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Abstract

Let X, Y be Banach spaces (or either topological vector spaces) and
let us consider the function space C (S, X) of all continuous functions
f : S → X, from the compact (locally compact) space S into X,

equipped with some appropriate topology. Put C (S, X) = C (S) if
X = R. In this work we will mainly be concerned with the problem of
representing linear bounded operators T : C (S, X) → Y in an integral
form: f ∈ C (S,X) , T f =

∫
S

f dµ, for some integration process with

respect to a measure µ on the Borel σ−field BS of S. The prototype of
such representation is the theorem of F. Riesz according to which every
continuous functional T : C (S) → R has the Lebesgue integral form
Tf =

∫
S

f dµ. This paper is intended to present various extensions of

this theorem to the Banach spaces setting alluded to above, and to the
context of locally convex spaces.
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1 Introduction

The Integral Representation Theorem of Riesz asserts that if S is a compact

Hausdorff space, and C (S) is the space of continuous real-valued functions on

S, with the uniform norm, then for each bounded linear functional T : C (S) →
R, there is a unique bounded regular measure µ on the Borel σ−field BS such

that:

Tf =

∫

S

f dµ, for all f ∈ C (S)

where the integral is a Lebesgue one, and ‖T‖ = |µ| , the variation of µ.

This statement of the theorem, due to Kakutani [11] , is one of the versions

we have at hand nowadays.

A lot of work has been done on various extensions of this theorem (see, [1],

[4], [5], [16], [18] and the references therein), and it is still the object of many

investigations [2], [13], [20]. The aim of this work is intended to present a

unified survey of some prominent generalizations of Riesz Theorem, frequently

used in the literature. The paper has, obviously, no claim of being exhaustive.

We will mainly be concerned with the following settings:

In Part 1, we consider Banach spaces X, Y , and form the Banach space

C (S,X) of all continuous functions f : S → X, from the compact space S

into X, equipped with the uniform norm, put C (S, X) = C (S) if X = R.

The main problem we will be concerned with is that of representing linear

bounded operators T : C (S, X) → Y in an integral form:

f ∈ C (S,X) , T f =

∫

S

f dµ

for some integration process with respect to a measure µ on the Borel σ−field

BS of S.

We give three major representation theorems. We start with the famous

theorem of Bartle-Dunford Schwartz [1], representing general X−valued oper-

ators on C (S) . In this representation, the class of weakly compact operators

has the important property of being represented by vector measures with val-

ues in the Banach space X.

Next we turn to Dinculeanu-Singer theorem [5], for general bounded op-

erators T : C (S, X) → Y. The theorem goes through the structure of the

topological dual C∗ (S, X) of the function space C (S, X) , given in [24], and
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generalized in [19] . The concern of the third representation theorem is the

construction of a class of operators from C (S, X) into X, characterized by

their Bochner form, given in [16] .

In Part 2, the objective is to go beyond the Banach space setting, to a

topological vector space (TVS) context. In this Part, X will be a locally

convex space with dual X∗ and S a locally compact space. We denote by

C0 (S, X) the function space of all continuous functions f : S → X, vanishing

outside a compact set of S, put C0 (S, X) = C0 (S) if X = R. We are interested

in representing linear bounded operators T : C0 (S, X) → X, by means of weak

integrals against scalar measure µ on S. First, in section 3.2, we start with an

operator T : C0 (S, X) → X and give conditions under which T can be written

as a Pettis integral with respect to a scalar measure µ. Second, we consider

the converse, that is, given a measure µ of bounded variation on S, we seek

for an operator T : C0 (S, X) → X, which will have a Pettis integral form

with respect to µ. This is a more delicate problem which needs additional

assumptions on the space X. Solutions to this problem [18], under various

conditions on the dual X∗, are given in section 3.3

2 Part 1

2.1 Some Representations Theorems in Banach Spaces

This Part is intended to present three main representations theorems for

bounded operators in Banach spaces. For each of them, we give a short de-

scription of the integration process we use in the corresponding representation.

These processes deal with functions and measures, each of them may be scalar

or vector valued.

2.2 The Integral Representation of Bartle-Dunford-Schwartz

In what follows S will be an abstract set, F a σ−field of subsets of S.
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2.3 Integration of a scalar function against a vector

measure

Definition 1. Let X be a Banach space, µ : F → X a set function on

F with values in X. We say that µ is a vector measure if for every pairwise

disjoint sequence of sets {An} in F , the series
∑
n

µ (An) is unconditionally

convergent in X and we have µ
(
∪
n
An

)
=

∑
n

µ (An) . A set function with this

property is said to be σ−additive.

Definition 2. The semi-variation of the vector measure µ is defined by the

set function:

E ∈ F , ‖µ‖ (E) = Sup

∣∣∣∣∣
n∑

i=1

εi µ (Ei)

∣∣∣∣∣ (1)

the supremum being taken over all finite partitions {Ei} of E in F , and all

finite systems of scalars{εi} with |εi| ≤ 1.

The concepts of µ−null sets and convergence µ−almost everywhere are

pertaining to the set function ‖µ‖. See [7, Chap.IV.10.8], for details.

The semi-variation so defined is needed for some estimations in the inte-

gration process which will be used.

Definition 3. A simple measurable function of S into R is a function of

the form

f (•) =
n∑

i=1

αi χAi
(•) ,

where χAi
is the characteristic function of the set Aj and where the Aj are

pairwise disjoint sets in F .

Definition 4. A function f : S → R is measurable if and only if it is the

limit µ−almost everywhere of a sequence of simple measurable functions.

Now let X be a Banach space, and let µ : F → X be a vector measure.

If f : S → R is a real measurable function, we define the integral of f with

respect to the vector measure µ and give some of its properties needed in

integral representation. First we consider simple functions.
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Definition 5. Let f (•) =
n∑

i=1

αi χAi
(•) be a simple measurable function.

The integral of f with respect to µ over the set E ∈ F is defined by

∫

E

f dµ =
n∑

i=1

αi µ (E ∩ Ai)

just as in the customary real case, this integral does not depend on the repre-

sentation of f.

It is clear that the integral so defined is linear as a function of f , and

σ−additive as a set function of E. Moreover if M = sup
s∈E

|f (s)| then:
∥∥∥∥
∫
E

f dµ

∥∥∥∥ =

∥∥∥∥M
n∑

i=1

(αi

M

)
µ (E ∩ Ai)

∥∥∥∥ ≤ M
n∑

i=1

∣∣∣αi

M

∣∣∣ ‖µ (E ∩ Ai)‖
≤ M ‖µ‖ (E)

so we deduce that:
∥∥∥∥
∫
E

f dµ

∥∥∥∥ ≤
(

sup
s∈E

|f (s)|
)
‖µ‖ (E) .

Definition 6. A measurable function f : S → R is said to be µ−integrable,

if there is a sequence fn of simple functions such that:

(a) fn converges to f µ−almost everywhere

(b) The sequence

{∫
E

fn dµ

}
converges in the norm of X for each E ∈ F .

The limit of the sequence

{∫
E

fn dµ

}
in (b) is called the integral of f with

respect to µ over E and is denoted by
∫
E

f dµ.

The integral so defined does not depend on the sequence fn chosen. This

fact is not trivial at all, see the proof in [7, IV.10.8]. On the other hand, it is

straightforward that the integral
∫
E

f dµ is linear in f.

We record some properties of this integral in the following theorem:

Theorem 7. (a) . If f is bounded µ−almost everywhere on the set E, then

f is µ−integrable over E and :
∥∥∥∥∥∥

∫

E

f dµ

∥∥∥∥∥∥
≤

(
sup
s∈E

|f (s)|
)

. ‖µ‖ (E) .
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(b) . Let T be a linear bounded operator from X into the Banach space

Y.Then Tµ is a Y− valued vector measure on F , and for any µ−integrable f

and any E ∈ Fwe have

T




∫

E

f dµ


 =

∫

E

f dTµ.

2.4 The Integral Representation of Bartle-Dunford-Schwartz

Let S be a compact space equipped with its Borel σ−field BS and let us

form the Banach space C (S) of all continuous functions f : S → R, with the

sup. norm.

The symbol X∗ means the topological dual of the Banach space X and

X∗∗ its bidual. We will denote by L (X, E) the space of all linear bounded

operators from X into the Banach space E. Recall the Banach space rσbv (BS)

of all regular real measures with bounded variation on S.

We know from Riesz theorem that rσbv (BS) is isometrically isomorphic to

the dual C∗ (S) of C (S) .

The following theorem is the general version of the representation of

Bartle-Dunford-Schwartz:

Theorem 8. Let T : C (S) → X. be a bounded operator from C (S) into

the Banach space X. Then there exists a unique set function µ : BS → X∗∗

such that:

(a) µ (•) x∗ ∈ rσbv (BS) , for each x∗ ∈ X∗.

(b) the mapping x∗ → µ (•) x∗ from X∗ into rσbv (BS) is

weak∗ continuous with respect to the topologies σ (X∗, X) on X∗ and

σ (C∗ (S) , C (S)) on C∗ (S) .

(c) x∗Tf =
∫
S

f (s) dµ (s) x∗, f ∈ C (S) , x∗ ∈ X∗.

(d) ‖T‖ = ‖µ‖ (S) , the semi-variation of µ at S (2) .

Conversely, if µ is a set function from BS into X∗∗ satisfying (a) and (b),

then equation (c) defines an operator T : C (S) → X with norm given by (d),

and such that T ∗x∗ = µ (•) x∗, x∗ ∈ X∗.
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Proof In what follows we make use of the identication between the dual

C∗ (S) of C (S) and the Banach space rσbv (BS) of all regular real measures

with bounded variation. Fix E in BS. and define ϕE : C∗ (S) → R, by

ϕE (λ) = λ (E) , λ ∈ C∗ (S) . It is clear that |ϕE (λ)| ≤ |λ| (variation norm) ,

so that ϕE ∈ C∗∗ (S) and ‖ϕE‖ ≤ 1. Next, define µ : BS → X∗∗ by µ (E) =

T ∗∗ (ϕE) , E ∈ BS. It is easy to check that µ is additive. Moreover if T ∗ :

X∗ → C∗ (S) is the adjoint of T , then for x∗ ∈ X∗, T ∗x∗ = λx∗ ∈ C∗ (S) and

λx∗ (E) = ϕE (λx∗) = ϕE (T ∗ (x∗)) = T ∗∗ϕE x∗. ¿From the definition of µ, we

deduce that λx∗ (E) = µ (E) x∗ and T ∗x∗ = µ (•) x∗. This proves (a) and (b) ,

where (b) comes from the fact that the adjoint T ∗ is weak∗ continuous. By

Riesz theorem T ∗x∗ (f) =
∫
S

f dµ (•) x∗ and, since T ∗x∗ (f) = x∗T (f), we get

(c) . Finally a straightforward computation gives (d) .

Conversely, let µ be a set function from BS into X∗∗ satisfying (a) and (b) .

Then for each f ∈ C (S), the mapping x∗ → ∫
S

f dµ (•) x∗ of X∗ into R is

σ (X∗, X)-continuous; consequently there is a unique vector xf in X such that∫
S

f dµ (•) x∗ = x∗ (xf ) . Define T : C (S) → X by Tf = xf , f ∈ C (S) . It is

not difficult to check that T satisfies (c) and (d) .

Now it is natural to ask when does the set function µ take its values in

γ (X) , where γ : X → X∗∗ is the canonical embedding. As we will see

presently, this will be true if the operator T is weakly compact.

Definition 9. Let X,Y be Banach spaces. A linear bounded operator

T : X → Y is said to be weakly compact if for any bounded set B in X,

the weak closure of TB is compact in the weak topology of Y.

Let us note the following facts about weakly compact operators [7, VI, 4.2,4.8].

Theorem 10. A linear bounded operatorT : X → Y is weakly compact if

and only if T ∗∗X∗∗ is contained in the natural embedding γ (Y ) of Y into Y ∗∗.

Theorem 11. An operator T is weakly compact if and only if its adjoint

T ∗ is weakly compact.

Now we are in a position to state the integral representation of a weakly

compact operator.
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Theorem 12. Let T : C (S) → X. be a weakly compact operator from

C (S) into a Banach space X. Then there exists a unique vector measure λ :

BS → X such that:(
a
′)

x∗λ ∈ rσbv (BS), for each x∗ ∈ X∗.(
b
′)

Tf =
∫
S

f dλ, for all f ∈ C (S)
(
c
′)

T ∗x∗ = x∗λ, for each x∗ ∈ X∗.(
d
′) ‖T‖ = ‖λ‖ (S) , the semi-variation of λ at S.

Conversely if λ is a vector measure on BS with values in X, satisfying
(
a
′)

,

then the operator T defined by
(
b
′)

is a weakly compact operator from C (S)

into X whose adjoint is given by
(
c
′)

and whose norm is given by
(
d
′)

.

Proof Let µ : BS → X∗∗ be the set function introduced in Theorem 8 by

µ (E) = T ∗∗ (ϕE) , E ∈ BS. Since T is weakly compact, T ∗∗X∗∗ is contained in

the natural embedding γ (X) of X into X∗∗ by Theorem 10. Therefore µ (E) ∈
γ (X) for all E ∈ BS and this allows to define λ : BS → X by λ (E) = γ−1µ (E) .

Then λ (E) ∈ X and for x∗ ∈ X∗: x∗λ (E) = x∗γ−1µ (E) = γ (γ−1µ (E)) x∗ =

µ (E) x∗, where the second equality comes from the definition of γ. This shows

that x∗λ ∈ rσbv (BS) , for each x∗ ∈ X∗. By Pettis theorem [7 chap.IV ],

λ is a vector measure on BS into X. From Theorem 8(c) we get x∗Tf =∫
S

f (s) dµ (s) x∗ =
∫
S

f (s) dx∗λ (s) , f ∈ C (S) , x∗ ∈ X∗.

Now apply Theorem 7(b) to get x∗Tf = x∗
∫
S

f (s) dλ (s), for each x∗ ∈ X∗.

This yields Tf =
∫
S

f dλ, by the Hahn-Banach theorem, so
(
b
′)

is proved. On

the other hand we have x∗Tf =
∫
S

f (s) dx∗λ (s) = T ∗x∗ (f) , hence T ∗x∗ = x∗λ,

by Riesz theorem, whence
(
c
′)

. Finally
(
d
′)

is immediate from point (d) of

Theorem 8.

Conversely if λ is a vector measure on BS with values in X, satisfying
(
a
′)

and if T is defined by
(
b
′)

, then T is linear bounded (Theorem 7 (a)) and for

each x∗ ∈ X∗ we have T ∗x∗ = x∗λ. By Lemma 2.3 in [1], T ∗ is weakly compact

and so, Theorem 11, T is weakly compact.

Note that for a locally compact space S, Theorem 12 has been extended

by Kluvanek in [14, Lemma 2] .
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2.5 The Representation Theorem of Dinculeanu-Singer

2.5.1 Integration of a vector valued function against an operator

valued measure

Let X, Y be Banach spaces, S a compact space and let C (S, X) be the

Banach space of all continuous functions f : S → X, with the sup. norm:

f ∈ C (S, X) , ‖f‖ = Sup
s∈S

‖f (s)‖

Put C (S, X) = C (S) if X = R.

The symbols X∗, X∗∗have the meaning of section 2.4. We will denote by

L (X, E) the space of all linear bounded operators from X into the Banach

space E. All the set functions considered here are, except otherwise stated,

assumed to be defined on the Borel σ−field BS of S.

1 We will deal with additive operator valued set functions

G : BS → L (X,E)

and for such functions, we define the semivariation by:

(a) B ∈ BS,
∼
G (B) = Sup

∥∥∥∥∥
∑

i

G (Ai) .xi

∥∥∥∥∥

the supremum being taken over all finite partitions {Ai} of B in BS and

all finite systems of vectors {xi} in X, with ‖xi‖ ≤ 1, ∀i.
2 To each additive set function G : BS → L (X, Y ∗∗) there is associated a

family {Gy∗ , y∗ ∈ Y ∗} of additive X∗−valued set functions given by:

A ∈ BS, Gy∗ (A) .x = G (A) .x (y∗)

Note that since G (A) ∈ L (X,Y ∗∗) , we have:

‖Gy∗ (A) .x‖ ≤ ‖G (A) .x‖ . ‖y∗‖ ≤ ‖G (A)‖ . ‖x‖ . ‖y∗‖ .

Moreover we have the important estimation:(see [5] , Proposition 5, p.55)

(a)′ A ∈ BS,
∼
G (A) = Sup {|Gy∗| (A) , ‖y∗‖ ≤ 1} .

where |Gy∗| is the variation of Gy∗ as given in the following definition
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Definition 13. If λ : BS → E is a vector measure, the variation of λ is

defined by the positive set function |λ| (•) given by:

B ∈ BS, |λ| (B) = Sup
∑

i

‖λ (Ai)‖

the supremum being taken over all finite partitions {Ai} of B in BS.

We say that λ is of bounded variation if |λ| (B) < ∞, for all B ∈ BS and

in this case, |λ| itself is a finite positive measure. λ is said to be regular if |λ|
is regular in the customary sense. Let us denote by rσbv (BS, E) the vector

space of all regular E−valued vector measures with bounded variation, put

rσbv (BS, E) = rσbv (BS), if S = R. Then we have:

Theorem 14. The variation |λ| defines a norm on the space rσbv (BS, E),

and for this norm, rσbv (BS, E) is a Banach space. Moreover, in the specific

case E = X∗, we have:

B ∈ BS, |λ| (B) = Sup

∣∣∣∣∣
∑

i

λ (Ai) .xi

∣∣∣∣∣

the supremum being taken over all finite partitions {Ai} of B in BS and all

finite systems of vectors {xi} in X, with ‖xi‖ ≤ 1, ∀i.
In other words, for X∗−valued vector measures, the variation is equal to

the semivariation (see 2(a)).

Now the aim is to define the integral of a function f on S with values in

X, against an additive L (X, E)−valued set function G on BS. The result of

this integration will be a vector of the Banach space E. First, we define the

measurable functions which will be integrated.

Definition 15. Let f : S → X be a function on S with values in the

Banach space X, f is measurable if it is the uniform limit of a sequence of

simple measurable functions.

We denote by M (S, X) the set of all measurable functions f : S → X.

It is clear that M (S,X) is a vector space. Moreover, in the Banach space of

all bounded functions from S into X, with the uniform norm, M (S, X) is the

closure of the subspace of all simple measurable functions.
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Definition 16. Let G be an additive L (X, E)−valued set function on BS.

If f (•) =
n∑

i=1

xi.χAi
(•) is a simple measurable function, the integral of f on

the set B ∈ BS with respect to G is defined by the formula:

∫

B

f dG =
n∑

i=1

G (Ai ∩B) .xi

From the additivity of G, it is easy to see that the integral does not depend

on the form of f , and is linear. Moreover if M = sup
s∈B

‖f (s)‖ , then:

∥∥∥∥∥∥

∫

B

f dG

∥∥∥∥∥∥
= M

∥∥∥∥∥
n∑

i=1

G (Ai ∩B) .
xi

M

∥∥∥∥∥ ≤ M.
∼
G (B) .

So we get for each simple f and each B ∈ BS :

(∗)
∥∥∥∥∥∥

∫

B

f dG

∥∥∥∥∥∥
≤

(
sup
s∈B

‖f (s)‖
)

.
∼
G (B)

where
∼
G (B) is the semivariation defined in 2(a).

Definition 17. Let f : S → X be a measurable function, i.e f ∈ M (S,X).

We define the integral of f over B with respect to G by the limit,

∫

B

f dG = lim
n

∫

B

fn dG,

where fn is any sequence of simple measurable functions converging uniformly

to f. The limit is in the norm of X.

To check that the integral is well defined, let fn, gn be two sequences of

simple measurable functions converging uniformly to f. Then by the inequality

6 (∗), we have:
∥∥∥∥
∫
B

fn dG− ∫
B

gn dG

∥∥∥∥ =

∥∥∥∥
∫
B

(fn − gn) dG

∥∥∥∥ ≤
(

sup
s∈B

‖fn (s)− gn (s)‖
) ∼

G (B)

−→ 0, n −→∞.
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Proposition 18. For each measurable function f and each B ∈ BS, we

have: ∥∥∥∥∥∥

∫

B

f dG

∥∥∥∥∥∥
≤

(
sup
s∈B

‖f (s)‖
)

.
∼
G (B)

Proof Let fn be a sequence of simple measurable functions converging

uniformly to f. If ε > 0, there is an integer N ≥ 1 such that for all n ≥ N , we

have

∥∥∥∥
∫
B

f dG− ∫
B

fn dG

∥∥∥∥ < ε. So we deduce that for all n ≥ N :
∥∥∥∥
∫
B

f dG

∥∥∥∥ ≤
∥∥∥∥
∫
B

f dG− ∫
B

fn dG

∥∥∥∥ +

∥∥∥∥
∫
B

f ndG

∥∥∥∥ < ε +

(
sup
s∈B

‖fn (s)‖
)

.
∼
G (B) .

Letting n −→∞ and then ε ↘ 0, we get the inequality.

In some representation theorems, we need to integrate continuous functions

f : S → X. This will be possible according to the following proposition. Recall

that C (S, X) is the Banach space of all continuous functions f : S → X, with

the sup norm.

Proposition 19. The Banach space C (S, X) is a closed subspace of M (S, X) .

Proof See Proposition 1, § 19 in [5].

2.6 On the Dual Space C∗
0 (S, X)

In the next representation theorem, we need the structure of the topological

dual C∗ (S, X) of the Banach space C (S, X) . This is given by the following

theorem:

Theorem 20. [19] Let S be a locally compact space and let C0 (S, X) be

the Banach space of all continuous functions f : S → X vanishing at infinity.

Then there is an isometric isomorphism between the Banach spaces C∗
0 (S, X)

and rσbv (BS, X∗), where to the functional U in C∗
0 (S,X) corresponds the

measure λ in rσbv (BS, X∗) via the formula:

f ∈ C0 (S,X) , U (f) =

∫

S

f d λ ‖U‖ = |λ|

where the integral is the one defined in section 2.5.1.

Now we turn to the one of the most general representation theorem.
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2.7 The Representation Theorem of Dinculeanu-Singer

Theorem 21. Every linear bounded operator T : C (S, X) → Y determines

a unique set function G : BS → L (X,Y ∗∗) such that:

(i) G is finetely additive and with finite semivariation
∼
G.

(ii) The set function Gy∗ is a vector measure in rσbv (BS, X∗)

for each y∗ ∈ Y ∗.

(iii) The function y∗ → Gy∗ is weak∗ continuous with the σ (Y ∗, Y )-topology

on Y ∗ and the σ (C∗ (S, X) , C (S,X))−topology on C∗ (S, X) .

(iv) Tf =
∫
S

f d G, f ∈ C (S,X) , which really means that γTf =
∫
S

f d G,

where γ : Y → Y ∗∗ is the canonical embedding.

(v) ‖T‖ =
∼
G (S) (semivariation of G defined in 1 (a) .) .

(vi) T ∗y∗ = Gy∗, for all y∗ ∈ Y ∗.

Proof Consider the adjoint operator T ∗ : Y ∗ → C∗ (S, X) . From theorem

2.1, for each y∗ ∈ Y ∗, T ∗y∗ is a vector measure on BS with values in X∗, which

we will denote by µy∗ . Thus we have for f ∈ C (S, X) ,

T ∗y∗ (f) = y∗Tf =

∫

S

f d µy∗ , and ‖T ∗y∗‖ = |µy∗| .

Next fix x ∈ X, A ∈ BS and define

G (A) x : Y ∗ → R by G (A) x (y∗) = µy∗ (A) (x) .

Then it is easy to check that G (A) x ∈ Y ∗∗ and that we have

‖G (A) x‖ ≤ ‖T‖ . ‖x‖ .

This allows us to define, for A fixed in BS,

G (A) : X → Y ∗∗ by x → G (A) x.

Then G (A) is linear and bounded with ‖G (A)‖ ≤ ‖T‖, for all A ∈ BS.

Furthermore, the set function A → G (A) from BS into L (X,Y ∗∗) is additive

and satisfies:

G (A) x (y∗) = Gy∗ (A) (x) = µy∗ (A) (x) , A ∈ BS, y∗ ∈ Y ∗, x ∈ X.

Moreover we have, from 2(a),
∼
G (S) = Sup {υ (Gy∗ , S) , ‖y∗‖ ≤ 1}. So we

deduce that
∼
G (S) = Sup {υ (µy∗ , S) , ‖y∗‖ ≤ 1} .
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Since

‖T ∗y∗‖ = |µy∗| = υ (µy∗ , S) ,

we get ∼
G (S) = Sup {‖T ∗y∗‖ , ‖y∗‖ ≤ 1} = ‖T ∗‖ = ‖T‖ .

Let us observe that:

(i) is satisfied by the definition of G.

(ii) is a consequence of the relation Gy∗ = µy∗ .

(vi) is true since T ∗y∗ = µy∗ = Gy∗ .

(iii) is valid by (vi) and the weak∗continuity of the adjoint.

(v) is proved by the computation above involving
∼
G (S) .

It remains to prove (iv) . To this end, we use the integration process described

in section 2.1 above. Consider the space M (S, X) of measurable functions

f : S → X. By Proposition 19, we have C (S, X) ⊂ M (S, X), so
∫
S

f dG

is well defined for f ∈ C (S,X) , and is in Y ∗∗, since G takes its values in

L (X, Y ∗∗) . Put for a moment Uf =
∫
S

f dG and observe that for y∗ ∈ Y ∗,

Uf (y∗) =
∫
S

f dGy∗ (check the formula for f simple and extend to all f ∈
M (S, X) , using standard methods). But we have also

T ∗y∗ (f) = y∗Tf =

∫

S

f dGy∗ ,

hence y∗Tf = Uf (y∗) , for all f ∈ C (S,X) and y∗ ∈ Y ∗. Since Tf ∈ Y,

we have y∗Tf = γTf (y∗) , where γ : Y → Y ∗∗ is the canonical embedding.

consequently γTf (y∗) = Uf (y∗) , and then γTf = Uf for all f ∈ C (S, X),

proving (iv).

Remark 22. The set function G above is not σ−additive in general. To

get σ−additivity, needs additional assumption on the operator T. It has been

proved by Dobrakov in [6], that the representing measure G of the operator

T : C (S, X) → Y has all its values in L (X,Y ) if and only if for each x ∈ X

the operator Tx : C (S) → Y defined by Txf = T (x.f) , f ∈ C (S) , is weakly

compact. In this case, G is σ−additive in the strong operator topology of

L (X, Y ) .
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2.8 Representation of Bounded Operators by Bochner

Integral

2.8.1 Integration of a vector valued function against a scalar mea-

sure: The Bochner Integral

Let (S,F , µ) be a measure space, with µ a finite positive measure. We will

assume that (S,F , µ) is complete. As before, X will be a Banach space with

topological dual X∗. In this section we need to integrate functions f : S → X,

with respect to the scalar measure µ.

First we need measurability. For all details on Bochner integral, see [10].

Definition 23. (i). An elementary measurable function f : S → X is a

function of the form f (•) =
∑
i

xi.χAi
(•), where {Ai} is a countable partition

of S in F and {xi} a sequence of vectors in X. We denote by E the set of all

elementary measurable functions f : S → X.

(ii). A function f : S → X is said to be strongly measurable if there is a se-

quence of elementary measurable functions fn converging µ−almost everywhere

to f. Let M be the set of all strongly measurable functions f : S → X.

(iii). A function f : S → X is said to be weakly measurable if for each x∗ ∈ X∗,

the real function x∗ ◦ f : S → R is measurable.

The relation between the two types of measurability, weak-strong, this is

given by the following theorem of Pettis:

Theorem 24. A function f : S → X is strongly measurable if and only if

the following conditions are satisfied:

(a) . f is weakly measurable

(b) . There is a set S0 ∈ F such that µ (S \S0) = 0 and the image f (S0) of

S0 by f is separable.

In particular, if X is a separable Banach space, the weak and strong mea-

surability are equivalent.

Definition 25. We say that the elementary measurable function

f (•) =
∑

i

xi.χAi
(•)



108 Integral Representations in Topological Spaces

is µ−integrable, if ∑
i

‖xi‖ .µ (Ai) < ∞.

In this case we define the integral of f with respect to µ by
∫

S

f dµ =
∑

i

xi.µ (Ai) .

Likewise the integral of f over the set E ∈ F is
∫

E

f dµ =
∑

i

xi.µ (Ai ∩ E) .

A function f : S → X is said to be µ−integrable, if there is a sequence fn

of elementary µ−integrable functions such that:

(i) .fn converges µ−almost everywhere to f.

(ii) .Lim
n

∫
E

‖fn − f‖ d µ = 0.

In this case the Bochner integral of f is defined by
∫

E

f dµ = Lim
n

∫

E

fn dµ.

It is easy to prove that the Bochner integral of f does not depend on the

sequence fn chosen.

The following theorem gives one of the outstanding facts about the Bochner

integral.

Theorem 26. A function f : S → X is µ−integrable if and only if f is

strongly measurable and ∫

S

‖f‖ d µ < ∞.

We denote by L1 (µ,X) the set of all µ−integrable functions.

Now we extend the definition of the Bochner integral to a real measure µ,

with bounded variation, by
∫

E

f dµ =

∫

E

f dµ+ −
∫

E

f dµ−,

where µ+, µ− are the positive and negative parts of µ.
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For any real µ, it is customary to denote by L1 (µ,X) the vector space of

all equivalence classes, with respect to the equality |µ| − a.e, of µ−integrable

functions. If f ∈ L1 (µ,X) , we put

‖f‖1 =

∫

S

‖f‖ d µ.

Then we have:

Theorem 27. ‖•‖1 is a norm which makes L1 (µ,X) a Banach space.

Moreover we have

∥∥∥∥
∫
E

f dµ

∥∥∥∥ ≤
∫
E

‖f‖ dµ, for all E ∈ F and f ∈ L1 (µ,X).

The operator Iµ : L1 (µ,X) → X given by

Iµ (f) =

∫

S

f dµ

is linear continuous with norm ‖Iµ‖ = |µ| .
Proof Mimic the classical proof for the real space L1 (µ) .

Theorem 28. If Y is a Banach space and if T : X → Y is a linear bounded

operator, then for each function f ∈ L1 (µ,X) the function Tf is in L1 (µ, Y )

and we have T

(∫
E

f dµ

)
=

∫
E

Tf dµ.

2.9 Bounded Operators and Bochner Integral

In this section, we introduce a class of bounded operators T : C (S,X) →
X, which admit a representation by Bochner integral with respect to a scalar

measure on BS. For the construction of the Bochner integral and its properties,

we refer the reader to [10].

Let µ be a scalar measure with bounded variation on BS and let us consider

the operator Iµ : C (S, X) → X introduced in Theorem 27

f ∈ C (S,X) , Iµf =

∫

S

f d µ

where the integral is in the sense of Bochner.

For each x∗ ∈ X∗ let Ux∗ : C (S, X) → C (S) be the linear bounded operator

given by Ux∗f = x∗ ◦ f, where (x∗ ◦ f) (s) = x∗ (f (s)) , f ∈ C (S, X) , s ∈ S.

We collect some facts about Ux∗ for later use:
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Proposition 29. (i) For each x∗ ∈ X∗, we have ‖Ux∗‖ = ‖x∗‖ . Moreover

there exists z∗ ∈ X∗ such that for every h ∈ C (S) , there is a solution

f ∈ C (S,X) of the equation Uz∗f = h with ‖f‖ = ‖h‖ .

(ii) If V : C (S) → R is linear and bounded then we have:

‖V ‖ = Sup {‖V ◦ Ux∗‖ , ‖x∗‖ ≤ 1}.

Proof The proposition is a consolidated form of Lemmas 2.2, 2.3 in

[16].

All what we need about Iµ is the following:

Proposition 30. (i) Iµ is a linear bounded operator from C (S, X) into

X. Moreover, if U : X → E, is a bounded operator from X into the Banach

space E, then we have U (Iµf) = Iµ (Uf), for all f ∈ C (S, X), where Uf is

the function in C (S, E) given by (Uf) (s) = U (f (s)), for s ∈ S.

(ii) ‖Iµ‖ = |µ| (the variation of µ)

Proof Comes from Theorems 8 and 9.

Now let us consider a bounded operator T : C (S, X) → X, and ask the

question of the existence of a scalar measure µ on BS such that Tf = Iµf ,

for all f ∈ C (S, X) . In what follows we introduce a class of operators T :

C (S,X) → X for which this problem does have a positive answer.

Definition 31. [16] Let CXX be the class of linear bounded operators

T : C (S, X) → X which satisfy the following condition:

(C) x∗, y∗ ∈ X∗, f, g ∈ C (S, X) : x∗ ◦ f = y∗ ◦ g =⇒ x∗Tf = y∗Tg

In some sense, the operators of the class CXX preserve the continuous

functionals of X. It is easy to check that CXX is a closed subspace of the

Banach space L (C (S,X) , X) , endowed with the uniform norm. Also let us

observe that for each scalar measure µ with bounded variation on BS, the

operator Iµ is in CXX (take E = R and U = Ux∗ in Proposition 30 (i)).

The outstanding fact about the class CXX is contained in the following

theorem which will be essential for the integral representation.
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Theorem 32. There is an isometric isomorphism between the Banach

space CXX and the topological dual C∗ (S) of C (S) , for each non trivial Ba-

nach space X. In other words, there exists a linear bijective mapping ϕ :

CXX → C∗ (S) such that ‖ϕ (T )‖ = ‖T‖ , for all T ∈ CXX .

Proof We show how to construct the mapping ϕ : CXX → C∗ (S) , with

the given properties. Let T ∈ CXX and h ∈ C (S). By Proposition 29 (i)

there is z∗ ∈ X∗ and f ∈ C (S,X) such that Uz∗f = h and ‖f‖ = ‖h‖ . Next

define V : C (S) → R, V (h) = z∗Tf . Then V is well defined because of

condition (C) imposed to the operator T ; moreover V is linear and bounded,

i.e V ∈ C∗ (S) . Let us define ϕ : CXX → C∗ (S) , by ϕ (T ) = V. It is clear

from this construction that ϕ is linear. Furthermore we have:

(∗) for all x∗ ∈ X∗, V ◦ Ux∗ = x∗ ◦ T.

Indeed, for f ∈ C (S, X) and x∗ ∈ X∗, Ux∗f is in C (S) , so by Proposition 29

(i) there exists g ∈ C (S, X) such that Ux∗f = x∗ ◦ f = z∗ ◦ g. Therefore:

V ◦ Ux∗ (f) = V (x∗ ◦ f) = z∗ ◦ Tg (by the definition ofV )

= x∗ ◦ Tf (by conditionC)

since f is arbitrary, (∗) is proved.

On the other hand, we have from Proposition 29 (ii),

‖V ‖ = Sup {‖V ◦ Ux∗‖ , ‖x∗‖ ≤ 1} ,

and using (∗) we get

‖V ‖ = Sup {‖x∗ ◦ T‖ , ‖x∗‖ ≤ 1} = ‖T ∗‖ = ‖T‖ .

This proves that ‖V ‖ = ‖ϕ (T )‖ = ‖T‖, that is ϕ is an isometry.

To achieve the proof, we construct θ : C∗ (S) → CXX , which will be the

inverse of ϕ. If V ∈ C∗ (S), then, by Riesz theorem, there exists a bounded

real measure µ on BS such that

V h =

∫

S

h d µ, and ‖V ‖ = |µ| , for all h ∈ C (S) .

Then, define θ by θ (V ) = Iµ. We know that Iµ ∈ CXX , so θ is well defined

and is an isometry from C∗ (S) into CXX , since

‖θ (V )‖ = ‖Iµ‖ = |µ| = ‖V ‖ .
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We prove that θ is the inverse of ϕ. Let T ∈ CXX , with ϕ (T ) = V ∈ C∗ (S) .

Let µ be the measure associated to V as before. By definition we have

θ (V ) f = Iµ (f) =

∫

S

f d µ

and for each x∗ ∈ X∗ :

x∗θ (V ) f = x∗
∫

S

f d µ =

∫

S

x∗ ◦ f d µ = V (x∗ ◦ f )

= x∗Tf (from (∗) V = ϕ (T ))

since x∗ is arbitrary, we deduce from Hahn-Banach theorem that θ (V ) f = Tf

and consequently θ ◦ ϕ (T ) = T.

Similarly, we have ϕ ◦ θ (V ) = V , all V ∈ C∗ (S).

As a consequence of this theorem, we give a representation of an operator

in the class CXX by mean of a Bochner integral.

Theorem 33. Let T :C (S, X) → X be an operator in the class CXX . Then

there is a unique bounded real measure µ on BS such that :

(i) T (f) =
∫
S

f d µ, for all f ∈ C (S, X) .

(ii) ‖T‖ = |µ| .

Proof We use the transformations ϕ and θ introduced in the proof of

Theorem 32. Put ϕ (T ) = V ∈ C∗ (S), and V h =
∫
S

h d µ, for h ∈ C (S) .

Appealing to the relation (∗) used in the proof of Theorem 32, we get:

V (x∗ ◦ f) = x∗◦Tf =

∫

S

x∗◦f d µ = x∗
∫

S

f d µ, f ∈ C (S, X) and x∗ ∈ X∗.

Consequently x∗ ◦ Tf = x∗
∫
S

f d µ, for all x∗ ∈ X∗, which gives

Tf =

∫

S

f d µ.
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3 Part 2

3.1 Integral Representations in Topological Vector Spaces

Now, the objective is to go beyond the Banach space setting, to a TVS

context. The aim of this Chapter is to get integral representation theorems of

bounded operators by weak integrals, in an appropriate framework of TVS.

In all this chapter, unless otherwise stated, S will be a topological space

and µ a real measure of bounded variation on the Borel σ−field BS . Also

X will be a locally convex Hausdorff space with topological dual X∗, and for

θ ∈ X∗, x ∈ X, we denote by 〈θ, x〉 the functional duality between X and X∗.

3.2 Integral Representation by Pettis Integral

Suppose that S is a locally compact space and let X be a locally convex

TVS. We denote by C0 (S, X) the set of all continuous functions f : S → X,

vanishing outside a compact set of S, put C0 (S, X) = C0 (S) if X = R. We

are interested in representing linear bounded operators T : C0 (S, X) → X, by

means of weak integrals against scalar measures on the Borel σ−field BS of

S. Before handling more closely this problem, we need some preliminary facts

about the space C0 (S, X) .

3.2.1 Topological preliminaries

If K is a compact set in S, let C (S, K, X) be the set of all continuous

functions f : S → X, vanishing outside K. It is clear that C (S, K, X) is

a linear subspace of C0 (S, X). We equip C (S, K, X) with the topology τK

generated by the family of seminorms:

(a) f ∈ C (S,K,X) ,
∼
pα,K = Sup

t∈K
pα (f (t))

where {pα} is the family of seminorms generating the locally convex topology

of X. The topology τK is the topology of uniform convergence on K.

Next let us observe that C0 (S,X) =K C (S, K, X) , the union being performed

over all the compact subsets K of S. On the other hand if K1 ⊂ K2, then
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the natural embedding iK1K2 : C (S,K1, X) → C (S, K2, X) is continuous.

This allows one to provide the space C0 (S, X) with the inductive topology τ

induced by the subspaces C (S, K, X) , τK . The facts we need about the space

C0 (S, X) , τ are well known:

Proposition 34. (a) The space C0 (S, X) , τ is locally convex Hausdorff

and for each compact K, the relative topology of τ on C (S, K, X) is τK, i.e

the canonical embedding iK : C (S, K, X) → C0 (S, X)is continuous.

(b) Let T : C0 (S, X) → V be a linear operator of C0 (S, X) into the locally

convex Hausdorff space V, then T is continuous if and only if the restriction

T ◦ iK of T to the subspace C (S, K, X) is continuous for each compact K.

Definition 35. For each θ in the topological dual X∗ of X and for each

function f ∈ C0 (S,X) , define the function Uθf on S by

Uθf (s) = θ (f (s)) = 〈θ, f (s)〉 .

Then Uθ sends C0 (S, X) into C0 (S) . Recall that C0 (S) is equipped with the

uniform norm.

Lemma 36. The operator Uθ is linear and bounded. Moreover for each

θ 6= 0, Uθ is onto.

Proof First it is clear that Uθf ∈ C0 (S). Now by Proposition 1(b),

we have to show that for each compact set K ⊂ S the operator Uθ ◦ iK :

C (S,K,X) → C0 (S) is bounded. Since θ is bounded, there is a seminorm pα

on X and a constant M such that |θ (x)| ≤ M pα (x) for all x ∈ X. So we have

|θ (f (s))| ≤ M pα (f (s)) if f ∈ C (S, K, X) , and Uθ ◦ iK (f) (s) = θ (f (s)),

s ∈ S; it follows that

‖Uθf‖ = Sup
s∈K

|θ (f (s))| ≤ M.Sup
s∈K

pα(f (s)).

Since by formula (a), the right side of this inequality is M p̃α,K (f) , we deduce

that Uθ is continuous. Now suppose θ 6= 0. Then there exists x ∈ X such

that x 6= 0 and θ (x) 6= 0. It is clear that we can assume θ (x) = 1. Now let

h ∈ C0 (S) and define f : S → X by f(t) = h(t).x, then f ∈ C0 (S,X) and
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we have Uθ (f) (s) = Uθ(h(s)x) = h(s), because θ (x) = 1. It follows that Uθ is

onto.

In what follows we deal with the representation of bounded operators T :

C0 (S, X) → X, by weak integrals in the sense of the definition:

Definition 37. We say that a bounded operator T : C0 (S, X) → X, has a

Pettis integral form if there exist a scalar measure of bounded variation µ on

BS such that, for every continuous functional θ in X∗, we have:

f ∈ C0 (S,X) , 〈θ, Tf〉 =

∫

S

〈θ, f 〉 d µ

Definition 38. Let us denote by P the class of all bounded operators T :

C0 (S, X) → X satisfying the following condition:

(I) For θ, σ ∈ X∗ and f, g ∈ C0 (S, X) , if Uθf = Uσg, then θ (Tf) = σ (Tg) .

Condition (I) in this context, is analogous to condition (C) in Definition

31, section 2.9, Part 1.

It is easy to check that P is a subspace of the space L (C0 (S, X) , X) of all

bounded operators from C0 (S, X) to X. Also one can prove that P is closed

in the weak operator topology of L (C0 (S,X) , X) . Note also that for a given

bounded T : C0 (S, X) → X, Definition 37 implies condition (I) i.e T ∈ P . The

crucial point is that condition (I) implies the Pettis integral form of Definition

37, for some bounded scalar measure µ on BS. To prove this fact, the following

theorem is basic

Theorem 39. Let T : C0 (S, X) → X be a bounded operator satsfying

condition (I) . Then there exists a unique bounded functional ϕ on C0 (S) such

that:

(b) ∀θ ∈ X∗, ϕ ◦ Uθ = θ ◦ T.

Proof Let h be fixed in C0 (S) . If 0 6= θ ∈ X∗, by Lemma 36 there

is f ∈ C0 (S, X), solution of Uθf = h. Define ϕ (h) = θ (Tf) . Then ϕ is

well defined since if Uθf = Uσg = h, for θ, σ ∈ X∗ and f, g ∈ C0 (S, X) ,

then θ (Tf) = σ (Tg) . It is clear that ϕ is linear. Also (b) is immediate by
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construction. It remains to prove that ϕ is bounded. Let h ∈ C0 (S) and let

0 6= θ ∈ X∗; since every solution f of Uθf = h works in the definition of ϕ, we

may choose, f(t) = h(t)x, with x fixed in X so that θ (x) = 1. In this case we

have, see 2.3:

(c) p̃γ,K (f) = ‖h‖ .pγ (x)

where K is the support of f ( = support of h ), and pγ is a seminorm on X. By

formula (b) ϕ (h) = θ (Tf),and, since θ is bounded, there is a constant M > 0

and a seminorm pα on X such that: |ϕ (h)| = |θ (Tf)| ≤ M.pα (Tf) . But T

is bounded; so for each compact K ⊂ S and for the preceding pα, there is a

constant λ > 0 and a seminorm p̃β,K on C (S, K, X) such that:

pα (Tf) ≤ λ.p̃β,K (f) .

Appealing to formula (c), with γ = β, we get:

pα (Tf) ≤ λ. ‖h‖ .pβ (x) .

Now, with the above estimation of |ϕ (h)| , we deduce that

|ϕ (h)| ≤ M.λ.pβ (x) . ‖h‖ ,

which proves the boundedness of ϕ. Uniqueness comes from (b), since Uθ is

onto.

As a consequence we have the main representation theorem:

Theorem 40. Let T : C0 (S,X) → X be in the class P. Then there is a

unique bounded signed measure µ on BS such that 〈θ, Tf〉 =
∫
S

〈θ, f 〉 d µ holds

for all θ in X∗ and f ∈ C0 (S,X). Moreover for each seminorm pα on X we

have |T |pα
= |µ|, where |µ| is the total variation of µ and |T |pα

is the pα−norm

of T defined by

|T |pα
= Sup

{
pα (Tf) : f ∈ B̃pα

}

with

B̃pα =

{
f ∈ C0 (S, X) : Sup

S
pα (f (s)) ≤ 1

}
.
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Proof Let ϕ be given by Theorem 39. By the Riesz representation theorem

[22], there exists a unique bounded signed measure µ on BS such that:

(d) ∀h ∈ C0 (S) ϕ (h) =

∫

S

h (s) dµ (s)

Taking h of the form h = Uθf = 〈θ, f (•)〉, with f ∈ C0 (S, X) and citing

formula (b) again, yields ϕ ◦ Uθf = θ ◦ Tf =
∫

S
〈θ, f (s)〉 dµ (s), which means

〈θ, Tf〉 =
∫
S

〈θ, f 〉 d µ. Now to compute |T |pα
, observe from the integral form

of θ◦Tf that |θ ◦ Tf | ≤ Sup {|〈θ, f (s)〉| : s ∈ S} . |µ|. Taking the supremum in

both sides over θ ∈ Bo
pα

, the polar set of the unit ball Bpα = {x ∈ X, pα (x) ≤ 1}
of X, we get:

Sup
θ∈Bo

pα

|θ ◦ Tf | = pα (Tf) ≤ Sup
θ∈Bo

pα

Sup
s∈S

|〈θ, f (s)〉| . |µ|
= Sup

s∈S
Sup

θ∈Bo
pα

|〈θ, f (s)〉| . |µ| = Sup pα (f (s)) . |µ|

≤ |µ| , for f ∈ B̃pα .

So we deduce that |T |pα
≤ |µ|. To see the reverse inequality, let us consider a

function f ∈ C0 (S, X) of the form f = g.x, with g ∈ C0 (S) satisfying ‖g‖ ≤ 1

and x fixed in X such that pα (x) = 1. With this choice, the function f belongs

to the unit ball B̃pα . Then we have 〈θ, f (s)〉 = g (s) .θ (x) and

〈θ, Tf〉 =
∫

S
〈θ, f (s)〉 dµ (s)

= θ (x)
∫

S
g (s) dµ (s);

so that Sup
θ∈Bo

pα

|θ ◦ Tf | = pα (Tf) = pα (x)
∣∣∫

S
g (s) dµ (s)

∣∣ =
∣∣∫

S
g (s) dµ (s)

∣∣,
since pα (x) = 1. So we get pα (Tf) =

∣∣∫
S

g (s) dµ (s)
∣∣ ≤ |T |pα

because f ∈
B̃pα .

Therefore Sup
{∣∣∫

S
g (s) dµ (s)

∣∣ , g ∈ C0 (S) , ‖g‖ ≤ 1
}

= |µ| ≤ |T |pα
.

By this theorem we may denote each operator T in the class P by the

conventional symbol

(W) f ∈ C0 (S, X) , T f = P −
∫

S

f (s) dµ (s)

where the letter P stands for Pettis integral.

Remark 41. Usually a weak integral is defined as a vector x∗∗ in the

second conjugate space X ∗∗ (see the Dunford integral in [4]). The construction

of the Pettis integral, that is a Dunford integral with values in X, is not so
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straightforward and needs additional conditions on the space X. In our present

setting we were able to construct directly a whole class of Pettis integrals

with values in the topological vector space X. In Section 3.3 below, we shall

consider the reverse direction, that is, we start with a bounded measure µ on

S and we will construct directly the Pettis integrals under µ by means of a

bounded operator T in the class P . But this will be achieved under additional

assumptions on X.

3.3 Operators associated to scalar measures via Pettis

integrals

In this section we start with a bounded scalar measure µ on BS and we seek

for a linear bounded T : C0(S, X) → X such that the correspondence between

µ and T would be given by formula (W). First let us make some observations.

3.3.1 Operators via Pettis integrals

A little inspection of (W) suggests the following quite plausible observa-

tions: First the integral
∫
S

〈θ, f(s)〉 dµ(s), as a linear functional of θ on X∗,

should be at least continuous for some convenient topology on X∗. Also the

existence of the corresponding Tf in (W) will require that such topology on X

should be compatible for the dual pair 〈X∗, X〉. Finally, to get the continuity

of the functional θ → ∫
S

〈θ, f(s)〉 dµ(s), one can seek conditions such that if

θ → 0 in an appropriate manner, then 〈θ, f(s)〉 goes to 0 uniformly for s ∈ S.

Since µ is bounded this will give
∫
S

〈θ, f(s)〉 dµ(s) → 0.

In what follows we shall show that such a program can be realized for a

locally convex space having the convex compactness property (see Definition

43 below).

We shall denote by X∗
τ the dual space X ∗ equipped with the Mackey

topology τ(X∗, X). According to Mackey–Arens theorem, it is the topology

of uniform convergence on the family of absolutely convex σ(X, X∗)−compact
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sets of X. Also it is the largest compatible topology for the dual pair 〈X∗, X〉.
Then we have the well known:

Proposition 42. For each x∗∗ ∈ (X∗
τ )∗ there exists a unique x ∈ X such

that

x∗∗ (θ) = θ(x), ∀θ ∈ X∗.

Definition 43. A locally convex space X is said to have the convex com-

pactness property if for every compact set K ⊂ X, the absolute convex closure

K0 of K is also compact. For example, every quasicomplete locally convex

space has the convex compactness property.

Theorem 44. Let X be a locally convex space with the convex compactness

property, and whose dual X ∗is equipped with the Mackey topology τ(X∗, X). If

µ is a bounded scalar measure on BS, then there is a unique bounded operator

T : C0 (S, X) → X in the class P satisfying (W) , with |T |pα
= |µ| for each

seminorm pα on X.

Proof Fix f in C0 (S,X) and define the functional Γf : X∗ → R, by

Γf (θ) =
∫

S
〈θ, f (s)〉 dµ (s) . It is clear that Γf is linear. Moreover Γf ∈ (X∗

τ )∗ .

Indeed it is enough to prove that lim
θ→0

Γf (θ) = 0. If θ → 0, in X∗
τ , then for each

absolutely convex σ(X,X∗)−compact B ⊂ X, θ(x) → 0 uniformly on B. But

since f ∈ C0(S, X), the set K = {f(s) : s ∈ S} is compact.

Therefore, by the convex compactness property we deduce that K0, the ab-

solutely convex closure of K is compact, hence weakly compact; so θ → 0

uniformly on K0. Consequently 〈θ, f(s)〉 → 0 uniformly in s ∈ S.

Hence Γf (θ) =
∫

S
〈θ, f (s)〉 dµ (s) → 0, because µ is bounded. We deduce

that Γf ∈ (X∗
τ )∗; by Proposition 2 there is a unique ξf ∈ X such that Γf (θ) =

〈θ, ξf〉 , ∀θ ∈ X∗. Now let us define the operator T : C0 (S, X) → X, by

Tf = ξf , f ∈ C0 (S, X) . It is easily checked that T is linear, and satisfies (W)

by constuction. We have to show that T is bounded. Let pα be a seminorm

on X, and let K be a compact subset of X. For f ∈ C (S, K, X), we have:

pα (ξf ) = pα (Tf) = Sup
θ∈Bo

pα

|θ ◦ Tf |
= Sup

θ∈Bo
pα

∣∣∫
S
〈θ, f (s)〉 dµ (s)

∣∣
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≤ Sup
θ∈Bo

pα

Sup
s∈K

|〈θ, f (s)〉| . |µ|
= Sup

s∈K
Sup

θ∈Bo
pα

|〈θ, f (s)〉| . |µ|
= p̃α,K (f) . |µ|

which proves the continuity of T. The relation

|T |pα
= |µ|

is proved as in Theorem 40.

Theorems 40 and 44 may be put together to give:

Theorem 45. If X is a locally convex space having the convex compactness

property, then there is an isometric isomorphism between the space P and the

topological dual C∗
0 (S) of the space C0 (S). In this isomorphism the operator

T ∈ P corresponds to the measure µ ∈ C∗
0 (S) via the integral representation:

∀θ ∈ X∗, ∀f ∈ C0 (S, X) , 〈θ, Tf〉 =

∫

S

〈θ, f 〉 d µ, |T |pα
= |µ| .

Remark 46. One essential point in the proof of Theorem 44 was the

uniform convergence in s ∈ S of 〈θ, f (s)〉 to 0 when θ → 0 inX∗
τ . This has

given Γf ∈ (X∗
τ )∗ . If we want to get rid of the convex compactness condition,

we must have Γf (θ) → 0 when θ → 0 inX∗
τ . But if θ → 0 inX∗

τ , we certainly

have 〈θ, f (s)〉 → 0 for each s ∈ S. Then, as the set {〈θ, f (s)〉 , s ∈ S} is

bounded for each θ ∈ X∗, getting uniform convergence with respect to s is

reminiscent to a uniform boundedness principle, which in the present setting,

should be valid for the dual X∗
τ of X. It is well known that a general version of

this principle has been stated, via equicontinuity, for the barrelled topological

vector spaces, [27, Chapter 9, Theorem 9.3.4] With this observation in mind

we can state:

Theorem 47. Let X be a locally convex Hausdorff space whose dual X∗
τ

is a barrelled space. If µ is a bounded signed measure on BS, then there is a

unique bounded operator T : C0 (S, X) → X in the class P satisfying (W) with

respect to µ and such that |T |pα
= |µ| .
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Proof Consider the set of the linear functionals on

X∗
τ , F = {〈•, f (s)〉 , s ∈ S} .

Since for each θ the function s → 〈θ, f (s)〉 is continuous and since f ∈
C0 (S, X) , we deduce that for each θ ∈ X∗

τ the set {〈θ, f (s)〉 , s ∈ S} is

bounded, that, is the family F is pointwise bounded. Since X∗
τ is barrelled, the

family F is equicontinuous, by the uniform boundedness principle.Therefore

if θ → 0 inX∗
τ , for each ε > 0 there is a 0-neighborhood V in X∗

τ such that if

θ ∈ V we have |〈θ, f (s)〉| ≤ ε, for all s ∈ S. This means that 〈θ, f (s)〉 → 0

uniformly in s ∈ S. This gives the continuity of the functional Γf (θ) =
∫

S

〈θ, f (s)〉 dµ (s) . Now the proof goes along the same lines as in the proof of

Theorem 44.

Remark 48. Problems similar to those considered in this paper can be

taken in a more general setting. One can go beyond locally convex TVS, to

general TVS (e.g non locally convex spaces), but things are not so easy to deal

with, due to the structure of such spaces and their duals. In this case difficulties

arise from the fact that new integration processes on different function spaces

are involved for an appropriate attempt to the problem. Attempts of this kind

has been done by different authors on some special function spaces in [8], [12],

[23], [26].
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