better with a maximum of 0.6 and minimum of o.3 for on-

time point’s identification for robust, these outliers, however, record a maximum 

of 0.4 and minimum of 0.2 on-time points confirmation for Hampel method. The 

IO identifies more off-time points at the maximum rate of 0.1 and minimum of 

0.04. The robust method only identifies off-time points at the rate of 0.06 

maximum and 0.04 minimum. 

 Here, LS, AO and IO are seen to respectively perform better with LS taking 

the lead while TC is mostly affected by the outlier generating models in this 

context. 

 

Table  6: Simulated Period 3 For Hampel And Hampel Modified Test Statistic 

TEST 

STATISTIC 
AO IO LS TC 

MAD CUT-OFF 

VALUES 
2.8435 2.8167 4.1317 3.1398 

RMAD CUT-OFF 

VALUES 
3.4524 4.1450 3.5578 2.9478 

MAD ON-

TIMING POINTS 
11,26,41(3) 11,16,26,41(4) 11,41(2) 26,41(2) 

MAD OFF-

TIMING POINTS 
4,9,42(3) 2,4,9,15,42(5) 4,15(2) 2,4,13,15(4) 

RMAD ON-

TIMING POINTS 
6,11,26,41,51(5) 11,16,26,41(4) 11,21,31,26,41, 

51(6) 

16,26,41(3) 

RMAD OFF-

TIMING  POINTS 
4,9,42(3) 9,42(2) 4,15(2) 4,15(2) 
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 We have generated the results of the test statistic for quarter four; the robust 

method has a higher rate of outlier identification for on-time detection with a 

maximum of 0.8 than Hampel method with maximum of 0.7. All the points 

identified by Hampel method are also confirmed by our new robust Hampel 

method. Although the robust method identified less off-time points than the 

Hampel method but the rate of identification is with a maximum of 0.08. All the 

generating models appear to perform equally likely with a collective maximum 

rate of 0.8 and minimum of 0.7 for on-time identification for the robust method, 

while all the models record a maximum of 0.7 and minimum of 0.4 on-time 

confirmation for Hampel method. The IO fails to identify any off-time points for 

robust, it however, identifies a maximum of a maximum off-time points rate of 

0.02 for Hampel method .The LS identifies a off-time points rate at the maximum 

of 0.08 and maximum of 0.06 respectively for both robust and Hampel methods. 

AO and TC have off-time points with maximum rate of 0.04 and minimum of 0.01 

for the two methods.  

 

 

Table 7: Simulated Period 4 For Hampel And Hampel Modified Test Statistic 

TEST 

STATISTIC 

AO IO LS TC 

MAD CUT-OFF      

VALUES 

3.2872 3.6098 3.7926 3.2844 

RMAD CUT-

OFF 

VALUES 

3.9767 4.5599 4.3105 3.9721 

MAD ON-

TIMING 

POINTS 

16,21,31,41,4

6,51(6) 

16,21,39,51(4) 6,16,21,31,41,

46(6) 

6,16,21,31,41

,46,51(7) 
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MAD OFF-

TIMING 

POINTS 

5,10(2) 5(1) 5,10,22,32(4)  5,10(2) 

RMAD ON-

TIMING 

POINTS 

6,11,16,21,31,

41,51(7) 

6,11,16,21,26,3

1,51(7) 

11,16,21,26,3

1,41,51(7) 

6,11,16,21,31

, 

41,46,51(8) 

RMAD OFF-

TIMING 

POINTS 

5(1) NIL 5,22,32(3) 51(1) 

 
 

4 Conclusion 

In using Hampel modified approach to detect outliers, the two methods 

considered are implemented on-line and off-line points in finite samples taken for 

both real-life and simulated data using PAR (I) model. The results in both cases 

show that the Modified Hampel Statistic has higher rate of outlier identification 

for on-line detection. However, all the points identified by the Hampel method are 

also confirmed by the new Robust Hampel Method. The robust method identified 

less off-line points than the Hampel Method; this further shows the effectiveness 

of our robust method in an attempt to reject off-line points that are falsely 

identified by Hampel method as outliers. 
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