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Existence of positive solutions to second-order
periodic boundary value problems
with impulse actions
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Abstract

In this paper we consider the existence of positive solutions for
second-order periodic boundary value problems with impulse actions.
By constructing a cone K7 x Ko, which is the Cartesian product of two
cones in the space C|0, 27| and computing the fixed point index in the

K1 x Ko, we establish the existence of positive solutions for the system.

Mathematics Subject Classification: 34B15
Keywords: Periodic boundary value problem; Second-order impulsive differ-

ential equations; Fixed point index in cones.

1 School of Mathematics and Statistics, Northeast Petroleum University, Daqing 163318,
P.R.China.
Project supported by Heilongjiang province education department natural science
research item, China. (12541076).
E-mail: heying65338406@163.com

Article Info: Received : June 1, 2014. Revised : June 30, 2014.
Published online : June 30, 2014.



80 Existence of positive solutions to second-order...

1 Introduction

This paper is devoted to study the existence of positive solutions for the

following periodic boundary value problem with impulse effects:

p

—u" + Mu = gi(x,u,v), xel,

_ 1.1
Ay = Bop(0(@), Avlasy = Ton(o(@) k=120, Y

u(0) = u(27), o/(0) =/ (2m),
[ v(0) =v(27m), '(0) ='(2m).

here I = [0,27],0 = 29 < 1 < g < -+» < 1y < 2141 = 27, M > 0, I' =
I\ {x1, 29, -+, 2y} are given, RT = [0, +00), g; € C(I x RT,R*Y), L}, L) €
C(RT,R*) with =L, (u) < Lix(u) < LLu(u)(i = 1,2), z € RY,m =
VI, D, = 0(af) =0 (27), Atlamy, = u(af) — ul@y) Al =
V(at) = (ap), Avlemg, = v(af) — v(ag), w(af),ulaf) o (aF) and vla).
(W (zy),u(zy ), v (), v(zy ) denote the right limit ( left limit) of «'(z), u(x),
V'(z) and v(z) at © = xy respectively.

It is well known that there are abundant results about the existence of posi-
tive solutions of boundary value problems for second order ordinary differential
equations. Some works can be found in [1 — 3] and references therein.They
mainly investigated the case without impulse actions.Recently, Dirichlet bound-
ary problems of second order impulsive differential equations have been stud-
ied in [4 — 6].Motivated by the work above, this paper attempts to study the
existence of positive solutions for periodic boundary value problems. By con-
structing a cone K x K, which is the Cartesian product of two cones in the
space C|0, 27],and computing the fixed-point index in the K x K ,we establish
the existence of positive solutions for the impulsive differential system (1.1).

To conclude the introduction,we introduce the following notation:

, I
gio(v) = liminf min M) I o(k) = lim inf Z,k(u)’

u—0t z€[0,27] U w0+ U
gi,oo(v) = liminf min gi(x7—u7v)’ ]z,oo(k) = liminf i,k(u)’
u—-+00 z€[0,27] U U060 U
i ? . Il
g(0) = limsup mave S0 e ) — i g 22,

u——+oo z€[0,27] U u——+00 U
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¢)(v) = limsup max g, u,v) (k) = limsupli’k—w,
w0+ x€[0,27] U w0+ u
where v € Rt and i = 1, 2.
Moreover,for the simplicity in the following discussion,we introduce the
following hypotheses.
(H1) :
!

inf 2 I o(k)|lo > 27 M, 2 (2)2 I7°(k) < 2mo M.
[Zg}%gw)m; 1o(k)lo > 27 SUp 4] (2)27 + Y I7°(k) < 270

(Hy) :

SI}ggg(z)Qﬂ—i—ZIS(k) < 2moM, [1€r}%f G2,00(2) 27?—}-2]200 Jo > 27 M.
z€ 1 * k=1

where o = min{%, S}, G(0) = st G(r) = 2o = /M.

2m(e2m™—1) 2m(e2mT—1)

2 Preliminary

In this paper, we shall consider the following space
PC(I,R) ={u € C(I,R); u|mpur.1) € C(@h, Tps), u(zy) = u(zy), Ju(zf), k=
L2, 7l} PC,(L R) = {u € C<]7 R)’ ul(dfk7$k+1)7ul|($k,wk+1) € C<x/€7'rk+1)7 (Ik) =

u(ay), o'(zy) = o(zx), 3 uley), o' (zf), k = 1,2,--- 1} with the norm
lellre = sup fu(@)l, Jullper = max{llullre, |1ulc}, Then PC(I, R),PC'(I, R)
z€|0,27

are Banach spaces.

Definition 2.1. A couple function (u,v) € PC'(I, R)NC*(I', R)x PC"(I, R)N
C*(I', R) is called a solution of system (1.1) if it satisfies system (1.1)

Lemma 2.2.  The vector (u,v) € PC'(I,R) N C*(I',R) x PC'(I,R) N
C*(I', R) is a solution of differential system (1.1)if and only if (u,v) € PC'(I, R)x
PC'(I, R) is a solution of the following integral system

k—l

v(@) = [ G, 9) gy, v(y), uly))dy + z G, 1) Lo (v(ay)) + ; G|, Tok(v(wy))-
(2.1)

) = |7 Gy u(u), o)y + X Glomhalulen)) + 32 220, T ulen),
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where G(z,y) is the Green’s function to the priodic boundary value problem
—u" + Mu =0, u(0) =u(2r),4(0) =u'(27), and

I e S EPEPE
x,y) = r em(yfx) + em(27rfy+$)’ 0 S X S Yy S 2m.
here T' = 2m(e?™™ — 1).
One can find that
2€m7r 62m7r + 1

= G(m) < G(r,y) < G(0) (2.2)

2m(e?m™ — 1) - 2m(e?mm — 1)’

For every positive solution of problem (1.1),one has

ullpc = sup [u(z)|
x€[0,27]

Without loss of generality, we assume lin% lu(x)| = ||ullpc, & € [k, Thta), k €
T —
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{0,1...,1}, then by(2.2)

lullre < GO [ o uty)v <>>dy+hm{zc:m Ii(ules)

t—&

l
N Z aGé?xJ, Y) bleﬂ(u(%))}

= G /Oﬂgl(y u(y), v(y))dy

5
-
-

k l
Z m(€—x; _|_€m(27r &ty )]]m(u(%)) + Z [em(mi—ﬁ) +6m(27r—xi+f)]fl’i(u(xi))}

=1 i=k+1

=
B

=

(2
=1

==

m mem(27r1'i+£)]71’i(u<xi>)}

= k+1

gl(y u(y), v(y))dy

[em(éfzi)(fl,z'(u(xi)) —mly(u(z))) + em(%*gﬂi)([l,i(u(“’i))

' %{
b T (ute)]
.

* f{ > O (Tua(u(e) + mTy(u(a)) + T m O (T (u(y)

i=k+1

~ Tt}

It follows from —L 1 ;(u) < I1;(u) < =1 ;(u), thatly ;(w)—mIq;(u) > 0, I ;(u)+
mTLi(u) > 0. So

ZIM(U(J;Z)) (2'3)

=1

2mm

lullre < G(0) / " g1y, uly), o(y))dy +
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For any = € [0, 27], without loss of generality, we assume that x € [z, T41),,then

we) 2 66 [ nlul)) dy+zaw I(u(e) +28G—”)|y Talu(zy)

=1 y

= G(w)/oﬁgl(yjuw)’v(y))dy

+ % Z[em(m_xi)(ll,i(u(fi» —mIy;(u(z;))) + em(%_ﬁm([l,z‘(u(%)) +mlIy(u(z;)))]
l
+ % €™ (I () + md i (u(x))) + €m0 (I (u(y) — mi(u())]
i=k+1

It follows from _%Il,z(u) < Tl,i(u) < %]Li(u), that Ilji(u) — mYl,i(u) >
0,]1,1‘(15) + mTLi(u) > 0. So

we) = Gr) [ o) o)+ 2 ZIM ()

2T Y 1
> e | gl<y,u<y>,v<y>>dy+e;nfer >t
= mm{%’ @%}"UHPC = ollulpc. (2.4)

Similarly, v(z) > o||v||pc.
In applications below, we take E = C(I, R) and define

K ={ue C(I,R) : u(x) > o||lul]|pc, = € [0,27]}.

It is easy to see that K is a closed convex cone in E. For r > 0, let K, = {u €
K :||ul]| <r}and 0K, = {u € K : |Ju|| = r}. For any (u,v) € K x K define
mappings ¢, : K — C(I,R"), V¥, : K — C(I[,R"),and T : K x K —
C(I,R") x C(I,R") as follows

‘Pv(U)(fv)=fo%G(x,y)gl(y,U(y),v(y))dy+éG(m,xk)h,k(U( k) + X = De(u(a)),
W, (v) () =fo%G(x,y)gz(y,v(y),U(y))dy+éG(rv,$k)12,k(v( k) + ; 2Gtew)|  Top(v(z)),
T(u,v)(z) = (,(u)(x), Vu(v)(2)), z € [0, 27].

(2.5)
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Lemma 2.3. T: KxK— K x K is completely continuous. Moreover,
T(KxK)CKXxK.

Proof It is easy to see that T': K x K — K x K is completely continuous.
Thus we only need to show T(K x K) C K x K,

For any (u,v) € K x K, we prove T(u,v) € K x K,ie. ®,(u) € K and
U,(v) € K. By using inequalities (2.3) and (2.4), we have that

l

2.1 < GO [ o0t o)y + 2L 3 Bl
0, (w)(o) = min{ G, )l = o0, 2 € 0,24

Similarly, ¥, (v)(z) > o||¥,.(v)| pc. Thus, ®,(u)(z) € K and ¥, (v)(z) € K.
Consequently, T(K x K) C K x K

Lemma 2.4. Let ® : K — K be a completely continuous mapping with
udu # u for every u € 0K, and 0 < pp < 1. Then i(®, K,, K) = 1.

Lemma 2.5. Let ®: K — K be a completely continuous mapping. Sup-
pose that the following two conditions are satisfied:

(i) uégf(r ||Pul| > 0; (i) pPu # u for every u € 0K, and pu > 1.
Then, i(®, K, K) = 0.

Lemma 2.6. Let E be a Banach space and K; C K (i =1,2) be a closed
set in E. Forr; > 0(i = 1,2), denote K,, = {u € K; : ||[u]| < r;} and
OK,, ={u € K; : ||u|]| = r;}. Suppose ®; : K; — K; is completely continuous.
If u; # ®;u; for any u; € 0K,,, then

(P, Ky, X Ky, K1 X K3) =i(P1, Ky, K1) X i(Po, Ky, Ko)

where ®(u,v) =: (Pu, Pov) for any (u,v) € K1 x Ks.

3 Main Results

Theorem 3.1. Assume that (Hy)— (H2) are satisfied. Then problem (1.1)

has at least one positive solution (u,v).
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To prove Theorem3.1,we first give the following lemmas.
Lemma 3.2. If (H,) is satisfied, then i(®,, Kg, \ K,, ,K)=1.

Proof Since (H;) holds, then there exists 0 < ¢ < 1 such that

l
(1—e)[inf_g1(2)2r + ; Lo(k)]o > 27 M,

2roM > Z(Ifo(k) +¢e) + 27 ( S;}:g 9% (z) +€). (3.1)

By the definitions of g1, 10, one can find 7o > 0 such that for any x €
[0,27], 0 <u <1y, vE€RT

gi1(z,u,v) > gio(v)(1 —e)u, Tip(u) > Lio(k)(1 —€)u.
Let 1 € (0,79), then for u € JK,,, we have

u(z) > ol|ul| = ory > 0. Vz e |0,2n]

2T l
Boulr) = / G 1)on (, ulw), v()dy + 3 Gl 54 s ()

k=1
n ZaG” e To(u(zy))
> G [ .o Z

Gr)(1=2) [ malol)utn)dy + £(1 - Zho

(1 — 8)0’T1 (zlerjl:.{f+ g1’0<Z)G<7T)27T + % Z 1170(11’))

v

v

from which we see that inlg [|®,u||pc > 0, namely, hypothesis (i) of Lemma
1

2.5 holds. Next we show that u®,u # u for any v € 0K,,, v € K and p > 1.
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If this is not true, then there exist ug € 0K,, and o > 1 such that

toPyup = ug. Note that ug(x) satisfies

(

—ug () + Mug(z) = pogr (7, uo(z), v(x)), rel,

—Au|y—a, = polip(uo(zr)), k=1,2,---,1,

At |pen, = pol1p(uo(zr)), k=1,2,---1, (3.2)
up(0) = ug(27),

up(0) = uf(2m).

\

Integrate from 0 to2m, using integration by parts in the left side, notice that

/Oﬂ[—ug(x)+Mu0(x)]d:c = ZAu’O(xk)—i-M/Oﬂuo(x)dx

= =0 3 halun(on) + 3 [ wola)ds

So we obtain

M/szro(t)dt = uozfl,k(uo(ifk))+ﬂo/0ng(yauo(y)vv(y))d?/

l
> (1—e) ) [(To(k) + nf g10(2)27]or
k=1

I
2nMry > (1 =&)Y (Lio(k)+ ilrll%f+ g10(2)2m|or,
ze
k=1

which contradicts with (3.1) . Hence,from Lemma 2.5 we have
i(®, K,,, ) = 0. Vo e K (3.3)

On the other hand, from (H;), there exists H > 7 such that for any z €
0,27], w> H, veE RT

g(w,u,v) < (g7°(v) + e)u, Lp(u) < (I°(K) + €)u, (3.4)

Choose Ry > Ry := max{Z,r} and let u € OKp,,v € K. Since u(z) >
ollullpc = Ry > H for x € [0,27], v € K. Now we show that u®,u # u
for any u € 0Kg,, v € K and 0 < p < 1. In fact, if there exist uy € 0Kpg,
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and 0 < po < 1 such that puo®,uy = wug, then ug(x) satisfies equation (3.2).
Integrating from 0 to 27,we obtain

M/OWuo(x)dxZMO[ZIlyk(uo(m))—l—/oﬂgl(x,uo(x),v(x))da:]

l

< Z([i’o(k)—FE)uo(a?k)‘i‘/oﬂuo(x)d*x(sup 91 (2) +¢)

1 zERT

< R _(IP(k) +e) + 2m(sup g°(2) +2))]

1 z€ERt

ie.,
!

2noM Ry < Ry [Z(Ifo(k) + )+ 2n(sup g7°(2) + €)]

k=1 2€RT

which is a contradiction with (3.1) .
Let Ry = max{ry, g}, then for any u € 0Kg,,v € K and 0 < u < 1, we
have u®,u # u. Thus
i(®, Kp, \K) = 1. (3.5)

In view of (3.3) and (3.5), we obtain
i(®, Kg, \ K,,,K)=1.
Lemma 3.3. : If (H,) is satisfied, then i(V,, Kp, \ K,, , K) = —1.

Proof Since (Hz) holds, there exists 0 < £ < 1 such that

2o M > Z(Ig(/ﬁ) + &) + 2m(sup gy(z) + ¢),

=1 2€RT

l

(1= &) inf, g500(2)27 + > Lo(k)|o > 2mM. (3.6)

One can find r9 > 0 such that for any = € [0,27], 0 <v <71y, u € R"
ga(x,v,u) < (g5(u) +e)v, Ir(v) < (I5(k) + ), (3.7)

Let ro € (0,79). Now we prove that pV¥,v # v for any v € 0K,,, u € K and
0 < p < 1. If this is not true, then there exist vy € 0K,, and 0 < py < 1 such
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that poW,vo = vg. Note that vy(x) satisfies

(

—vf(x) + Mvy(z) = poge(x, vo(x), u(x)), xel,

—AV)|yesy, = polog(vo(zr)), k=1,2,--- .1,

AUO‘I:xk = ,UOTQ,k(Uo(ﬂﬂk)), k=1,2,---,1, (3.8)
v0(0) = vo(27),

\ vp(0) = vj(2m).

Integrating from 0 to 27, we obtain

27 ! 27
M/ vo(x)dx = Z/L(y[zk(?]o(l’k)) + ,uo/o g2(z,vo(x), u(z))dz

2m
< Z (I3(k) + &)vo(xx) +/ vo(z)dz(sup gy(2) +¢€)
- 0

ze€Rt
!
< 1> (I3(k) + &) + 2m(sup g5(2) + ).
1 2€RT

SO
l

2o Mry < T2[Z<I§(k) + ) + 2n(sup go(2) + &)l

1 zERT

which is a contradiction with (3.6). By Lemma 2.4, we have
(U, K,,, K) = 1. (3.9)

On the other hand, from (H,), there exists H > ro such that for any = €
[0,27], v> H, u € RT
G2(z,v,u) > goo(u)(1 —e)v, Lok(v) > Iz 00(k)(1 —e)v, (3.10)

Choose Ry > Ry = max{g,rg} and let v € 0Kg,,u € K. Since v(z) >
ol||v||pc = oRe > H for x €10,27], u € K, from (3.10) we see that

g2(w, v(2), u(2)) 2 g2,00(u(2))(1 = £)v(2) 2 0g2,00(u())(1 =€) Ra,
L(v(xg) > 0ls00(k)(1 — €) Ry,

Essentially the same reasoning as above yields %rg |V, v||pc > 0. Next we
VEJIKR,

show that if Ry is large enough, then pWV,v # v for any v € 0Kg,, u € K and
p > 1. In fact, if there exist vy € OKg, and po > 1 such that poW,vg = vp,
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then vy(x) satisfies equation (3.8) . Integrate from 0 fo 27, using integration
by parts in the left side to obtain

l

M/Oﬂvo(x)dx = Zpglzk(vo(xk))Jr,uo/oﬂgQ(x,vo(a:),u(:c))d:c

l
> (1— Is (K inf gs00(2)27|0Rs.
> 6)[; 200(K) + Inf_ o 00(2)27]0 Ry
So we obtain
l
2rM Ry > (1 — Iy (K inf go o (2)27|cR
TMRy > ( 5)[; 2, ()+21€f}z+92, (2)2m]o R

which contradicts with (3.6),too.
Hence hypothesis (ii) of Lemma 2.5 is satisfied and

iUy, Kp, ,K)=0. (3.11)
In view of (3.9) and (3.11), we obtain
i(Vy, Kp, \ Ky, K) = —1

Proof of Theorem 3.1. Since (H;) — (H2) are satisfied ,from Lemma2.3 we
get &, : K — K, ¥V, : K - Kand T : K Xx K — K x K are completely

continuous. From Lemmad.2,3.3 and 2.6 we have
i(T, K, \K, x Kp,\K,,, KxK) = i(®,, Kg,\K,,, K)xi(V,,, Kp,\K,,, K) = —1
Thus, system (1.1)has at least one positive solution (u,v).

Corollary 3.4. The conclusion of Theorem 3.1 is valid if (Hy) and (Hs)
are replaced by

l
(H7) Zief}g gi10(2) = coor Z[Lo(k) = 00;

k=1

sup ¢7°(2) =0 and I°(k) =0, k=1,2,..1L

zERT

(H3) sup g3(2) =0and I(k) =0, k=1,2,..1;

zERT

!
inf go.00(2) = 00 or Z I oo (k) = 0.
k=1

z€RT
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